Computer Architecture:
Multithreading (I)

Prof. Onur Mutlu
Carnegie Mellon University




A Note on This Lecture

= These slides are partly from 18-742 Fall 2012, Parallel
Computer Architecture, Lecture 9: Multithreading

= Video of that lecture:

o http://www.youtube.com/watch?v=k5 yW iNIlvg&list=PL5PHmM2jkk
Xmh4cDkC3s1VBB7-njlgiG5d&index=9



http://www.youtube.com/watch?v=k5_yW_iNlvg&list=PL5PHm2jkkXmh4cDkC3s1VBB7-njlgiG5d&index=9
http://www.youtube.com/watch?v=k5_yW_iNlvg&list=PL5PHm2jkkXmh4cDkC3s1VBB7-njlgiG5d&index=9
http://www.youtube.com/watch?v=k5_yW_iNlvg&list=PL5PHm2jkkXmh4cDkC3s1VBB7-njlgiG5d&index=9
http://www.youtube.com/watch?v=k5_yW_iNlvg&list=PL5PHm2jkkXmh4cDkC3s1VBB7-njlgiG5d&index=9

Readings: Multithreading

Required
o Spracklen and Abraham, “Chip Multithreading: Opportunities and

Challenges,” HPCA Industrial Session, 2005.

Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE
Micro 2004.

o Tullsen et al., “Exploiting choice: instruction fetch and issue on an

implementable simultaneous multithreading processor,” ISCA 1996.

Eyerman and Eeckhout, “A Memory-Level Parallelism Aware Fetch Policy for
SMT Processors,” HPCA 2007.

Recommended

a

Hirata et al., “An Elementary Processor Architecture with Simultaneous
Instruction Issuing from Multiple Threads,” ISCA 1992

Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

Gabor et al., “Fairness and Throughput in Switch on Event Multithreading,”
MICRO 2006.

Agarwal et al., “APRIL: A Processor Architecture for Multiprocessing,” ISCA
1990.



Multithreading (Outline)

Multiple hardware contexts

Purpose

Initial incarnations

a CDC 6600

o HEP

o Tera

Levels of multithreading

o Fine-grained (cycle-by-cycle)

o Coarse grained (multitasking)
Switch-on-event

o Simultaneous

Uses: traditional + creative (now that we have multiple
contexts, why do we not do ...)



Multithreading: Basics

Threac

o Instruction stream with state (registers and memory)
o Register state is also called “thread context”

Threads could be part of the same process (program) or
from different programs

o Threads in the same program share the same address space
(shared memory model)

Traditionally, the processor keeps track of the context of a
single thread

Multitasking: When a new thread needs to be executed, old
thread’ s context in hardware written back to memory and
new thread’ s context loaded



Hardware Multithreading

General idea: Have multiple thread contexts in a single
processor

o When the hardware executes from those hardware contexts
determines the granularity of multithreading

Why?
o To tolerate latency (initial motivation)

Latency of memory operations, dependent instructions, branch
resolution

By utilizing processing resources more efficiently
o To improve system throughput

By exploiting thread-level parallelism

By improving superscalar/OoO processor utilization
o To reduce context switch penalty



Initial Motivations

Tolerate latency

Q

When one thread encounters a long-latency operation, the
processor can execute a useful operation from another thread

CDC 6600 peripheral processors

Q

Q
Q
Q

I/0 latency: 10 cycles
10 I/O threads can be active to cover the latency
Pipeline with 100ns cycle time, memory with 1000ns latency

Idea: Each I/O “processor” executes one instruction every 10
cycles on the same pipeline

Thornton, “Design of a Computer: The Control Data 6600,”
1970.

Thornton, “Parallel Operation in the Control Data 6600,
AFIPS 1964.



Hardware Multithreading

Benefit

+ Latency tolerance

+ Better hardware utilization (when?)
+ Reduced context switch penalty

Cost

- Requires multiple thread contexts to be implemented in
hardware (area, power, latency cost)

- Usually reduced single-thread performance
- Resource sharing, contention
- Switching penalty (can be reduced with additional hardware)



Types of Multithreading

Fine-grained
o Cycle by cycle

Coarse-grained
o Switch on event (e.qg., cache miss)
o Switch on quantum/timeout

Simultaneous

o Instructions from multiple threads executed concurrently in
the same cycle



Fine-grained Multithreading

Idea: Switch to another thread every cycle such that no two
instructions from the thread are in the pipeline concurrently

Improves pipeline utilization by taking advantage of multiple
threads

Alternative way of looking at it: Tolerates the control and
data dependency latencies by overlapping the latency with
useful work from other threads

Thornton, “Parallel Operation in the Control Data 6600,” AFIPS
1964.

Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

10



Fine-grained Multithreading

CDC 6600’ s peripheral processing unit is fine-grained
multithreaded

o Processor executes a different I/O thread every cycle

o An operation from the same thread is executed every 10
cycles

Denelcor HEP
o Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.
o 120 threads/processor
50 user, 70 OS functions
o available queue vs. unavailable (waiting) queue

o each thread can only have 1 instruction in the processor pipeline; each
thread independent

o to each thread, processor looks like a sequential machine
o throughput vs. single thread speed

11



Fine-grained Multithreading in HEP

= Cycle time: 100ns

= 8 stages - 800 ns to
complete an
instruction

0 assuming no memory
access

FROM DATA MEMORY
VIA SWITCH

TO DATA MEMORY
VIA SWITCH

QUEUE

PERFORM
FUNCTION

-
PERFORM
FUNCTION

REGISTER
MEMORY

FETCH
OPERANDS

STORE
RESULT

FETCH
INSTRUCTION QUEUE

PROGRAM
MEMORY

14



Fine-grained Multithreading

Advantages

+ No need for dependency checking between instructions
(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from
different threads

+ Improved system throughput, latency tolerance, utilization

Disadvantages

- Extra hardware complexity: multiple hardware contexts, thread
selection logic

- Reduced single thread performance (one instruction fetched every N
cycles)

- Resource contention between threads in caches and memory
- Dependency checking logic between threads remains (load/store)

13



Multithreaded Pipeline Example

select

Slide from Joel Emer

:x > |
15 —R—|[ GPR1 =
AN _ X
1y I A
AN . .
N
:I_l + :|-| >
N 2 W

D$

14



Sun Niagara Multithreaded Pipeline

file x ¢

Crossbar
Interface

Thread selects

—— Instruction type

—  Mdisses
PC logic — Traps and intermapis
logic *— Resource conflicts




Tera MTA Fine-grained Multithreading

256 processors, each with a 21-cycle pipeline
128 active threads

A thread can issue instructions every 21 cycles
o Then, why 128 threads?

Memory latency: approximately 150 cycles

o No data cache

a Threads can be blocked waiting for memory

o More threads - better ability to tolerate memory latency

Thread state per processor
o 128 x 32 general purpose registers

o 128 x 1 thread status registers
16



Tera MTA Pipeline

)

Write Pool

[

[ Issue Pool ]

Inst Fetch

=
>

[ Retry Pool ]

RN

M A c

[ Memory Pool ]

Interconnection Network

Memory pipeline

Threads move

to/from different

pools as an

Instruction

executes

o More accurately,
thread IDs are

kept in each
POOl

17



Coarse-grained Multithreading

Idea: When a thread is stalled due to some event, switch to
a different hardware context

o Switch-on-event multithreading

Possible stall events

o Cache misses

o Synchronization events (e.g., load an empty location)
o FP operations

HEP, Tera combine fine-grained MT and coarse-grained MT
o Thread waiting for memory becomes blocked (un-selectable)

Agarwal et al., “APRIL: A Processor Architecture for Multiprocessing,”
ISCA 1990.

Explicit switch on event
18



Coarse-grained Multithreading in APRIL

Agarwal et al., “APRIL: A Processor Architecture for

Multiprocessing,” ISCA 1990.

4 hardware thread contexts
o Called “task frames”

Thread switch on

o Cache miss

o Network access

a Synchronization fault

How?

Processor State

PC and PSR o7

frames

Global register {
frame

g0

0r0
0x31

\[FPI(&

1:
131

2710

2131

PSR 310
Mo el

ffffff

g
L a O
Y

toa,
Pt tannssnanannast

. Loaded thread

o Empty processor pipeline, change frame pointer (PC)

19



Fine-grained vs. Coarse-grained M'T

Fine-grained advantages

+ Simpler to implement, can eliminate dependency checking,
branch prediction logic completely

+ Switching need not have any performance overhead (i.e. dead
cycles)

+ Coarse-grained requires a pipeline flush or a lot of hardware
to save pipeline state

- Higher performance overhead with deep pipelines and
large windows

Disadvantages

- Low single thread performance: each thread gets 1/Nth of the
bandwidth of the pipeline

20



IBM RS64-1V

4-way superscalar, in-order, 5-stage pipeline
Two hardware contexts
On an L2 cache miss

a Flush pipeline
a Switch to the other thread

Considerations
o Memory latency vs. thread switch overhead

o Short pipeline, in-order execution (small instruction window)
reduces the overhead of switching

21



Intel Montecito

= McNairy and Bhatia, “Montecito: A Dual-Core, Dual-Thread Itanium
Processor,” IEEE Micro 2005.

) . ve] - N - I - |

-+——Hidden latency ————#

Bi Bi+1 Bi+2

Time - -

= Thread switch on
o L3 cache miss/data return
o Timeout — for fairness
o Switch hint instruction
o ALAT invalidation — synchronization fault
o Transition to low power mode
= <2% area overhead due to CGMT




Fairness in Coarse-grained Multithreading

Resource sharing in space and time always causes fairness
considerations

o Fairness: how much progress each thread makes

In CGMT, the time allocated to each thread affects both
fairness and system throughput

o When do we switch?

o For how long do we switch?
When do we switch back?

o How does the hardware scheduler interact with the software
scheduler for fairness?

o What is the switching overhead vs. benefit?
Where do we store the contexts?

23



We did not cover the following slides in lecture.
These are for your preparation for the next lecture.




Fairness in Coarse-grained Multithreading

Gabor et al., “Fairness and Throughput in Switch on Event Multithreading,”

MICRO 2006.

How can you solve the below problem?

Thread 1 Exl M

Ex1

M

Ex1

(alone)

Thread 2 Ex2| M IExZ‘ M ‘ExZ M Ex2| M |Ex2] M ]ExZ

(alone) |

Thread 1+2]
(SOE) |

S

Ex1 S\\~Ex2

Exl

M

Ex2 l M lExZ H

ekl e |

time

Figure 1. Intuitive example of unfair execu-
tion in SOE. Ex/ marks execution of instruc-
tions from thread 1, Ex2 from thread 2, M
marks last level cache misses and Sw de-
notes thread switch overheads. When both
threads run together using SOE (bottom), the
2nd thread runs extremely slowly while the
1st thread’s performance is hardly affected

by the multithreading.

25



Fairness vs. Throughput

Switch not only on miss, but also on data return

Problem: Switching has performance overhead
o Pipeline and window flush

o Reduced locality and increased resource contention (frequent
switches increase resource contention and reduce locality)

One possible solution

o Estimate the slowdown of each thread compared to when run
alone

o Enforce switching when slowdowns become significantly
unbalanced

o Gabor et al., “Fairness and Throughput in Switch on Event
Multithreading,” MICRO 2006.

26



Thread Switching Urgency in Montecito

Thread urgency levels o T
Q 0'7 ’7**} e ‘ TO executing

I T1 in background

| TO issues load that

| 4 l ' 5 ’ misses L3 cache

T i

Nominal level 5: active progress P o

|

TO is in background,

After timeout: Set to 7 . 3 5 initiated another access

before thread switch

After ext. interrupt: set to 6 ‘ Load ret

4 5 T1 is still higher urgency
so no thread switch occurs

T1 issues load that
L 4 | l 4 ‘_ misses L3 cache

Reduce urgency level for each "5 | B —| oso roums om

blocking operation = a7z

2 L3 miss -

[J Background thread
O Foreground thread

SWltCh |f u rgency Of fo reg rou nd I Eure 4 Urgency and thread switches on the Montecito
lower than that of background |




