
Computer Architecture:

Speculation (in Parallel Machines)

Prof. Onur Mutlu

Carnegie Mellon University

Readings: Speculation

Â Required

Ç Sohi et al., ñMultiscalar Processors,ò ISCA 1995.

Ç Zhou, Dual-Core Execution: Building a Highly Scalable Single-
Thread Instruction Window, PACT 2005.

Ç Herlihy and Moss, ñTransactional Memory: Architectural Support for
Lock-Free Data Structures,ò ISCA 1993.

Ç Rajwar and Goodman, ñSpeculative Lock Elision: Enabling Highly
Concurrent Multithreaded Execution,ò MICRO 2001.

Â Recommended

Ç Colohan et al., ñA Scalable Approach to Thread-Level Speculation,ò
ISCA 2000.

Ç Akkary and Driscoll, ñA dynamic multithreading processor,ò MICRO
1998.

Ç And, many others

2

Speculation in Parallel Machines

3

Speculation

Â Speculation: Doing something before you know it is needed.

Â Mainly used to enhance performance

Â Single processor context

Ç Branch prediction

Ç Data value prediction

Ç Prefetching

Â Multi-processor context

Ç Thread-level speculation

Ç Transactional memory

Ç Helper threads
4

Speculative Parallelization Concepts

Â Idea: Execute threads unsafely in parallel

Ç Threads can be from a sequential or parallel application

Â Hardware or software monitors for data dependence
violations

Â If data dependence ordering is violated

Ç Offending thread is squashed and restarted

Â If data dependences are not violated

Ç Thread commits

Ç If threads are from a sequential order, the sequential order
needs to be preserved Ą threads commit one by one and in

order

5

Inter-Thread Value Communication
Â Can happen via

Ç Registers

Ç Memory

Â Register communication

Ç Needs hardware support between processors

Ç Dependences between threads known by compiler

Ç Can be producer initiated or consumer initiated

Ç If consumer executes first:

Â consumer stalls, producer forwards

Ç If producer executes first

Â producer writes and continues, consumer reads later

Ç Can be implemented with Full/Empty bits in registers

6

Memory Communication

Â Memory dependences not known by the compiler

Â True dependencies between predecessor/successor threads
need to be preserved

Â Threads perform loads speculatively

Ç get the data from the closest predecessor

Ç keep record that they read the data (in L1 cache or another
structure)

Â Stores performed speculatively

Ç buffer the update while speculative (write buffer or L1)

Ç check successors for premature reads

Ç if successor did a premature read: squash

Ç typically squash the offending thread and all successors

 7

Dependences and Versioning

Â Only true data dependence violations should cause a thread
squash

Â Types of dependence violations:

Ç LD A Ą ST A: name dependence; hardware may handle

Ç ST A Ą ST A: name dependence; hardware may handle

Ç ST A Ą LD A: true dependence; causes a squash

Â Name dependences can be resolved using versioning

Â Idea: Every store to a memory location creates a new
version

Â Example: Gopal et al., ñSpeculative Versioning Cache,ò HPCA
1998.

 8

Where to Keep Speculative Memory State

Â Separate buffers

Ç E.g. store queue shared between threads

Ç Address resolution buffer in Multiscalar processors

Ç Runahead cache in Runahead execution

Â L1 cache

Ç Speculatively stored blocks marked as speculative

Ç Not visible to other threads

Ç Need to make them non-speculative when thread commits

Ç Need to invalidate them when thread is squashed

9

Speculation to òParallelizeó

Single-Threaded Programs

10

Referenced Readings
Â Sohi et al., ñMultiscalar Processors,ò ISCA 1995.

Â Herlihy and Moss, ñTransactional Memory: Architectural Support for Lock-Free Data
Structures,ò ISCA 1993.

Â Smith, ñA pipelined, shared resource MIMD computer,ò ICPP 1978.

Â Gopal et al., ñSpeculative Versioning Cache,ò HPCA 1998.

Â Steffan et al., A Scalable Approach to Thread-Level Speculation, ISCA 2000.

Â Franklin and Sohi, ñARB: A hardware mechanism for dynamic reordering of memory
references,ò IEEE TC 1996.

Â Moshovos et al., ñDynamic Speculation and Synchronization of Data Dependences,ò ISCA
1997.

Â Chrysos and Emer, ñMemory Dependence Prediction using Store Sets,ò ISCA 1998.

Â Dubois and Song, Assisted Execution, USC Tech Report 1998.

Â Chappell et al., Simultaneous Subordinate Microthreading (SSMT), ISCA 1999.

Â Zilles and Sohi, Execution-based Prediction Using Speculative Slices, ISCA 2001.

Â Mutlu et al., Runahead Execution: An Alternative to Very Large Instruction Windows for
Out-of-order Processors, HPCA 2003.

Â Sundaramoorthy et al., Slipstream Processors: Improving both Performance and Fault
Tolerance,ò ASPLOS 2000.

Â Zhou, Dual-Core Execution: Building a Highly Scalable Single-Thread Instruction Window,
PACT 2005.

11

Thread Level Speculation
Â Speculative multithreading, dynamic multithreading, etcé

Â Idea: Divide a single instruction stream (speculatively) into
multiple threads at compile time or run -time

Ç Execute speculative threads in multiple hardware contexts

Ç Merge results into a single stream

Â Hardware/software checks if any true dependencies are
violated and ensures sequential semantics

Â Threads can be assumed to be independent

Â Value/branch prediction can be used to break dependencies
between threads

Â Need to verify such predictions: can be done by executing a
ñsafe versionò or checking invariants

12

Thread Level Speculation Example

Â Steffan et al., A Scalable Approach to Thread-Level
Speculation, ISCA 2000.

13

TLS Conflict Detection Example

14

Some Sample Results [Colohan+ ISCA 2000]

15

Multiscalar Processors (ISCA 1992, 1995)

Â Exploit ñimplicitò thread-level parallelism within a serial
program

Â Compiler divides program into tasks

Â Tasks scheduled on independent processing resources

Â Hardware handles register dependences between tasks

Ç Compiler specifies which registers should be communicated
between tasks

Â Memory speculation for memory dependences

Ç Hardware detects and resolves misspeculation

Â Franklin and Sohi, ñThe expandable split window paradigm for
exploiting fine-grain parallelism,ò ISCA 1992.

Â Sohi et al., ñMultiscalar processors,ò ISCA 1995.

 16

Multiscalar vs. Large Instruction Windows

17

Multiscalar Model of Execution

18

Multiscalar Tasks

Â A task is a subgraph of the control
flow graph (CFG)

Ç e.g., a basic block, multiple basic
blocks, loop body, function

Â Tasks are selected by compiler and
conveyed to hardware

Â Tasks are predicted and scheduled
by processor

Â Tasks may have data and/or control
dependences

19

Multiscalar Processor

20

Multiscalar Compiler
Â Task selection: partition CFG into tasks

Ç Load balance across processors

Ç Minimize inter-task data dependences

Ç Minimize inter-task control dependences

Â By embedding hard-to-predict branches within tasks

Â Convey task and communication information in the executable

Ç Task headers

Â create_mask (1 bit per register)

Ç Indicates all registers that are possibly modified or created by the task
(better: live -out of the task)

Ç Donôt forward instances received from prior tasks

Â PCs of successor tasks

Ç Release instructions: Release a register to be forwarded to a
receiving task

21

Multiscalar Program Example

22

Forwarding Registers Between Tasks

Â Compiler must identify the last instance of write to a
register within a task

Ç Opcodes that write a register have additional forward bit,
indicating the instance should be forwarded

Ç Stop bits - indicate end of task

Ç Release instruction

Â tells PE to forward the register value

23

Task Sequencing

Â Task prediction analogous to branch prediction

Â Predict inter-task control flow

24

Handling Inter-Task Dependences

Â Control dependences

Ç Predict

Ç Squash subsequent tasks on inter-task misprediction

Â Intra -task mispredictions do not need to cause flushing of later
tasks

Â Data dependences

Ç Register file: mask bits and forwarding (stall until available)

Ç Memory: address resolution buffer (speculative load, squash
on violation)

25

Address Resolution Buffer

Â Multiscalar issues loads to ARB/D-cache as soon as address
is computed

Â ARB is organized like a cache, maintaining state for all
outstanding load/store addresses

Â Franklin and Sohi, ñARB: A hardware mechanism for
dynamic reordering of memory references,ò IEEE TC 1996.

Â An ARB entry:

26

Address Resolution Buffer

Â Loads

Ç ARB miss: data comes from D-cache (no prior stores yet)

Ç ARB hit: get most recent data to the load, which may be from
D-cache, or nearest prior task with S=1

Â Stores

Ç ARB buffers speculative stores

Ç If store from an older task finds a load from a younger task to
the same address Ą misspeculation detected

Ç When a task commits, commit all of the taskôs stores into the
D-cache

27

Address Resolution Buffer

Â Franklin and Sohi, ñARB: A hardware mechanism for
dynamic reordering of memory references,ò IEEE TC 1996.

28

Memory Dependence Prediction

Â ARB performs memory renaming

Â However, it does not perform dependence prediction

Ç Can reduce intra-task dependency flushes by accurate
memory dependence prediction

Â Idea: Predict whether or not a load instruction will be
dependent on a previous store (and predict which store).
Delay the execution of the load if it is predicted to be
dependent.

Â Moshovos et al., ñDynamic Speculation and Synchronization of
Data Dependences,ò ISCA 1997.

Â Chrysos and Emer, ñMemory Dependence Prediction using Store
Sets,ò ISCA 1998.

29

Handling of Store-Load Dependencies

Â A load s dependence status is not known until all previous store
addresses are available.

Â How does the processor detect dependence of a load instruction on a
previous store?

Ç Option 1: Wait until all previous stores committed (no need to
check)

Ç Option 2: Keep a list of pending stores in a store buffer and check
whether load address matches a previous store address

Â How does the processor engine treat the scheduling of a load
instruction with respect to previous stores?

Ç Option 1: Assume load independent of all previous stores

Ç Option 2: Assume load dependent on all previous stores

Ç Option 3: Predict the dependence of a load on an outstanding store

30

Memory Disambiguation

Â Option 1: Assume load independent of all previous stores

 + Simple and can be common case: no delay for independent loads

 -- Requires recovery and re-execution of load and dependents on misprediction

Â Option 2: Assume load dependent on all previous stores

 + No need for recovery

 -- Too conservative: delays independent loads unnecessarily

Â Option 3: Predict the dependence of a load on an
outstanding store

 + More accurate. Load store dependencies persist over time

 -- Still requires recovery/re-execution on misprediction

Ç Alpha 21264 : Initially assume load independent, delay loads found to be dependent

Ç Moshovos et al., Dynamic speculation and synchronization of data dependences,
ISCA 1997.

Ç Chrysos and Emer, Memory Dependence Prediction Using Store Sets, ISCA 1998.

31

Memory Disambiguation

Â Chrysos and Emer, Memory Dependence Prediction Using Store
Sets, ISCA 1998.

Â Predicting store-load dependencies important for performance

Â Simple predictors (based on past history) can achieve most of
the potential performance

32

Multiscalar Comparisons and Questions

Â vs. superscalar, out-of-order?

Â vs. multi-core?

Â vs. CMP and SMT-based thread-level speculation
mechanisms

Ç What is different in multiscalar hardware?

Â Scalability of fine-grained register communication

Â Scalability of memory renaming and dependence
speculation

33

Helper Threading for Prefetching

Â Idea: Pre-execute a piece of the (pruned) program solely
for prefetching data

Ç Only need to distill pieces that lead to cache misses

Â Speculative thread: Pre-executed program piece can
be considered a thread

Â Speculative thread can be executed
Â On a separate processor/core

Â On a separate hardware thread context

Â On the same thread context in idle cycles (during cache misses)

34

Generalized Thread-Based Pre-Execution

Â Dubois and Song, Assisted
Execution, USC Tech
Report 1998.

Â Chappell et al.,
Simultaneous Subordinate

Microthreading (SSMT),
ISCA 1999.

Â Zilles and Sohi, Execution-
based Prediction Using
Speculative Slices , ISCA
2001.

35

Thread-Based Pre-Execution Issues

Â Where to execute the precomputation thread?

1. Separate core (least contention with main thread)

2. Separate thread context on the same core (more contention)

3. Same core, same context

Â When the main thread is stalled

Â When to spawn the precomputation thread?

1. Insert spawn instructions well before the problem load

Â How far ahead?

Ç Too early: prefetch might not be needed

Ç Too late: prefetch might not be timely

2. When the main thread is stalled

Â When to terminate the precomputation thread?

1. With pre-inserted CANCEL instructions

2. Based on effectiveness/contention feedback

 36

Thread-Based Pre-Execution Issues

Â Read

Ç Luk, Tolerating Memory Latency through Software-Controlled
Pre-Execution in Simultaneous Multithreading Processors,
ISCA 2001.

Ç Many issues in software-based pre-execution discussed

37

An Example

38

Example ISA Extensions

39

Results on an SMT Processor

40

Problem Instructions

Â Zilles and Sohi, ñExecution-based Prediction Using Speculative Slices, ISCA
2001.

Â Zilles and Sohi, òUnderstanding the backward slices of performance degrading
instructions,ò ISCA 2000.

41

Fork Point for Prefetching Thread

42

Pre-execution Slice Construction

43

Review: Runahead Execution

Â A simple pre-execution method for prefetching purposes

Â When the oldest instruction is a long-latency cache miss:

Ç Checkpoint architectural state and enter runahead mode

Â In runahead mode:

Ç Speculatively pre-execute instructions

Ç The purpose of pre-execution is to generate prefetches

Ç L2-miss dependent instructions are marked INV and dropped

Â Runahead mode ends when the original miss returns

Ç Checkpoint is restored and normal execution resumes

Â Mutlu et al., Runahead Execution: An Alternative to Very Large
Instruction Windows for Out -of-order Processors, HPCA 2003.

 44

Review: Runahead Execution (Mutlu et al., HPCA 2003)

45

Compute

Compute

Load 1 Miss

Miss 1

Stall Compute

Load 2 Miss

Miss 2

Stall

Load 1 Miss

Runahead

Load 2 Miss Load 2 Hit

Miss 1

Miss 2

Compute

Load 1 Hit

Saved Cycles

Small Window:

Runahead:

Slipstream Processors
Â Goal: use multiple hardware contexts to speed up single

thread execution (implicitly parallelize the program)

Â Idea: Divide program execution into two threads:

Ç Advanced thread executes a reduced instruction stream,
speculatively

Ç Redundant thread uses results, prefetches, predictions
generated by advanced thread and ensures correctness

Â Benefit: Execution time of the overall program reduces

Â Core idea is similar to many thread-level speculation
approaches, except with a reduced instruction stream

Â Sundaramoorthy et al., Slipstream Processors: Improving
both Performance and Fault Tolerance,ò ASPLOS 2000.

46

Slipstreaming

Â ñAt speeds in excess of 190 m.p.h., high air pressure forms at
the front of a race car and a partial vacuum forms behind it. This
creates drag and limits the carôs top speed.

Â A second car can position itself close behind the first (a process
called slipstreaming or drafting). This fills the vacuum behind the
lead car, reducing its drag. And the trailing car now has less wind
resistance in front (and by some accounts, the vacuum behind
the lead car actually helps pull the trailing car).

Â As a result, both cars speed up by several m.p.h.: the two
combined go faster than either can alone.ò

47

Slipstream Processors

Â Detect and remove ineffectual instructions; run a shortened
effectual version of the program (Advanced or A-stream)

in one thread context

Â Ensure correctness by running a complete version of the
program (Redundant or R-stream) in another thread
context

Â Shortened A-stream runs fast; R-stream consumes near-
perfect control and data flow outcomes from A -stream and
finishes close behind

Â Two streams together lead to faster execution (by helping
each other) than a single one alone

48

Slipstream Idea and Possible Hardware

49

Delay Buffer

Execution
Core

Reorder
Buffer

Instruction
Cache

Branch
Predictor

L1
Data

Cache

Execution
Core

Reorder
Buffer

Instruction
Cache

Branch
Predictor

L1
Data

Cache

IR-Predictor

IR-Detector

A-stream R-stream

L2 Cache (R-stream state only)

Instruction Removal in Slipstream
Â IR detector

Ç Monitors retired R-stream instructions

Ç Detects ineffectual instructions and conveys them to the IR predictor

Ç Ineffectual instruction examples:

Â dynamic instructions that repeatedly and predictably have no
observable effect (e.g., unreferenced writes, non -modifying
writes)

Â dynamic branches whose outcomes are consistently predicted
correctly.

Â IR predictor

Ç Removes an instruction from A-stream after repeated
indications from the IR detector

Â A stream skips ineffectual instructions, executes everything
else and inserts their results into delay buffer

Â R stream executes all instructions but uses results from the
delay buffer as predictions

50

What if A-stream Deviates from Correct Execution?

Â Why
Ç A-stream deviates due to incorrect removal or stale data

access in L1 data cache

Â How to detect it?

Ç Branch or value misprediction happens in R-stream (known as
an IR misprediction)

Â How to recover?
Ç Restore A-stream register state: copy values from R-stream

registers using delay buffer or shared-memory exception
handler

Ç Restore A-stream memory state: invalidate A-stream L1 data
cache (or speculatively written blocks by A-stream)

51

Slipstream Questions

Â How to construct the advanced thread

Ç Original proposal:

Â Dynamically eliminate redundant instructions (silent stores,
dynamically dead instructions)

Â Dynamically eliminate easy-to-predict branches

Ç Other ways:

Â Dynamically ignore long-latency stalls

Â Static based on profiling

Â How to speed up the redundant thread

Ç Original proposal: Reuse instruction results (control and data
flow outcomes from the A -stream)

Ç Other ways: Only use branch results and prefetched data as
predictions

52

Dual Core Execution

Â Idea: One thread context speculatively runs ahead on load
misses and prefetches data for another thread context

Â Zhou, Dual-Core Execution: Building a Highly Scalable
Single- Thread Instruction Window, PACT 2005.

53

Dual Core Execution: Front Processor

Â The front processor runs faster by invalidating long -latency cache-
missing loads, same as runahead execution

Ç Load misses and their dependents are invalidated

Ç Branch mispredictions dependent on cache misses cannot be resolved

Â Highly accurate execution as independent operations are not
affected

Ç Accurate prefetches to warm up caches

Ç Correctly resolved miss-independent branch mispredictions
54

Dual Core Execution: Back Processor

Â Re-execution ensures correctness and provides precise program
state

Ç Resolve branch mispredictions dependent on long-latency cache
misses

Â Back processor makes faster progress with help from the front
processor

Ç Highly accurate instruction stream

Ç Warmed up data caches

55

Dual Core Execution

56

DCE Microarchitecture

57

Dual Core Execution vs. Slipstream

Â Dual-core execution does not

Ç remove dead instructions

Ç reuse instruction register results

Ç uses the leading hardware context solely for prefetching
and branch prediction

+ Easier to implement, smaller hardware cost and complexity

+ Tolerates memory latencies better with the use of runahead
execution in the front processor

- Leading thread cannot run ahead as much as in slipstream
when there are no cache misses

- Not reusing results in the trailing thread can reduce
overall performance benefit

58

Some Results

59

