Computer Architecture: Emerging Memory Technologies (Part I)

Prof. Onur Mutlu
Carnegie Mellon University

Emerging Memory Technologies Lectures

 These slides are from the Scalable Memory Systems course taught at ACACES 2013 (July 15-19, 2013)

- Course Website:
 - http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
- This is the first lecture on this topic:
 - Lecture 3b (July 17, 2013): Emerging Memory Technologies and Hybrid Memories: Basics and DRAM Alternatives (pptx) (pdf)

Scalable Many-Core Memory Systems Lecture 3, Topic 2: Emerging Technologies and Hybrid Memories

Prof. Onur Mutlu

http://www.ece.cmu.edu/~omutlu

onur@cmu.edu

HiPEAC ACACES Summer School 2013 July 17, 2013

Carnegie Mellon

What Will You Learn in This Course?

- Scalable Many-Core Memory Systems
 - □ July 15-19, 2013
- Topic 1: Main memory basics, DRAM scaling
- Topic 2: Emerging memory technologies and hybrid memories
- Topic 3: Main memory interference and QoS
- Topic 4 (unlikely): Cache management
- Topic 5 (unlikely): Interconnects
- Major Overview Reading:
 - Mutlu, "Memory Scaling: A Systems Architecture Perspective," IMW 2013.

Readings and Videos

Course Information

- Website for Course Slides and Papers
 - http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
 - http://users.ece.cmu.edu/~omutlu
 - Lecture notes and readings are uploaded
- My Contact Information
 - Onur Mutlu
 - onur@cmu.edu
 - http://users.ece.cmu.edu/~omutlu
 - +1-512-658-0891 (my cell phone)
 - Find me during breaks and/or email any time.

Memory Lecture Videos

- Memory Hierarchy (and Introduction to Caches)
 - http://www.youtube.com/watch?v=JBdfZ5i21cs&list=PL5PHm2jkkXmidJOd5 9REog9jDnPDTG6IJ&index=22
- Main Memory
 - http://www.youtube.com/watch?v=ZLCy3pG7Rc0&list=PL5PHm2jkkXmidJO d59REog9jDnPDTG6IJ&index=25
- Memory Controllers, Memory Scheduling, Memory QoS
 - http://www.youtube.com/watch?v=ZSotvL3WXmA&list=PL5PHm2jkkXmidJO d59REog9jDnPDTG6IJ&index=26
 - http://www.youtube.com/watch?v=1xe2w3 NzmI&list=PL5PHm2jkkXmidJO d59REog9jDnPDTG6IJ&index=27
- Emerging Memory Technologies
 - http://www.youtube.com/watch?v=LzfOghMKyA0&list=PL5PHm2jkkXmidJO d59REoq9jDnPDTG6IJ&index=35
- Multiprocessor Correctness and Cache Coherence
 - http://www.youtube.com/watch?v=U VZKMgItDM&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=32

Readings for Topic 1 (DRAM Scaling)

- Lee et al., "Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture," HPCA 2013.
- Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh," ISCA 2012.
- Kim et al., "A Case for Exploiting Subarray-Level Parallelism in DRAM," ISCA 2012.
- Liu et al., "An Experimental Study of Data Retention Behavior in Modern DRAM Devices," ISCA 2013.
- Seshadri et al., "RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data," CMU CS Tech Report 2013.
- David et al., "Memory Power Management via Dynamic Voltage/Frequency Scaling," ICAC 2011.
- Ipek et al., "Self Optimizing Memory Controllers: A Reinforcement Learning Approach," ISCA 2008.

Readings for Topic 2 (Emerging Technologies)

- Lee, Ipek, Mutlu, Burger, "Architecting Phase Change Memory as a Scalable DRAM Alternative," ISCA 2009, CACM 2010, Top Picks 2010.
- Qureshi et al., "Scalable high performance main memory system using phase-change memory technology," ISCA 2009.
- Meza et al., "Enabling Efficient and Scalable Hybrid Memories," IEEE Comp. Arch. Letters 2012.
- Yoon et al., "Row Buffer Locality Aware Caching Policies for Hybrid Memories," ICCD 2012 Best Paper Award.
- Meza et al., "A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory," WEED 2013.
- Kultursay et al., "Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative," ISPASS 2013.

Readings for Topic 3 (Memory QoS)

- Moscibroda and Mutlu, "Memory Performance Attacks," USENIX Security 2007.
- Mutlu and Moscibroda, "Stall-Time Fair Memory Access Scheduling," MICRO 2007.
- Mutlu and Moscibroda, "Parallelism-Aware Batch Scheduling," ISCA 2008, IEEE Micro 2009.
- Kim et al., "ATLAS: A Scalable and High-Performance Scheduling Algorithm for Multiple Memory Controllers," HPCA 2010.
- Kim et al., "Thread Cluster Memory Scheduling," MICRO 2010, IEEE Micro 2011.
- Muralidhara et al., "Memory Channel Partitioning," MICRO 2011.
- Ausavarungnirun et al., "Staged Memory Scheduling," ISCA 2012.
- Subramanian et al., "MISE: Providing Performance Predictability and Improving Fairness in Shared Main Memory Systems," HPCA 2013.
- Das et al., "Application-to-Core Mapping Policies to Reduce Memory System Interference in Multi-Core Systems," HPCA 2013.

Readings for Topic 3 (Memory QoS)

- Ebrahimi et al., "Fairness via Source Throttling," ASPLOS 2010, ACM TOCS 2012.
- Lee et al., "Prefetch-Aware DRAM Controllers," MICRO 2008, IEEE TC 2011.
- Ebrahimi et al., "Parallel Application Memory Scheduling," MICRO 2011.
- Ebrahimi et al., "Prefetch-Aware Shared Resource Management for Multi-Core Systems," ISCA 2011.

Readings in Flash Memory

- Yu Cai, Gulay Yalcin, <u>Onur Mutlu</u>, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken Mai, <u>"Error Analysis and Retention-Aware Error Management for NAND Flash Memory"</u> <u>Intel Technology Journal</u> (ITJ) Special Issue on Memory Resiliency, Vol. 17, No. 1, May 2013.
- Yu Cai, Erich F. Haratsch, <u>Onur Mutlu</u>, and Ken Mai,
 <u>"Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and Modeling"</u>
 - Proceedings of the <u>Design, Automation, and Test in Europe Conference</u> (**DATE**), Grenoble, France, March 2013. <u>Slides (ppt)</u>
- Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken Mai,
 - <u>"Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime"</u>
 - Proceedings of the <u>30th IEEE International Conference on Computer Design</u> (**ICCD**), Montreal, Quebec, Canada, September 2012. <u>Slides (ppt)</u> (<u>pdf</u>)
- Yu Cai, Erich F. Haratsch, <u>Onur Mutlu</u>, and Ken Mai,
 <u>"Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis"</u>
 - Proceedings of the <u>Design, Automation, and Test in Europe Conference</u> (**DATE**), Dresden, Germany, March 2012. <u>Slides (ppt)</u>

Online Lectures and More Information

- Online Computer Architecture Lectures
 - http://www.youtube.com/playlist?list=PL5PHm2jkkXmidJOd59R Eog9jDnPDTG6IJ
- Online Computer Architecture Courses
 - Intro: http://www.ece.cmu.edu/~ece447/s13/doku.php
 - Advanced: http://www.ece.cmu.edu/~ece740/f11/doku.php
 - Advanced: http://www.ece.cmu.edu/~ece742/doku.php
- Recent Research Papers
 - http://users.ece.cmu.edu/~omutlu/projects.htm
 - http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=e
 n

Emerging Memory Technologies

Agenda

- Major Trends Affecting Main Memory
- Requirements from an Ideal Main Memory System
- Opportunity: Emerging Memory Technologies
- Conclusions
- Discussion

Major Trends Affecting Main Memory (I)

Need for main memory capacity and bandwidth increasing

Main memory energy/power is a key system design concern

DRAM technology scaling is ending

Trends: Problems with DRAM as Main Memory

- Need for main memory capacity and bandwidth increasing
 - DRAM capacity hard to scale

- Main memory energy/power is a key system design concern
 - DRAM consumes high power due to leakage and refresh

- DRAM technology scaling is ending
 - DRAM capacity, cost, and energy/power hard to scale

Agenda

- Major Trends Affecting Main Memory
- Requirements from an Ideal Main Memory System
- Opportunity: Emerging Memory Technologies
- Conclusions
- Discussion

Requirements from an Ideal Memory System

Traditional

- Enough capacity
- Low cost
- High system performance (high bandwidth, low latency)

New

- Technology scalability: lower cost, higher capacity, lower energy
- Energy (and power) efficiency
- QoS support and configurability (for consolidation)

Requirements from an Ideal Memory System

Traditional

- Higher capacity
- Continuous low cost
- High system performance (higher bandwidth, low latency)

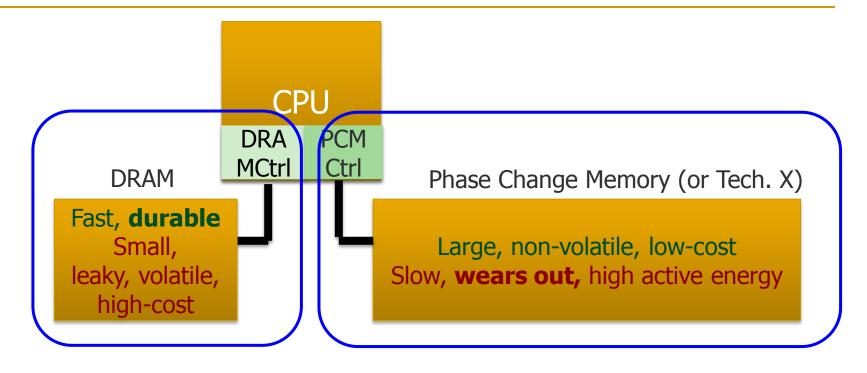
New

- Technology scalability: lower cost, higher capacity, lower energy
- Energy (and power) efficiency
- QoS support and configurability (for consolidation)

Emerging, resistive memory technologies (NVM) can help

Review: Solutions to the DRAM Scaling Problem

- Two potential solutions
 - Tolerate DRAM (by taking a fresh look at it)
 - Enable emerging memory technologies to eliminate/minimize DRAM
- Do both
 - Hybrid memory systems


Solution 1: Tolerate DRAM

- Overcome DRAM shortcomings with
 - System-DRAM co-design
 - Novel DRAM architectures, interface, functions
 - Better waste management (efficient utilization)
- Key issues to tackle
 - Reduce refresh energy
 - Improve bandwidth and latency
 - Reduce waste
 - Enable reliability at low cost
- Liu, Jaiyen, Veras, Mutlu, "RAIDR: Retention-Aware Intelligent DRAM Refresh," ISCA 2012.
- Kim, Seshadri, Lee+, "A Case for Exploiting Subarray-Level Parallelism in DRAM," ISCA 2012.
- Lee+, "Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture," HPCA 2013.
- Liu+, "An Experimental Study of Data Retention Behavior in Modern DRAM Devices" ISCA'13.
- Seshadri+, "RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data," 2013.

Solution 2: Emerging Memory Technologies

- Some emerging resistive memory technologies seem more scalable than DRAM (and they are non-volatile)
- Example: Phase Change Memory
 - Expected to scale to 9nm (2022 [ITRS])
 - Expected to be denser than DRAM: can store multiple bits/cell
- But, emerging technologies have shortcomings as well
 - Can they be enabled to replace/augment/surpass DRAM?
- Lee, Ipek, Mutlu, Burger, "Architecting Phase Change Memory as a Scalable DRAM Alternative," ISCA 2009, CACM 2010, Top Picks 2010.
- Meza, Chang, Yoon, Mutlu, Ranganathan, "Enabling Efficient and Scalable Hybrid Memories," IEEE Comp. Arch. Letters 2012.
- Yoon, Meza et al., "Row Buffer Locality Aware Caching Policies for Hybrid Memories," ICCD 2012 Best Paper Award.

Hybrid Memory Systems

Hardware/software manage data allocation and movement to achieve the best of multiple technologies

Meza+, "Enabling Efficient and Scalable Hybrid Memories," IEEE Comp. Arch. Letters, 2012. Yoon, Meza et al., "Row Buffer Locality Aware Caching Policies for Hybrid Memories," ICCD 2012 Best Paper Award.

Agenda

- Major Trends Affecting Main Memory
- Requirements from an Ideal Main Memory System
- Opportunity: Emerging Memory Technologies
- Conclusions
- Discussion

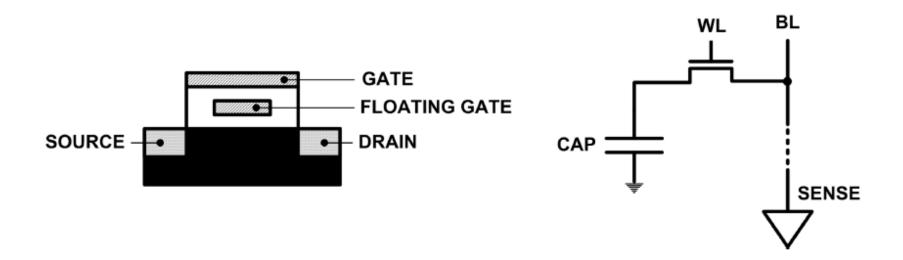
The Promise of Emerging Technologies

- Likely need to replace/augment DRAM with a technology that is
 - Technology scalable
 - And at least similarly efficient, high performance, and fault-tolerant
 - or can be architected to be so

- Some emerging resistive memory technologies appear promising
 - Phase Change Memory (PCM)?
 - Spin Torque Transfer Magnetic Memory (STT-MRAM)?
 - Memristors?
 - And, maybe there are other ones
 - Can they be enabled to replace/augment/surpass DRAM?

Agenda

- Major Trends Affecting Main Memory
- Requirements from an Ideal Main Memory System
- Opportunity: Emerging Memory Technologies
 - Background
 - PCM (or Technology X) as DRAM Replacement
 - Hybrid Memory Systems
- Conclusions
- Discussion


Charge vs. Resistive Memories

- Charge Memory (e.g., DRAM, Flash)
 - Write data by capturing charge Q
 - Read data by detecting voltage V

- Resistive Memory (e.g., PCM, STT-MRAM, memristors)
 - Write data by pulsing current dQ/dt
 - Read data by detecting resistance R

Limits of Charge Memory

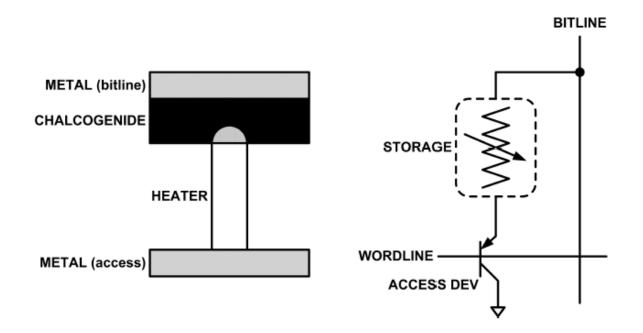
- Difficult charge placement and control
 - Flash: floating gate charge
 - DRAM: capacitor charge, transistor leakage
- Reliable sensing becomes difficult as charge storage unit size reduces

Emerging Resistive Memory Technologies

PCM

- Inject current to change material phase
- Resistance determined by phase

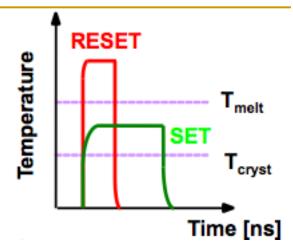
STT-MRAM

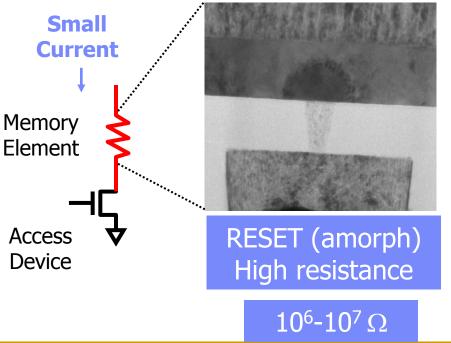

- Inject current to change magnet polarity
- Resistance determined by polarity

Memristors

- Inject current to change atomic structure
- Resistance determined by atom distance

What is Phase Change Memory?


- Phase change material (chalcogenide glass) exists in two states:
 - Amorphous: Low optical reflexivity and high electrical resistivity
 - Crystalline: High optical reflexivity and low electrical resistivity


PCM is resistive memory: High resistance (0), Low resistance (1) PCM cell can be switched between states reliably and quickly

How Does PCM Work?

- Write: change phase via current injection
 - SET: sustained current to heat cell above Tcryst
 - RESET: cell heated above Tmelt and quenched
- Read: detect phase via material resistance
 - amorphous/crystalline

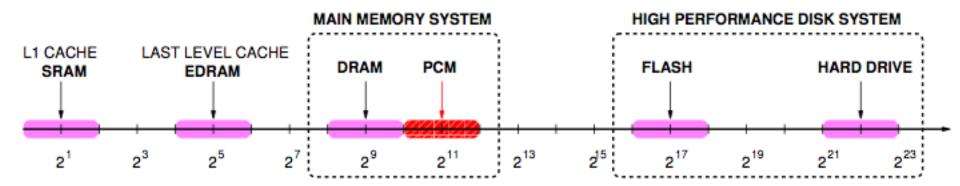
Opportunity: PCM Advantages

- Scales better than DRAM, Flash
 - Requires current pulses, which scale linearly with feature size
 - Expected to scale to 9nm (2022 [ITRS])
 - Prototyped at 20nm (Raoux+, IBM JRD 2008)
- Can be denser than DRAM
 - Can store multiple bits per cell due to large resistance range
 - Prototypes with 2 bits/cell in ISSCC' 08, 4 bits/cell by 2012
- Non-volatile
 - Retain data for >10 years at 85C
- No refresh needed, low idle power

Phase Change Memory Properties

- Surveyed prototypes from 2003-2008 (ITRS, IEDM, VLSI, ISSCC)
- Derived PCM parameters for F=90nm

Lee, Ipek, Mutlu, Burger, "Architecting Phase Change Memory as a Scalable DRAM Alternative," ISCA 2009.


Table 1. Technology survey. Published prototype

Parameter*	Horri ⁶	Ahn ¹²	Bedeschi ¹³	Oh ¹⁴	Pellizer ¹⁵	Chen ⁵	Kang ¹⁶	Bedeschi ⁹	Lee ¹⁰	Lee ²
Year	2003	2004	2004	2005	2006	2006	2006	2008	2008	**
Process, F(nm)	**	120	180	120	90	**	100	90	90	90
Array size (Mbytes)	**	64	8	64	**	**	256	256	512	**
Material	GST, N-d	GST, N-d	GST	GST	GST	GS, N-d	GST	GST	GST	GST, N-d
Cell size (µm²)	**	0.290	0.290	**	0.097	60 nm ²	0.166	0.097	0.047	0.065 to
										0.097
Cell size, F ²	**	20.1	9.0	**	12.0	**	16.6	12.0	5.8	9.0 to
										12.0
Access device	**	**	вл	FET	BJT	**	FET	BJT	Diode	BJT
Read time (ns)	**	70	48	68	**	**	62	**	55	48
Read current (µA)	**	**	40	**	**	**	**	**	**	40
Read voltage (V)	**	3.0	1.0	1.8	1.6	**	1.8	**	1.8	1.0
Read power (µW)	**	**	40	**	**	**	**	**	**	40
Read energy (pJ)	**	**	2.0	**	**	**	**	**	**	2.0
Set time (ns)	100	150	150	180	**	80	300	**	400	150
Set current (µA)	200	**	300	200	**	55	**	**	**	150
Set voltage (V)	**	**	2.0	**	**	1.25	**	**	**	1.2
Set power (µW)	**	**	300	**	**	34.4	**	**	**	90
Set energy (pJ)	**	**	45	**	**	2.8	**	**	**	13.5
Reset time (ns)	50	10	40	10	**	60	50	**	50	40
Reset current (µA)	600	600	600	600	400	90	600	300	600	300
Reset voltage (V)	**	**	2.7	**	1.8	1.6	**	1.6	**	1.6
Reset power (µW)	**	**	1620	**	**	80.4	**	**	**	480
Reset energy (pJ)	**	**	64.8	**	**	4.8	**	**	**	19.2
Write endurance	10 ⁷	109	10 ⁶	**	10 ⁸	10 ⁴	**	105	105	108
(MLC)										

^{*} BJT: bipolar junction transistor; FET: field-effect transistor; GST: Ge₂Sb₂Te₅; MLC: multilevel cells; N-d: nitrogen doped. ** This information is not available in the publication cited.

Phase Change Memory Properties: Latency

Latency comparable to, but slower than DRAM

Typical Access Latency (in terms of processor cycles for a 4 GHz processor)

- Read Latency
 - 50ns: 4x DRAM, 10⁻³x NAND Flash
- Write Latency
 - 150ns: 12x DRAM
- Write Bandwidth
 - □ 5-10 MB/s: 0.1x DRAM, 1x NAND Flash

Phase Change Memory Properties

- Dynamic Energy
 - 40 uA Rd, 150 uA Wr
 - 2-43x DRAM, 1x NAND Flash
- Endurance
 - Writes induce phase change at 650C
 - Contacts degrade from thermal expansion/contraction
 - 108 writes per cell
 - \Box 10⁻⁸x DRAM, 10³x NAND Flash
- Cell Size
 - 9-12F² using BJT, single-level cells
 - 1.5x DRAM, 2-3x NAND (will scale with feature size, MLC)

Phase Change Memory: Pros and Cons

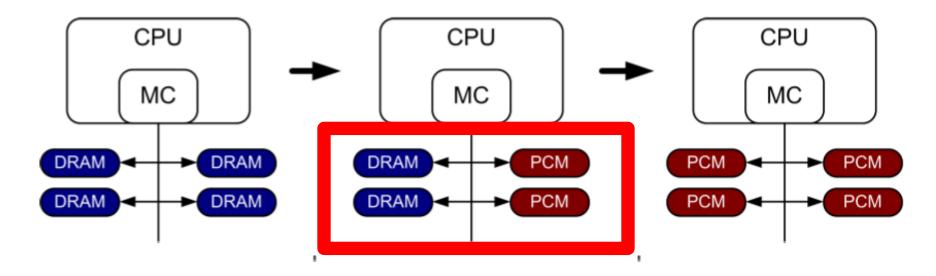
Pros over DRAM

- Better technology scaling
- Non volatility
- Low idle power (no refresh)

Cons

- □ Higher latencies: ~4-15x DRAM (especially write)
- Higher active energy: ~2-50x DRAM (especially write)
- Lower endurance (a cell dies after ~10⁸ writes)

Challenges in enabling PCM as DRAM replacement/helper:


- Mitigate PCM shortcomings
- Find the right way to place PCM in the system
- Ensure secure and fault-tolerant PCM operation

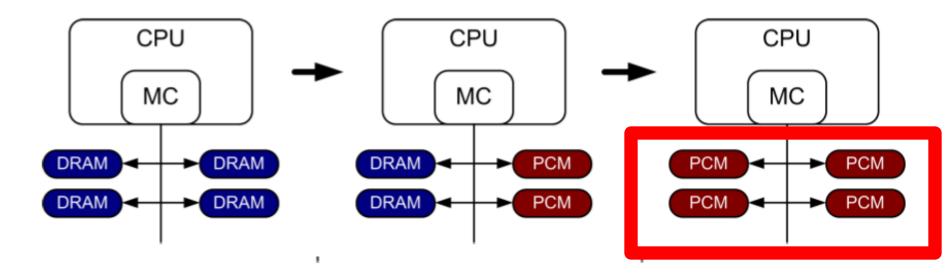
PCM-based Main Memory: Research Challenges

- Where to place PCM in the memory hierarchy?
 - Hybrid OS controlled PCM-DRAM
 - Hybrid OS controlled PCM and hardware-controlled DRAM
 - Pure PCM main memory
- How to mitigate shortcomings of PCM?
- How to minimize amount of DRAM in the system?
- How to take advantage of (byte-addressable and fast) non-volatile main memory?
- Can we design specific-NVM-technology-agnostic techniques?

PCM-based Main Memory (I)

How should PCM-based (main) memory be organized?

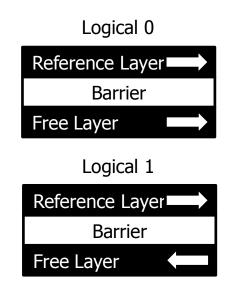
- Hybrid PCM+DRAM [Qureshi+ ISCA'09, Dhiman+ DAC'09, Meza+ IEEE CAL'12]:
 - How to partition/migrate data between PCM and DRAM

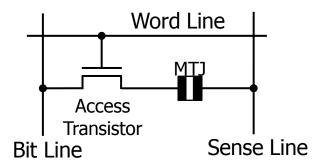

Hybrid Memory Systems: Challenges

Partitioning

- Should DRAM be a cache or main memory, or configurable?
- What fraction? How many controllers?
- Data allocation/movement (energy, performance, lifetime)
 - Who manages allocation/movement?
 - What are good control algorithms?
 - How do we prevent degradation of service due to wearout?
- Design of cache hierarchy, memory controllers, OS
 - Mitigate PCM shortcomings, exploit PCM advantages
- Design of PCM/DRAM chips and modules
 - Rethink the design of PCM/DRAM with new requirements

PCM-based Main Memory (II)


How should PCM-based (main) memory be organized?



- Pure PCM main memory [Lee et al., ISCA'09, Top Picks'10]:
 - How to redesign entire hierarchy (and cores) to overcome PCM shortcomings

Aside: STT-RAM Basics

- Magnetic Tunnel Junction (MTJ)
 - Reference layer: Fixed
 - Free layer: Parallel or anti-parallel
- Cell
 - Access transistor, bit/sense lines
- Read and Write
 - Read: Apply a small voltage across bitline and senseline; read the current.
 - Write: Push large current through MTJ.
 Direction of current determines new orientation of the free layer.
- Kultursay et al., "Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative," ISPASS 2013

Aside: STT MRAM: Pros and Cons

Pros over DRAM

- Better technology scaling
- Non volatility
- Low idle power (no refresh)

Cons

- Higher write latency
- Higher write energy
- Reliability?

Another level of freedom

 Can trade off non-volatility for lower write latency/energy (by reducing the size of the MTJ)

Agenda

- Major Trends Affecting Main Memory
- Requirements from an Ideal Main Memory System
- Opportunity: Emerging Memory Technologies
 - Background
 - PCM (or Technology X) as DRAM Replacement
 - Hybrid Memory Systems
- Conclusions
- Discussion

An Initial Study: Replace DRAM with PCM

- Lee, Ipek, Mutlu, Burger, "Architecting Phase Change Memory as a Scalable DRAM Alternative," ISCA 2009.
 - Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)
 - Derived "average" PCM parameters for F=90nm

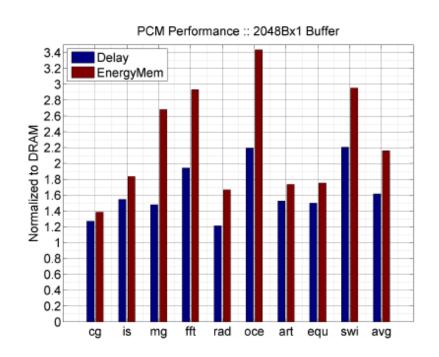
Density

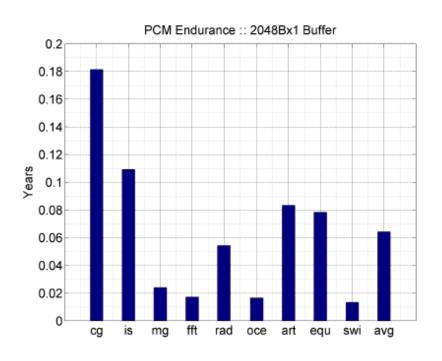
- \triangleright 9 12 F^2 using BJT
- ▶ 1.5× DRAM

Latency

- > 4×, 12× DRAM

Endurance

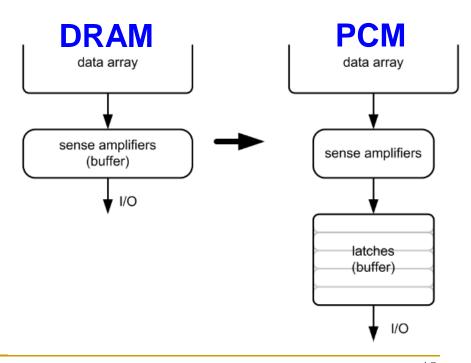

- → 1E-08× DRAM


Energy

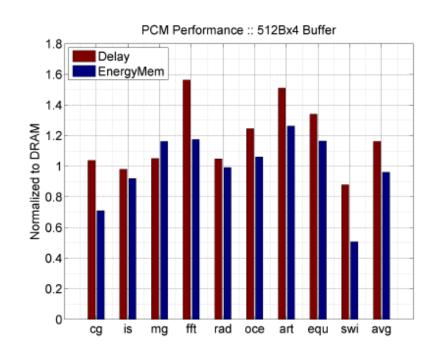
- \triangleright 40 μ A Rd, 150 μ A Wr
- \triangleright 2×, 43× DRAM

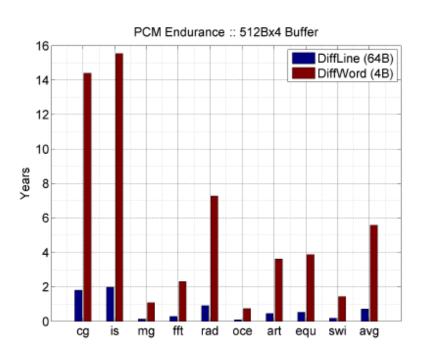
Results: Naïve Replacement of DRAM with PCM

- Replace DRAM with PCM in a 4-core, 4MB L2 system
- PCM organized the same as DRAM: row buffers, banks, peripherals
- 1.6x delay, 2.2x energy, 500-hour average lifetime



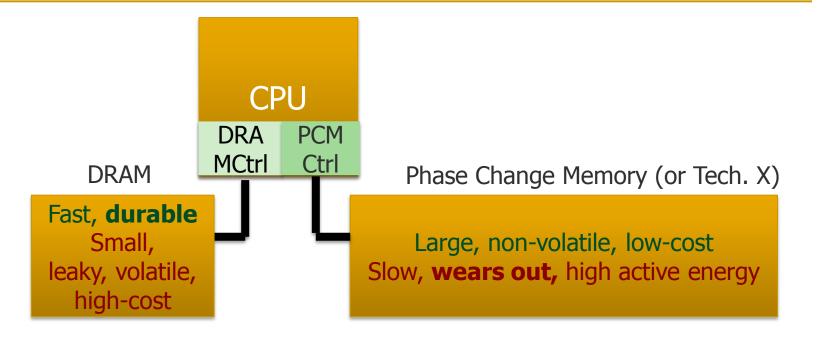
 Lee, Ipek, Mutlu, Burger, "Architecting Phase Change Memory as a Scalable DRAM Alternative," ISCA 2009.


Architecting PCM to Mitigate Shortcomings


- Idea 1: Use multiple narrow row buffers in each PCM chip
 → Reduces array reads/writes → better endurance, latency, energy
- Idea 2: Write into array at cache block or word granularity
 - → Reduces unnecessary wear

Results: Architected PCM as Main Memory

- 1.2x delay, 1.0x energy, 5.6-year average lifetime
- Scaling improves energy, endurance, density



- Caveat 1: Worst-case lifetime is much shorter (no guarantees)
- Caveat 2: Intensive applications see large performance and energy hits
- Caveat 3: Optimistic PCM parameters?

Agenda

- Major Trends Affecting Main Memory
- Requirements from an Ideal Main Memory System
- Opportunity: Emerging Memory Technologies
 - Background
 - PCM (or Technology X) as DRAM Replacement
 - Hybrid Memory Systems
- Conclusions
- Discussion

Hybrid Memory Systems

Hardware/software manage data allocation and movement to achieve the best of multiple technologies

Meza, Chang, Yoon, Mutlu, Ranganathan, "Enabling Efficient and Scalable Hybrid Memories," IEEE Comp. Arch. Letters, 2012.

One Option: DRAM as a Cache for PCM

- PCM is main memory; DRAM caches memory rows/blocks
 - Benefits: Reduced latency on DRAM cache hit; write filtering
- Memory controller hardware manages the DRAM cache
 - Benefit: Eliminates system software overhead
- Three issues:
 - What data should be placed in DRAM versus kept in PCM?
 - What is the granularity of data movement?
 - How to design a low-cost hardware-managed DRAM cache?
- Two idea directions:
 - Locality-aware data placement [Yoon+, ICCD 2012]
 - Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012]

Computer Architecture: Emerging Memory Technologies (Part I)

Prof. Onur Mutlu
Carnegie Mellon University