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A Note on This Lecture 

 These slides are partly from 18-742 Fall 2012, Parallel 
Computer Architecture, Lecture 9: Multithreading 

 

 Video of that lecture: 

 http://www.youtube.com/watch?v=k5_yW_iNlvg&list=PL5PHm2jkk
Xmh4cDkC3s1VBB7-njlgiG5d&index=9  

2 

http://www.youtube.com/watch?v=k5_yW_iNlvg&list=PL5PHm2jkkXmh4cDkC3s1VBB7-njlgiG5d&index=9
http://www.youtube.com/watch?v=k5_yW_iNlvg&list=PL5PHm2jkkXmh4cDkC3s1VBB7-njlgiG5d&index=9
http://www.youtube.com/watch?v=k5_yW_iNlvg&list=PL5PHm2jkkXmh4cDkC3s1VBB7-njlgiG5d&index=9
http://www.youtube.com/watch?v=k5_yW_iNlvg&list=PL5PHm2jkkXmh4cDkC3s1VBB7-njlgiG5d&index=9


Readings: Multithreading 
 Required 

 Spracklen and Abraham, “Chip Multithreading: Opportunities and 
Challenges,” HPCA Industrial Session, 2005.  

 Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE 
Micro 2004. 

 Tullsen et al., “Exploiting choice: instruction fetch and issue on an 
implementable simultaneous multithreading processor,” ISCA 1996. 

 Eyerman and Eeckhout, “A Memory-Level Parallelism Aware Fetch Policy for 
SMT Processors,” HPCA 2007. 

 

 Recommended 

 Hirata et al., “An Elementary Processor Architecture with Simultaneous 
Instruction Issuing from Multiple Threads,” ISCA 1992 

 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978. 

 Gabor et al., “Fairness and Throughput in Switch on Event Multithreading,” 
MICRO 2006. 

 Agarwal et al., “APRIL: A Processor Architecture for Multiprocessing,” ISCA 
1990. 
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Multithreading (Outline) 

 Multiple hardware contexts 

 Purpose 

 Initial incarnations 

 CDC 6600 

 HEP 

 Tera 

 Levels of multithreading 

 Fine-grained (cycle-by-cycle) 

 Coarse grained (multitasking) 

 Switch-on-event 

 Simultaneous 

 Uses: traditional + creative (now that we have multiple 
contexts, why do we not do …) 
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Multithreading: Basics 

 Thread 

 Instruction stream with state (registers and memory) 

 Register state is also called “thread context” 

 

 Threads could be part of the same process (program) or 
from different programs 

 Threads in the same program share the same address space 
(shared memory model) 

 

 Traditionally, the processor keeps track of the context of a 
single thread 

 Multitasking: When a new thread needs to be executed, old 
thread’s context in hardware written back to memory and 
new thread’s context loaded 
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Hardware Multithreading 

 General idea: Have multiple thread contexts in a single 
processor 

 When the hardware executes from those hardware contexts 
determines the granularity of multithreading  

 

 Why? 

 To tolerate latency (initial motivation) 

 Latency of memory operations, dependent instructions, branch 
resolution 

 By utilizing processing resources more efficiently 

 To improve system throughput 

 By exploiting thread-level parallelism 

 By improving superscalar/OoO processor utilization 

 To reduce context switch penalty 
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Initial Motivations 

 Tolerate latency 

 When one thread encounters a long-latency operation, the 
processor can execute a useful operation from another thread 

 

 CDC 6600 peripheral processors 

 I/O latency: 10 cycles 

 10 I/O threads can be active to cover the latency 

 Pipeline with 100ns cycle time, memory with 1000ns latency 

 Idea: Each I/O “processor” executes one instruction every 10 
cycles on the same pipeline 

 Thornton, “Design of a Computer: The Control Data 6600,” 
1970.  

 Thornton, “Parallel Operation in the Control Data 6600,” 
AFIPS 1964. 
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Hardware Multithreading 

 Benefit 

+ Latency tolerance 

+ Better hardware utilization (when?) 

+ Reduced context switch penalty 

 

 Cost 

- Requires multiple thread contexts to be implemented in 
hardware (area, power, latency cost) 

- Usually reduced single-thread performance 

 - Resource sharing, contention 

    - Switching penalty (can be reduced with additional hardware)  
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Types of Multithreading 

 Fine-grained 

 Cycle by cycle 

 

 Coarse-grained 

 Switch on event (e.g., cache miss) 

 Switch on quantum/timeout 

 

 Simultaneous 

 Instructions from multiple threads executed concurrently in 
the same cycle 
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Fine-grained Multithreading 

 Idea: Switch to another thread every cycle such that no two 
instructions from the thread are in the pipeline concurrently 

 

 Improves pipeline utilization by taking advantage of multiple 
threads 

 Alternative way of looking at it: Tolerates the control and 
data dependency latencies by overlapping the latency with 
useful work from other threads 

 

 Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 
1964. 

 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978. 
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Fine-grained Multithreading 

 CDC 6600’s peripheral processing unit is fine-grained 
multithreaded 

 Processor executes a different I/O thread every cycle 

 An operation from the same thread is executed every 10 
cycles 

 

 Denelcor HEP 
 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978. 

 120 threads/processor  

 50 user, 70 OS functions  

 available queue vs. unavailable (waiting) queue  

 each thread can only have 1 instruction in the processor pipeline; each 
thread independent  

 to each thread, processor looks like a sequential machine 

 throughput vs. single thread speed   
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Fine-grained Multithreading in HEP 

 Cycle time: 100ns 

 

 8 stages  800 ns to 
complete an 
instruction 

 assuming no memory 
access 
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Fine-grained Multithreading 

 Advantages 

+ No need for dependency checking between instructions 

    (only one instruction in pipeline from a single thread) 

+ No need for branch prediction logic 

+ Otherwise-bubble cycles used for executing useful instructions from 
different threads 

+ Improved system throughput, latency tolerance, utilization 

 

 Disadvantages 

- Extra hardware complexity: multiple hardware contexts, thread 
selection logic 

- Reduced single thread performance (one instruction fetched every N 
cycles)  

- Resource contention between threads in caches and memory 

- Dependency checking logic between threads remains (load/store) 
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Multithreaded Pipeline Example 

 

 

 

 

 

 

 

 

 

 

 Slide from Joel Emer 
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Sun Niagara Multithreaded Pipeline 
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Tera MTA Fine-grained Multithreading 

 256 processors, each with a 21-cycle pipeline 

 128 active threads 

 A thread can issue instructions every 21 cycles 

 Then, why 128 threads? 

 

 Memory latency: approximately 150 cycles 

 No data cache 

 Threads can be blocked waiting for memory 

 More threads  better ability to tolerate memory latency 

 

 Thread state per processor 

 128 x 32 general purpose registers 

 128 x 1 thread status registers 
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Tera MTA Pipeline 

 Threads move 
to/from different 
pools as an 
instruction 
executes 

 More accurately, 
thread IDs are 
kept in each 
pool 
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Coarse-grained Multithreading 

 Idea: When a thread is stalled due to some event, switch to 
a different hardware context 

 Switch-on-event multithreading 

 

 Possible stall events 

 Cache misses 

 Synchronization events (e.g., load an empty location) 

 FP operations 

 

 HEP, Tera combine fine-grained MT and coarse-grained MT 

 Thread waiting for memory becomes blocked (un-selectable) 

 Agarwal et al., “APRIL: A Processor Architecture for Multiprocessing,” 
ISCA 1990. 

 Explicit switch on event 
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Coarse-grained Multithreading in APRIL 

 Agarwal et al., “APRIL: A Processor Architecture for 
Multiprocessing,” ISCA 1990. 

 

 4 hardware thread contexts 

 Called “task frames” 

 

 Thread switch on 

 Cache miss 

 Network access 

 Synchronization fault 

 

 How? 

 Empty processor pipeline, change frame pointer (PC) 
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Fine-grained vs. Coarse-grained MT 

 Fine-grained advantages 

+ Simpler to implement, can eliminate dependency checking, 
branch prediction logic completely 

+ Switching need not have any performance overhead (i.e. dead 
cycles) 

 + Coarse-grained requires a pipeline flush or a lot of hardware   
  to save pipeline state  

   Higher performance overhead with deep pipelines and  

     large windows 

 

 Disadvantages 

- Low single thread performance: each thread gets 1/Nth of the 
bandwidth of the pipeline 
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IBM RS64-IV 

 4-way superscalar, in-order, 5-stage pipeline 

 Two hardware contexts 

 On an L2 cache miss 

 Flush pipeline 

 Switch to the other thread 

 

 Considerations 

 Memory latency vs. thread switch overhead 

 Short pipeline, in-order execution (small instruction window) 
reduces the overhead of switching 
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Intel Montecito 
 McNairy and Bhatia, “Montecito: A Dual-Core, Dual-Thread Itanium 

Processor,” IEEE Micro 2005. 

 

 

 

 

 

 

 Thread switch on 

 L3 cache miss/data return 

 Timeout – for fairness 

 Switch hint instruction 

 ALAT invalidation – synchronization fault 

 Transition to low power mode 

 <2% area overhead due to CGMT 
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Fairness in Coarse-grained Multithreading 

 Resource sharing in space and time always causes fairness 
considerations 

 Fairness: how much progress each thread makes  

 

 In CGMT, the time allocated to each thread affects both 
fairness and system throughput 

 When do we switch? 

 For how long do we switch? 

 When do we switch back? 

 How does the hardware scheduler interact with the software 
scheduler for fairness? 

 What is the switching overhead vs. benefit?  

 Where do we store the contexts? 
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We did not cover the following slides in lecture. 

These are for your preparation for the next lecture.  



Fairness in Coarse-grained Multithreading 

 Gabor et al., “Fairness and Throughput in Switch on Event Multithreading,” 
MICRO 2006. 

 How can you solve the below problem? 
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Fairness vs. Throughput 

 Switch not only on miss, but also on data return 

 

 Problem: Switching has performance overhead 

 Pipeline and window flush 

 Reduced locality and increased resource contention (frequent 
switches increase resource contention and reduce locality) 

 

 One possible solution 

 Estimate the slowdown of each thread compared to when run 
alone 

 Enforce switching when slowdowns become significantly 
unbalanced  

 Gabor et al., “Fairness and Throughput in Switch on Event 
Multithreading,” MICRO 2006. 
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Thread Switching Urgency in Montecito 

 Thread urgency levels 

 0-7 

 

 Nominal level 5: active progress 

 After timeout: set to 7 

 After ext. interrupt: set to 6 

 

 Reduce urgency level for each 
blocking operation 

 L3 miss 

 

 Switch if urgency of foreground 
lower than that of background 
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