
Computer Architecture:

Multithreading (I)

Prof. Onur Mutlu

Carnegie Mellon University

A Note on This Lecture

 These slides are partly from 18-742 Fall 2012, Parallel
Computer Architecture, Lecture 9: Multithreading

 Video of that lecture:

 http://www.youtube.com/watch?v=k5_yW_iNlvg&list=PL5PHm2jkk
Xmh4cDkC3s1VBB7-njlgiG5d&index=9

2

http://www.youtube.com/watch?v=k5_yW_iNlvg&list=PL5PHm2jkkXmh4cDkC3s1VBB7-njlgiG5d&index=9
http://www.youtube.com/watch?v=k5_yW_iNlvg&list=PL5PHm2jkkXmh4cDkC3s1VBB7-njlgiG5d&index=9
http://www.youtube.com/watch?v=k5_yW_iNlvg&list=PL5PHm2jkkXmh4cDkC3s1VBB7-njlgiG5d&index=9
http://www.youtube.com/watch?v=k5_yW_iNlvg&list=PL5PHm2jkkXmh4cDkC3s1VBB7-njlgiG5d&index=9

Readings: Multithreading
 Required

 Spracklen and Abraham, “Chip Multithreading: Opportunities and
Challenges,” HPCA Industrial Session, 2005.

 Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE
Micro 2004.

 Tullsen et al., “Exploiting choice: instruction fetch and issue on an
implementable simultaneous multithreading processor,” ISCA 1996.

 Eyerman and Eeckhout, “A Memory-Level Parallelism Aware Fetch Policy for
SMT Processors,” HPCA 2007.

 Recommended

 Hirata et al., “An Elementary Processor Architecture with Simultaneous
Instruction Issuing from Multiple Threads,” ISCA 1992

 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

 Gabor et al., “Fairness and Throughput in Switch on Event Multithreading,”
MICRO 2006.

 Agarwal et al., “APRIL: A Processor Architecture for Multiprocessing,” ISCA
1990.

3

Multithreading (Outline)

 Multiple hardware contexts

 Purpose

 Initial incarnations

 CDC 6600

 HEP

 Tera

 Levels of multithreading

 Fine-grained (cycle-by-cycle)

 Coarse grained (multitasking)

 Switch-on-event

 Simultaneous

 Uses: traditional + creative (now that we have multiple
contexts, why do we not do …)

4

Multithreading: Basics

 Thread

 Instruction stream with state (registers and memory)

 Register state is also called “thread context”

 Threads could be part of the same process (program) or
from different programs

 Threads in the same program share the same address space
(shared memory model)

 Traditionally, the processor keeps track of the context of a
single thread

 Multitasking: When a new thread needs to be executed, old
thread’s context in hardware written back to memory and
new thread’s context loaded

 5

Hardware Multithreading

 General idea: Have multiple thread contexts in a single
processor

 When the hardware executes from those hardware contexts
determines the granularity of multithreading

 Why?

 To tolerate latency (initial motivation)

 Latency of memory operations, dependent instructions, branch
resolution

 By utilizing processing resources more efficiently

 To improve system throughput

 By exploiting thread-level parallelism

 By improving superscalar/OoO processor utilization

 To reduce context switch penalty

6

Initial Motivations

 Tolerate latency

 When one thread encounters a long-latency operation, the
processor can execute a useful operation from another thread

 CDC 6600 peripheral processors

 I/O latency: 10 cycles

 10 I/O threads can be active to cover the latency

 Pipeline with 100ns cycle time, memory with 1000ns latency

 Idea: Each I/O “processor” executes one instruction every 10
cycles on the same pipeline

 Thornton, “Design of a Computer: The Control Data 6600,”
1970.

 Thornton, “Parallel Operation in the Control Data 6600,”
AFIPS 1964.

 7

Hardware Multithreading

 Benefit

+ Latency tolerance

+ Better hardware utilization (when?)

+ Reduced context switch penalty

 Cost

- Requires multiple thread contexts to be implemented in
hardware (area, power, latency cost)

- Usually reduced single-thread performance

 - Resource sharing, contention

 - Switching penalty (can be reduced with additional hardware)

8

Types of Multithreading

 Fine-grained

 Cycle by cycle

 Coarse-grained

 Switch on event (e.g., cache miss)

 Switch on quantum/timeout

 Simultaneous

 Instructions from multiple threads executed concurrently in
the same cycle

9

Fine-grained Multithreading

 Idea: Switch to another thread every cycle such that no two
instructions from the thread are in the pipeline concurrently

 Improves pipeline utilization by taking advantage of multiple
threads

 Alternative way of looking at it: Tolerates the control and
data dependency latencies by overlapping the latency with
useful work from other threads

 Thornton, “Parallel Operation in the Control Data 6600,” AFIPS
1964.

 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

10

Fine-grained Multithreading

 CDC 6600’s peripheral processing unit is fine-grained
multithreaded

 Processor executes a different I/O thread every cycle

 An operation from the same thread is executed every 10
cycles

 Denelcor HEP
 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

 120 threads/processor

 50 user, 70 OS functions

 available queue vs. unavailable (waiting) queue

 each thread can only have 1 instruction in the processor pipeline; each
thread independent

 to each thread, processor looks like a sequential machine

 throughput vs. single thread speed

11

Fine-grained Multithreading in HEP

 Cycle time: 100ns

 8 stages  800 ns to
complete an
instruction

 assuming no memory
access

12

Fine-grained Multithreading

 Advantages

+ No need for dependency checking between instructions

 (only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from
different threads

+ Improved system throughput, latency tolerance, utilization

 Disadvantages

- Extra hardware complexity: multiple hardware contexts, thread
selection logic

- Reduced single thread performance (one instruction fetched every N
cycles)

- Resource contention between threads in caches and memory

- Dependency checking logic between threads remains (load/store)

13

Multithreaded Pipeline Example

 Slide from Joel Emer

14

Sun Niagara Multithreaded Pipeline

15

Tera MTA Fine-grained Multithreading

 256 processors, each with a 21-cycle pipeline

 128 active threads

 A thread can issue instructions every 21 cycles

 Then, why 128 threads?

 Memory latency: approximately 150 cycles

 No data cache

 Threads can be blocked waiting for memory

 More threads  better ability to tolerate memory latency

 Thread state per processor

 128 x 32 general purpose registers

 128 x 1 thread status registers

 16

Tera MTA Pipeline

 Threads move
to/from different
pools as an
instruction
executes

 More accurately,
thread IDs are
kept in each
pool

17

Coarse-grained Multithreading

 Idea: When a thread is stalled due to some event, switch to
a different hardware context

 Switch-on-event multithreading

 Possible stall events

 Cache misses

 Synchronization events (e.g., load an empty location)

 FP operations

 HEP, Tera combine fine-grained MT and coarse-grained MT

 Thread waiting for memory becomes blocked (un-selectable)

 Agarwal et al., “APRIL: A Processor Architecture for Multiprocessing,”
ISCA 1990.

 Explicit switch on event
18

Coarse-grained Multithreading in APRIL

 Agarwal et al., “APRIL: A Processor Architecture for
Multiprocessing,” ISCA 1990.

 4 hardware thread contexts

 Called “task frames”

 Thread switch on

 Cache miss

 Network access

 Synchronization fault

 How?

 Empty processor pipeline, change frame pointer (PC)

 19

Fine-grained vs. Coarse-grained MT

 Fine-grained advantages

+ Simpler to implement, can eliminate dependency checking,
branch prediction logic completely

+ Switching need not have any performance overhead (i.e. dead
cycles)

 + Coarse-grained requires a pipeline flush or a lot of hardware
 to save pipeline state

  Higher performance overhead with deep pipelines and

 large windows

 Disadvantages

- Low single thread performance: each thread gets 1/Nth of the
bandwidth of the pipeline

 20

IBM RS64-IV

 4-way superscalar, in-order, 5-stage pipeline

 Two hardware contexts

 On an L2 cache miss

 Flush pipeline

 Switch to the other thread

 Considerations

 Memory latency vs. thread switch overhead

 Short pipeline, in-order execution (small instruction window)
reduces the overhead of switching

21

Intel Montecito
 McNairy and Bhatia, “Montecito: A Dual-Core, Dual-Thread Itanium

Processor,” IEEE Micro 2005.

 Thread switch on

 L3 cache miss/data return

 Timeout – for fairness

 Switch hint instruction

 ALAT invalidation – synchronization fault

 Transition to low power mode

 <2% area overhead due to CGMT

22

Fairness in Coarse-grained Multithreading

 Resource sharing in space and time always causes fairness
considerations

 Fairness: how much progress each thread makes

 In CGMT, the time allocated to each thread affects both
fairness and system throughput

 When do we switch?

 For how long do we switch?

 When do we switch back?

 How does the hardware scheduler interact with the software
scheduler for fairness?

 What is the switching overhead vs. benefit?

 Where do we store the contexts?

23

We did not cover the following slides in lecture.

These are for your preparation for the next lecture.

Fairness in Coarse-grained Multithreading

 Gabor et al., “Fairness and Throughput in Switch on Event Multithreading,”
MICRO 2006.

 How can you solve the below problem?

25

Fairness vs. Throughput

 Switch not only on miss, but also on data return

 Problem: Switching has performance overhead

 Pipeline and window flush

 Reduced locality and increased resource contention (frequent
switches increase resource contention and reduce locality)

 One possible solution

 Estimate the slowdown of each thread compared to when run
alone

 Enforce switching when slowdowns become significantly
unbalanced

 Gabor et al., “Fairness and Throughput in Switch on Event
Multithreading,” MICRO 2006.

 26

Thread Switching Urgency in Montecito

 Thread urgency levels

 0-7

 Nominal level 5: active progress

 After timeout: set to 7

 After ext. interrupt: set to 6

 Reduce urgency level for each
blocking operation

 L3 miss

 Switch if urgency of foreground
lower than that of background

27

