
Computer Architecture:

Multithreading (I)

Prof. Onur Mutlu

Carnegie Mellon University

A Note on This Lecture

 These slides are partly from 18-742 Fall 2012, Parallel
Computer Architecture, Lecture 9: Multithreading

 Video of that lecture:

 http://www.youtube.com/watch?v=k5_yW_iNlvg&list=PL5PHm2jkk
Xmh4cDkC3s1VBB7-njlgiG5d&index=9

2

http://www.youtube.com/watch?v=k5_yW_iNlvg&list=PL5PHm2jkkXmh4cDkC3s1VBB7-njlgiG5d&index=9
http://www.youtube.com/watch?v=k5_yW_iNlvg&list=PL5PHm2jkkXmh4cDkC3s1VBB7-njlgiG5d&index=9
http://www.youtube.com/watch?v=k5_yW_iNlvg&list=PL5PHm2jkkXmh4cDkC3s1VBB7-njlgiG5d&index=9
http://www.youtube.com/watch?v=k5_yW_iNlvg&list=PL5PHm2jkkXmh4cDkC3s1VBB7-njlgiG5d&index=9

Readings: Multithreading
 Required

 Spracklen and Abraham, “Chip Multithreading: Opportunities and
Challenges,” HPCA Industrial Session, 2005.

 Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE
Micro 2004.

 Tullsen et al., “Exploiting choice: instruction fetch and issue on an
implementable simultaneous multithreading processor,” ISCA 1996.

 Eyerman and Eeckhout, “A Memory-Level Parallelism Aware Fetch Policy for
SMT Processors,” HPCA 2007.

 Recommended

 Hirata et al., “An Elementary Processor Architecture with Simultaneous
Instruction Issuing from Multiple Threads,” ISCA 1992

 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

 Gabor et al., “Fairness and Throughput in Switch on Event Multithreading,”
MICRO 2006.

 Agarwal et al., “APRIL: A Processor Architecture for Multiprocessing,” ISCA
1990.

3

Multithreading (Outline)

 Multiple hardware contexts

 Purpose

 Initial incarnations

 CDC 6600

 HEP

 Tera

 Levels of multithreading

 Fine-grained (cycle-by-cycle)

 Coarse grained (multitasking)

 Switch-on-event

 Simultaneous

 Uses: traditional + creative (now that we have multiple
contexts, why do we not do …)

4

Multithreading: Basics

 Thread

 Instruction stream with state (registers and memory)

 Register state is also called “thread context”

 Threads could be part of the same process (program) or
from different programs

 Threads in the same program share the same address space
(shared memory model)

 Traditionally, the processor keeps track of the context of a
single thread

 Multitasking: When a new thread needs to be executed, old
thread’s context in hardware written back to memory and
new thread’s context loaded

 5

Hardware Multithreading

 General idea: Have multiple thread contexts in a single
processor

 When the hardware executes from those hardware contexts
determines the granularity of multithreading

 Why?

 To tolerate latency (initial motivation)

 Latency of memory operations, dependent instructions, branch
resolution

 By utilizing processing resources more efficiently

 To improve system throughput

 By exploiting thread-level parallelism

 By improving superscalar/OoO processor utilization

 To reduce context switch penalty

6

Initial Motivations

 Tolerate latency

 When one thread encounters a long-latency operation, the
processor can execute a useful operation from another thread

 CDC 6600 peripheral processors

 I/O latency: 10 cycles

 10 I/O threads can be active to cover the latency

 Pipeline with 100ns cycle time, memory with 1000ns latency

 Idea: Each I/O “processor” executes one instruction every 10
cycles on the same pipeline

 Thornton, “Design of a Computer: The Control Data 6600,”
1970.

 Thornton, “Parallel Operation in the Control Data 6600,”
AFIPS 1964.

 7

Hardware Multithreading

 Benefit

+ Latency tolerance

+ Better hardware utilization (when?)

+ Reduced context switch penalty

 Cost

- Requires multiple thread contexts to be implemented in
hardware (area, power, latency cost)

- Usually reduced single-thread performance

 - Resource sharing, contention

 - Switching penalty (can be reduced with additional hardware)

8

Types of Multithreading

 Fine-grained

 Cycle by cycle

 Coarse-grained

 Switch on event (e.g., cache miss)

 Switch on quantum/timeout

 Simultaneous

 Instructions from multiple threads executed concurrently in
the same cycle

9

Fine-grained Multithreading

 Idea: Switch to another thread every cycle such that no two
instructions from the thread are in the pipeline concurrently

 Improves pipeline utilization by taking advantage of multiple
threads

 Alternative way of looking at it: Tolerates the control and
data dependency latencies by overlapping the latency with
useful work from other threads

 Thornton, “Parallel Operation in the Control Data 6600,” AFIPS
1964.

 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

10

Fine-grained Multithreading

 CDC 6600’s peripheral processing unit is fine-grained
multithreaded

 Processor executes a different I/O thread every cycle

 An operation from the same thread is executed every 10
cycles

 Denelcor HEP
 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

 120 threads/processor

 50 user, 70 OS functions

 available queue vs. unavailable (waiting) queue

 each thread can only have 1 instruction in the processor pipeline; each
thread independent

 to each thread, processor looks like a sequential machine

 throughput vs. single thread speed

11

Fine-grained Multithreading in HEP

 Cycle time: 100ns

 8 stages 800 ns to
complete an
instruction

 assuming no memory
access

12

Fine-grained Multithreading

 Advantages

+ No need for dependency checking between instructions

 (only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from
different threads

+ Improved system throughput, latency tolerance, utilization

 Disadvantages

- Extra hardware complexity: multiple hardware contexts, thread
selection logic

- Reduced single thread performance (one instruction fetched every N
cycles)

- Resource contention between threads in caches and memory

- Dependency checking logic between threads remains (load/store)

13

Multithreaded Pipeline Example

 Slide from Joel Emer

14

Sun Niagara Multithreaded Pipeline

15

Tera MTA Fine-grained Multithreading

 256 processors, each with a 21-cycle pipeline

 128 active threads

 A thread can issue instructions every 21 cycles

 Then, why 128 threads?

 Memory latency: approximately 150 cycles

 No data cache

 Threads can be blocked waiting for memory

 More threads better ability to tolerate memory latency

 Thread state per processor

 128 x 32 general purpose registers

 128 x 1 thread status registers

 16

Tera MTA Pipeline

 Threads move
to/from different
pools as an
instruction
executes

 More accurately,
thread IDs are
kept in each
pool

17

Coarse-grained Multithreading

 Idea: When a thread is stalled due to some event, switch to
a different hardware context

 Switch-on-event multithreading

 Possible stall events

 Cache misses

 Synchronization events (e.g., load an empty location)

 FP operations

 HEP, Tera combine fine-grained MT and coarse-grained MT

 Thread waiting for memory becomes blocked (un-selectable)

 Agarwal et al., “APRIL: A Processor Architecture for Multiprocessing,”
ISCA 1990.

 Explicit switch on event
18

Coarse-grained Multithreading in APRIL

 Agarwal et al., “APRIL: A Processor Architecture for
Multiprocessing,” ISCA 1990.

 4 hardware thread contexts

 Called “task frames”

 Thread switch on

 Cache miss

 Network access

 Synchronization fault

 How?

 Empty processor pipeline, change frame pointer (PC)

 19

Fine-grained vs. Coarse-grained MT

 Fine-grained advantages

+ Simpler to implement, can eliminate dependency checking,
branch prediction logic completely

+ Switching need not have any performance overhead (i.e. dead
cycles)

 + Coarse-grained requires a pipeline flush or a lot of hardware
 to save pipeline state

 Higher performance overhead with deep pipelines and

 large windows

 Disadvantages

- Low single thread performance: each thread gets 1/Nth of the
bandwidth of the pipeline

 20

IBM RS64-IV

 4-way superscalar, in-order, 5-stage pipeline

 Two hardware contexts

 On an L2 cache miss

 Flush pipeline

 Switch to the other thread

 Considerations

 Memory latency vs. thread switch overhead

 Short pipeline, in-order execution (small instruction window)
reduces the overhead of switching

21

Intel Montecito
 McNairy and Bhatia, “Montecito: A Dual-Core, Dual-Thread Itanium

Processor,” IEEE Micro 2005.

 Thread switch on

 L3 cache miss/data return

 Timeout – for fairness

 Switch hint instruction

 ALAT invalidation – synchronization fault

 Transition to low power mode

 <2% area overhead due to CGMT

22

Fairness in Coarse-grained Multithreading

 Resource sharing in space and time always causes fairness
considerations

 Fairness: how much progress each thread makes

 In CGMT, the time allocated to each thread affects both
fairness and system throughput

 When do we switch?

 For how long do we switch?

 When do we switch back?

 How does the hardware scheduler interact with the software
scheduler for fairness?

 What is the switching overhead vs. benefit?

 Where do we store the contexts?

23

We did not cover the following slides in lecture.

These are for your preparation for the next lecture.

Fairness in Coarse-grained Multithreading

 Gabor et al., “Fairness and Throughput in Switch on Event Multithreading,”
MICRO 2006.

 How can you solve the below problem?

25

Fairness vs. Throughput

 Switch not only on miss, but also on data return

 Problem: Switching has performance overhead

 Pipeline and window flush

 Reduced locality and increased resource contention (frequent
switches increase resource contention and reduce locality)

 One possible solution

 Estimate the slowdown of each thread compared to when run
alone

 Enforce switching when slowdowns become significantly
unbalanced

 Gabor et al., “Fairness and Throughput in Switch on Event
Multithreading,” MICRO 2006.

 26

Thread Switching Urgency in Montecito

 Thread urgency levels

 0-7

 Nominal level 5: active progress

 After timeout: set to 7

 After ext. interrupt: set to 6

 Reduce urgency level for each
blocking operation

 L3 miss

 Switch if urgency of foreground
lower than that of background

27

