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A Note on This Lecture 

 These slides are partly from 18-742 Fall 2012, Parallel 
Computer Architecture, Lecture 9: Multithreading 

 

 Video of that lecture: 

 http://www.youtube.com/watch?v=k5_yW_iNlvg&list=PL5PHm2jkk
Xmh4cDkC3s1VBB7-njlgiG5d&index=9  
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Readings: Multithreading 
 Required 

 Spracklen and Abraham, “Chip Multithreading: Opportunities and 
Challenges,” HPCA Industrial Session, 2005.  

 Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE 
Micro 2004. 

 Tullsen et al., “Exploiting choice: instruction fetch and issue on an 
implementable simultaneous multithreading processor,” ISCA 1996. 

 Eyerman and Eeckhout, “A Memory-Level Parallelism Aware Fetch Policy for 
SMT Processors,” HPCA 2007. 

 

 Recommended 

 Hirata et al., “An Elementary Processor Architecture with Simultaneous 
Instruction Issuing from Multiple Threads,” ISCA 1992 

 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978. 

 Gabor et al., “Fairness and Throughput in Switch on Event Multithreading,” 
MICRO 2006. 

 Agarwal et al., “APRIL: A Processor Architecture for Multiprocessing,” ISCA 
1990. 
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Multithreading (Outline) 

 Multiple hardware contexts 

 Purpose 

 Initial incarnations 

 CDC 6600 

 HEP 

 Tera 

 Levels of multithreading 

 Fine-grained (cycle-by-cycle) 

 Coarse grained (multitasking) 

 Switch-on-event 

 Simultaneous 

 Uses: traditional + creative (now that we have multiple 
contexts, why do we not do …) 
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Multithreading: Basics 

 Thread 

 Instruction stream with state (registers and memory) 

 Register state is also called “thread context” 

 

 Threads could be part of the same process (program) or 
from different programs 

 Threads in the same program share the same address space 
(shared memory model) 

 

 Traditionally, the processor keeps track of the context of a 
single thread 

 Multitasking: When a new thread needs to be executed, old 
thread’s context in hardware written back to memory and 
new thread’s context loaded 
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Hardware Multithreading 

 General idea: Have multiple thread contexts in a single 
processor 

 When the hardware executes from those hardware contexts 
determines the granularity of multithreading  

 

 Why? 

 To tolerate latency (initial motivation) 

 Latency of memory operations, dependent instructions, branch 
resolution 

 By utilizing processing resources more efficiently 

 To improve system throughput 

 By exploiting thread-level parallelism 

 By improving superscalar/OoO processor utilization 

 To reduce context switch penalty 
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Initial Motivations 

 Tolerate latency 

 When one thread encounters a long-latency operation, the 
processor can execute a useful operation from another thread 

 

 CDC 6600 peripheral processors 

 I/O latency: 10 cycles 

 10 I/O threads can be active to cover the latency 

 Pipeline with 100ns cycle time, memory with 1000ns latency 

 Idea: Each I/O “processor” executes one instruction every 10 
cycles on the same pipeline 

 Thornton, “Design of a Computer: The Control Data 6600,” 
1970.  

 Thornton, “Parallel Operation in the Control Data 6600,” 
AFIPS 1964. 
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Hardware Multithreading 

 Benefit 

+ Latency tolerance 

+ Better hardware utilization (when?) 

+ Reduced context switch penalty 

 

 Cost 

- Requires multiple thread contexts to be implemented in 
hardware (area, power, latency cost) 

- Usually reduced single-thread performance 

 - Resource sharing, contention 

    - Switching penalty (can be reduced with additional hardware)  
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Types of Multithreading 

 Fine-grained 

 Cycle by cycle 

 

 Coarse-grained 

 Switch on event (e.g., cache miss) 

 Switch on quantum/timeout 

 

 Simultaneous 

 Instructions from multiple threads executed concurrently in 
the same cycle 

 

9 



Fine-grained Multithreading 

 Idea: Switch to another thread every cycle such that no two 
instructions from the thread are in the pipeline concurrently 

 

 Improves pipeline utilization by taking advantage of multiple 
threads 

 Alternative way of looking at it: Tolerates the control and 
data dependency latencies by overlapping the latency with 
useful work from other threads 

 

 Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 
1964. 

 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978. 
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Fine-grained Multithreading 

 CDC 6600’s peripheral processing unit is fine-grained 
multithreaded 

 Processor executes a different I/O thread every cycle 

 An operation from the same thread is executed every 10 
cycles 

 

 Denelcor HEP 
 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978. 

 120 threads/processor  

 50 user, 70 OS functions  

 available queue vs. unavailable (waiting) queue  

 each thread can only have 1 instruction in the processor pipeline; each 
thread independent  

 to each thread, processor looks like a sequential machine 

 throughput vs. single thread speed   
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Fine-grained Multithreading in HEP 

 Cycle time: 100ns 

 

 8 stages  800 ns to 
complete an 
instruction 

 assuming no memory 
access 
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Fine-grained Multithreading 

 Advantages 

+ No need for dependency checking between instructions 

    (only one instruction in pipeline from a single thread) 

+ No need for branch prediction logic 

+ Otherwise-bubble cycles used for executing useful instructions from 
different threads 

+ Improved system throughput, latency tolerance, utilization 

 

 Disadvantages 

- Extra hardware complexity: multiple hardware contexts, thread 
selection logic 

- Reduced single thread performance (one instruction fetched every N 
cycles)  

- Resource contention between threads in caches and memory 

- Dependency checking logic between threads remains (load/store) 
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Multithreaded Pipeline Example 

 

 

 

 

 

 

 

 

 

 

 Slide from Joel Emer 
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Sun Niagara Multithreaded Pipeline 
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Tera MTA Fine-grained Multithreading 

 256 processors, each with a 21-cycle pipeline 

 128 active threads 

 A thread can issue instructions every 21 cycles 

 Then, why 128 threads? 

 

 Memory latency: approximately 150 cycles 

 No data cache 

 Threads can be blocked waiting for memory 

 More threads  better ability to tolerate memory latency 

 

 Thread state per processor 

 128 x 32 general purpose registers 

 128 x 1 thread status registers 
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Tera MTA Pipeline 

 Threads move 
to/from different 
pools as an 
instruction 
executes 

 More accurately, 
thread IDs are 
kept in each 
pool 
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Coarse-grained Multithreading 

 Idea: When a thread is stalled due to some event, switch to 
a different hardware context 

 Switch-on-event multithreading 

 

 Possible stall events 

 Cache misses 

 Synchronization events (e.g., load an empty location) 

 FP operations 

 

 HEP, Tera combine fine-grained MT and coarse-grained MT 

 Thread waiting for memory becomes blocked (un-selectable) 

 Agarwal et al., “APRIL: A Processor Architecture for Multiprocessing,” 
ISCA 1990. 

 Explicit switch on event 
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Coarse-grained Multithreading in APRIL 

 Agarwal et al., “APRIL: A Processor Architecture for 
Multiprocessing,” ISCA 1990. 

 

 4 hardware thread contexts 

 Called “task frames” 

 

 Thread switch on 

 Cache miss 

 Network access 

 Synchronization fault 

 

 How? 

 Empty processor pipeline, change frame pointer (PC) 
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Fine-grained vs. Coarse-grained MT 

 Fine-grained advantages 

+ Simpler to implement, can eliminate dependency checking, 
branch prediction logic completely 

+ Switching need not have any performance overhead (i.e. dead 
cycles) 

 + Coarse-grained requires a pipeline flush or a lot of hardware   
  to save pipeline state  

   Higher performance overhead with deep pipelines and  

     large windows 

 

 Disadvantages 

- Low single thread performance: each thread gets 1/Nth of the 
bandwidth of the pipeline 
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IBM RS64-IV 

 4-way superscalar, in-order, 5-stage pipeline 

 Two hardware contexts 

 On an L2 cache miss 

 Flush pipeline 

 Switch to the other thread 

 

 Considerations 

 Memory latency vs. thread switch overhead 

 Short pipeline, in-order execution (small instruction window) 
reduces the overhead of switching 
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Intel Montecito 
 McNairy and Bhatia, “Montecito: A Dual-Core, Dual-Thread Itanium 

Processor,” IEEE Micro 2005. 

 

 

 

 

 

 

 Thread switch on 

 L3 cache miss/data return 

 Timeout – for fairness 

 Switch hint instruction 

 ALAT invalidation – synchronization fault 

 Transition to low power mode 

 <2% area overhead due to CGMT 
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Fairness in Coarse-grained Multithreading 

 Resource sharing in space and time always causes fairness 
considerations 

 Fairness: how much progress each thread makes  

 

 In CGMT, the time allocated to each thread affects both 
fairness and system throughput 

 When do we switch? 

 For how long do we switch? 

 When do we switch back? 

 How does the hardware scheduler interact with the software 
scheduler for fairness? 

 What is the switching overhead vs. benefit?  

 Where do we store the contexts? 
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We did not cover the following slides in lecture. 

These are for your preparation for the next lecture.  



Fairness in Coarse-grained Multithreading 

 Gabor et al., “Fairness and Throughput in Switch on Event Multithreading,” 
MICRO 2006. 

 How can you solve the below problem? 
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Fairness vs. Throughput 

 Switch not only on miss, but also on data return 

 

 Problem: Switching has performance overhead 

 Pipeline and window flush 

 Reduced locality and increased resource contention (frequent 
switches increase resource contention and reduce locality) 

 

 One possible solution 

 Estimate the slowdown of each thread compared to when run 
alone 

 Enforce switching when slowdowns become significantly 
unbalanced  

 Gabor et al., “Fairness and Throughput in Switch on Event 
Multithreading,” MICRO 2006. 
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Thread Switching Urgency in Montecito 

 Thread urgency levels 

 0-7 

 

 Nominal level 5: active progress 

 After timeout: set to 7 

 After ext. interrupt: set to 6 

 

 Reduce urgency level for each 
blocking operation 

 L3 miss 

 

 Switch if urgency of foreground 
lower than that of background 
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