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Readings: Speculation 

Â Required 

Ç Sohi et al., ñMultiscalar Processors,ò ISCA 1995. 

Ç Zhou, Dual-Core Execution: Building a Highly Scalable Single-
Thread Instruction Window,  PACT 2005.  

Ç Herlihy and Moss, ñTransactional Memory: Architectural Support for 
Lock-Free Data Structures,ò ISCA 1993. 

Ç Rajwar and Goodman, ñSpeculative Lock Elision: Enabling Highly 
Concurrent Multithreaded Execution,ò MICRO 2001. 

 

Â Recommended 

Ç Colohan et al., ñA Scalable Approach to Thread-Level Speculation,ò 
ISCA 2000. 

Ç Akkary and Driscoll, ñA dynamic multithreading processor,ò MICRO 
1998. 

Ç And, many others 
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Speculation in Parallel Machines 
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Speculation 

Â Speculation: Doing something before you know it is needed. 

 

Â Mainly used to enhance performance 

 

Â Single processor context 

Ç Branch prediction 

Ç Data value prediction 

Ç Prefetching 

 

Â Multi-processor context 

Ç Thread-level speculation 

Ç Transactional memory 

Ç Helper threads 
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Speculative Parallelization Concepts 

Â Idea: Execute threads unsafely in parallel 

Ç Threads can be from a sequential or parallel application 

 

Â Hardware or software monitors for data dependence 
violations 

 

Â If data dependence ordering is violated 

Ç Offending thread is squashed and restarted 

Â If data dependences are not violated 

Ç Thread commits 

Ç If threads are from a sequential order, the sequential order 
needs to be preserved Ą threads commit one by one and in 

order 
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Inter-Thread Value Communication 
Â Can happen via 

Ç Registers 

Ç Memory 

 

Â Register communication 

Ç Needs hardware support between processors 

Ç Dependences between threads known by compiler 

Ç Can be producer initiated or consumer initiated  

Ç If consumer executes first:  

Â consumer stalls, producer forwards  

Ç If producer executes first  

Â producer writes and continues, consumer reads later  

Ç Can be implemented with Full/Empty bits in registers 

6 



Memory Communication 

Â Memory dependences not known by the compiler 

Â True dependencies between predecessor/successor threads 
need to be preserved 

 

Â Threads perform loads speculatively 

Ç get the data from the closest predecessor  

Ç keep record that they read the data (in L1 cache or another 
structure) 

Â Stores performed speculatively 

Ç buffer the update while speculative (write buffer or L1)  

Ç check successors for premature reads  

Ç if successor did a premature read: squash  

Ç typically squash the offending thread and all successors  
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Dependences and Versioning 

Â Only true data dependence violations should cause a thread 
squash 

Â Types of dependence violations:  

Ç LD A Ą ST A: name dependence; hardware may handle  

Ç ST A Ą ST A: name dependence; hardware may handle  

Ç ST A Ą LD A: true dependence; causes a squash  

 

Â Name dependences can be resolved using versioning 

Â Idea: Every store to a memory location creates a new 
version 

 

Â Example: Gopal et al., ñSpeculative Versioning Cache,ò HPCA 
1998. 
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Where to Keep Speculative Memory State 

Â Separate buffers 

Ç E.g. store queue shared between threads 

Ç Address resolution buffer in Multiscalar processors 

Ç Runahead cache in Runahead execution 

 

 

Â L1 cache 

Ç Speculatively stored blocks marked as speculative 

Ç Not visible to other threads 

Ç Need to make them non-speculative when thread commits 

Ç Need to invalidate them when thread is squashed 
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Speculation to òParallelizeó 

Single-Threaded Programs 
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Referenced Readings 
Â Sohi et al., ñMultiscalar Processors,ò ISCA 1995. 

Â Herlihy and Moss, ñTransactional Memory: Architectural Support for Lock-Free Data 
Structures,ò ISCA 1993. 

Â Smith, ñA pipelined, shared resource MIMD computer,ò ICPP 1978. 

Â Gopal et al., ñSpeculative Versioning Cache,ò HPCA 1998. 

Â Steffan et al., A Scalable Approach to Thread-Level Speculation,  ISCA 2000. 

Â Franklin and Sohi, ñARB: A hardware mechanism for dynamic reordering of memory 
references,ò IEEE TC 1996.  

Â Moshovos et al., ñDynamic Speculation and Synchronization of Data Dependences,ò ISCA 
1997. 

Â Chrysos and Emer, ñMemory Dependence Prediction using Store Sets,ò ISCA 1998. 

Â Dubois and Song, Assisted Execution,  USC Tech Report 1998. 

Â Chappell et al., Simultaneous Subordinate Microthreading (SSMT),  ISCA 1999. 

Â Zilles and Sohi, Execution-based Prediction Using Speculative Slices, ISCA 2001. 

Â Mutlu et al., Runahead Execution: An Alternative to Very Large Instruction Windows for 
Out-of-order Processors,  HPCA 2003. 

Â Sundaramoorthy et al., Slipstream Processors: Improving both Performance and Fault 
Tolerance,ò ASPLOS 2000. 

Â Zhou, Dual-Core Execution: Building a Highly Scalable Single-Thread Instruction Window,  
PACT 2005.  
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Thread Level Speculation 
Â Speculative multithreading, dynamic multithreading, etcé 

 

Â Idea: Divide a single instruction stream (speculatively) into 
multiple threads at compile time or run -time 

Ç Execute speculative threads in multiple hardware contexts 

Ç Merge results into a single stream 

 

Â Hardware/software checks if any true dependencies are 
violated and ensures sequential semantics 

Â Threads can be assumed to be independent 

Â Value/branch prediction can be used to break dependencies 
between threads 

Â Need to verify such predictions: can be done by executing a 
ñsafe versionò or checking invariants 
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Thread Level Speculation Example 

Â Steffan et al., A Scalable Approach to Thread-Level 
Speculation,  ISCA 2000. 
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TLS Conflict Detection Example 
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Some Sample Results [Colohan+ ISCA 2000] 
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Multiscalar Processors (ISCA 1992, 1995) 

Â Exploit ñimplicitò thread-level parallelism within a serial 
program  

Â Compiler divides program into tasks  

Â Tasks scheduled on independent processing resources 
 

Â Hardware handles register dependences between tasks 

Ç Compiler specifies which registers should be communicated 
between tasks 

Â Memory speculation for memory dependences 

Ç Hardware detects and resolves misspeculation 

 

Â Franklin and Sohi, ñThe expandable split window paradigm for 
exploiting fine-grain parallelism,ò ISCA 1992. 

Â Sohi et al., ñMultiscalar processors,ò ISCA 1995. 
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Multiscalar vs. Large Instruction Windows  
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Multiscalar Model of Execution 
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Multiscalar Tasks 

Â A task is a subgraph of the control 
flow graph (CFG)  

Ç e.g., a basic block, multiple basic 
blocks, loop body, function 

 

Â Tasks are selected by compiler and 
conveyed to hardware 

 

Â Tasks are predicted and scheduled 
by processor  

 

Â Tasks may have data and/or control 
dependences 
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Multiscalar Processor 
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Multiscalar Compiler 
Â Task selection: partition CFG into tasks  

Ç Load balance across processors 

Ç Minimize inter-task data dependences  

Ç Minimize inter-task control dependences  

Â By embedding hard-to-predict branches within tasks  

 

Â Convey task and communication information in the executable  

Ç Task headers  

Â create_mask (1 bit per register)  

Ç Indicates all registers that are possibly modified or created by the task 
(better: live -out of the task)  

Ç Donôt forward instances received from prior tasks  

Â PCs of successor tasks  

Ç Release instructions: Release a register to be forwarded to a 
receiving task 
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Multiscalar Program Example 

22 



Forwarding Registers Between Tasks 

Â Compiler must identify the last instance of write to a 
register within a task  

Ç Opcodes that write a register have additional forward bit, 
indicating the instance should be forwarded  

Ç Stop bits - indicate end of task  

Ç Release instruction  

Â tells PE to forward the register value 
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Task Sequencing 

Â Task prediction analogous to branch prediction  

Â Predict inter-task control flow 
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Handling Inter-Task Dependences 

Â Control dependences  

Ç Predict  

Ç Squash subsequent tasks on inter-task misprediction  

Â Intra -task mispredictions do not need to cause flushing of later 
tasks 

 

Â Data dependences  

Ç Register file: mask bits and forwarding (stall until available)  

Ç Memory: address resolution buffer (speculative load, squash 
on violation) 
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Address Resolution Buffer 

Â Multiscalar issues loads to ARB/D-cache as soon as address 
is computed  

Â ARB is organized like a cache, maintaining state for all 
outstanding load/store addresses  

Â Franklin and Sohi, ñARB: A hardware mechanism for 
dynamic reordering of memory references,ò IEEE TC 1996.  

 

Â An ARB entry: 
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Address Resolution Buffer 

Â Loads  

Ç ARB miss: data comes from D-cache (no prior stores yet)  

Ç ARB hit: get most recent data to the load, which may be from 
D-cache, or nearest prior task with S=1  

 

Â Stores  

Ç ARB buffers speculative stores  

Ç If store from an older task finds a load from a younger task to 
the same address Ą misspeculation detected  

Ç When a task commits, commit all of the taskôs stores into the 
D-cache  
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Address Resolution Buffer 

Â Franklin and Sohi, ñARB: A hardware mechanism for 
dynamic reordering of memory references,ò IEEE TC 1996.  
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Memory Dependence Prediction 

Â ARB performs memory renaming 

Â However, it does not perform dependence prediction 

Ç Can reduce intra-task dependency flushes by accurate 
memory dependence prediction 

 

Â Idea: Predict whether or not a load instruction will be 
dependent on a previous store (and predict which store). 
Delay the execution of the load if it is predicted to be 
dependent.  

 

Â Moshovos et al., ñDynamic Speculation and Synchronization of 
Data Dependences,ò ISCA 1997. 

Â Chrysos and Emer, ñMemory Dependence Prediction using Store 
Sets,ò ISCA 1998.  
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Handling of Store-Load Dependencies 

Â A load s dependence status is not known until all previous store 
addresses are available.  

 

Â How does the processor detect dependence of a load instruction on a 
previous store? 

Ç Option 1: Wait until all previous stores committed (no need to 
check)  

Ç Option 2: Keep a list of pending stores in a store buffer and check 
whether load address matches a previous store address 

 

Â How does the processor engine treat the scheduling of a load 
instruction with respect to previous stores? 

Ç Option 1: Assume load independent of all previous stores 

Ç Option 2: Assume load dependent on all previous stores 

Ç Option 3: Predict the dependence of a load on an outstanding store  
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Memory Disambiguation  

Â Option 1: Assume load independent of all previous stores 

 + Simple and can be common case: no delay for independent loads 

 -- Requires recovery and re-execution of load and dependents on misprediction 
 

Â Option 2: Assume load dependent on all previous stores 

 + No need for recovery  

    -- Too conservative: delays independent loads unnecessarily 
 

Â Option 3: Predict the dependence of a load on an 
outstanding store 

 + More accurate. Load store dependencies persist over time 

 -- Still requires recovery/re-execution on misprediction 

Ç Alpha 21264 : Initially assume load independent, delay loads found to be dependent   

Ç Moshovos et al., Dynamic speculation and synchronization of data dependences,  
ISCA 1997. 

Ç Chrysos and Emer, Memory Dependence Prediction Using Store Sets,  ISCA 1998. 

31 



Memory Disambiguation 

Â Chrysos and Emer, Memory Dependence Prediction Using Store 
Sets,  ISCA 1998. 

 

 

 

 

 

 

 

 

Â Predicting store-load dependencies important for performance 

Â Simple predictors (based on past history) can achieve most of 
the potential performance  
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Multiscalar Comparisons and Questions 

Â vs. superscalar, out-of-order? 

Â vs. multi-core? 

Â vs. CMP and SMT-based thread-level speculation 
mechanisms 

Ç What is different in multiscalar hardware? 

 

Â Scalability of fine-grained register communication 

Â Scalability of memory renaming and dependence 
speculation 
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Helper Threading for Prefetching 

Â Idea: Pre-execute a piece of the (pruned) program solely 
for prefetching data  

Ç Only need to distill pieces that lead to cache misses 

 

Â Speculative thread: Pre-executed program piece can 
be considered a thread  

 

Â Speculative thread can be executed  
Â On a separate processor/core 

Â On a separate hardware thread context 

Â On the same thread context in idle cycles (during cache misses) 
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Generalized Thread-Based Pre-Execution 

Â Dubois and Song, Assisted 
Execution,  USC Tech 
Report 1998. 

 

Â Chappell et al., 
Simultaneous Subordinate 

Microthreading (SSMT),  
ISCA 1999. 

 

Â Zilles and Sohi, Execution-
based Prediction Using 
Speculative Slices , ISCA 
2001. 
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Thread-Based Pre-Execution Issues 

Â Where to execute the precomputation thread? 

1. Separate core (least contention with main thread)  

2. Separate thread context on the same core (more contention)  

3. Same core, same context  

Â When the main thread is stalled 

Â When to spawn the precomputation thread? 

1. Insert spawn instructions well before the problem  load 

Â How far ahead?  

Ç Too early: prefetch might not be needed  

Ç Too late: prefetch might not be timely  

2. When the main thread is stalled 

Â When to terminate the precomputation thread?  

1. With pre-inserted CANCEL instructions 

2. Based on effectiveness/contention feedback 
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Thread-Based Pre-Execution Issues 

Â Read 

Ç Luk, Tolerating Memory Latency through Software-Controlled 
Pre-Execution in Simultaneous Multithreading Processors,  
ISCA 2001. 

Ç Many issues in software-based pre-execution discussed 
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An Example 
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Example ISA Extensions 
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Results on an SMT Processor 
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Problem Instructions 

Â Zilles and Sohi, ñExecution-based Prediction Using Speculative Slices, ISCA 
2001. 

Â Zilles and Sohi, òUnderstanding the backward slices of performance degrading 
instructions,ò ISCA 2000. 
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Fork Point for Prefetching Thread 
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Pre-execution Slice Construction 
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Review: Runahead Execution 

Â A simple pre-execution method for prefetching purposes 

 

Â When the oldest instruction is a long-latency cache miss: 

Ç Checkpoint architectural state and enter runahead mode 

Â In runahead mode:  

Ç Speculatively pre-execute instructions 

Ç The purpose of pre-execution is to generate prefetches 

Ç L2-miss dependent instructions are marked INV and dropped 

Â Runahead mode ends when the original miss returns 

Ç Checkpoint is restored and normal execution resumes 

 

Â Mutlu et al., Runahead Execution: An Alternative to Very Large 
Instruction Windows for Out -of-order Processors,  HPCA 2003. 
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Review: Runahead Execution (Mutlu et al., HPCA 2003) 
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Slipstream Processors 
Â Goal: use multiple hardware contexts to speed up single 

thread execution (implicitly parallelize the program)  

Â Idea: Divide program execution into two threads:  

Ç Advanced thread executes a reduced instruction stream, 
speculatively 

Ç Redundant thread uses results, prefetches, predictions 
generated by advanced thread and ensures correctness 

 

Â Benefit: Execution time of the overall program reduces  

Â Core idea is similar to many thread-level speculation 
approaches, except with a reduced instruction stream  

 

Â Sundaramoorthy et al., Slipstream Processors: Improving 
both Performance and Fault Tolerance,ò ASPLOS 2000. 
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Slipstreaming 

Â ñAt speeds in excess of 190 m.p.h., high air pressure forms at 
the front of a race car and a partial vacuum forms behind it. This 
creates drag and limits the carôs top speed.  

 

Â A second car can position itself close behind the first (a process 
called slipstreaming or drafting). This fills the vacuum behind the 
lead car, reducing its drag. And the trailing car now has less wind 
resistance in front (and by some accounts, the vacuum behind 
the lead car actually helps pull the trailing car).  

 

Â As a result, both cars speed up by several m.p.h.: the two 
combined go faster than either can alone.ò 
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Slipstream Processors 

Â Detect and remove ineffectual instructions; run a shortened 
effectual  version of the program (Advanced or A-stream) 

in one thread context  

 

Â Ensure correctness by running a complete version of the 
program (Redundant or R-stream) in another thread 
context 

 

Â Shortened A-stream runs fast; R-stream consumes near-
perfect control and data flow outcomes from A -stream and 
finishes close behind 

 

Â Two streams together lead to faster execution (by helping 
each other) than a single one alone   
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Slipstream Idea and Possible Hardware 
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Instruction Removal in Slipstream 
Â IR detector 

Ç Monitors retired R-stream instructions 

Ç Detects ineffectual instructions and conveys them to the IR predictor  

Ç Ineffectual instruction examples:  

Â dynamic instructions that repeatedly and predictably have no 
observable effect (e.g., unreferenced writes, non -modifying 
writes)  

Â dynamic branches whose outcomes are consistently predicted 
correctly. 

Â IR predictor 

Ç Removes an instruction from A-stream after repeated 
indications from the IR detector  

Â A stream skips ineffectual instructions, executes everything 
else and inserts their results into delay buffer  

Â R stream executes all instructions but uses results from the 
delay buffer as predictions 
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What if A-stream Deviates from Correct Execution? 

Â Why 
Ç A-stream deviates due to incorrect removal or stale data 

access in L1 data cache 

 
Â How to detect it? 

Ç Branch or value misprediction happens in R-stream (known as 
an IR misprediction) 
 

Â How to recover? 
Ç Restore A-stream register state: copy values from R-stream 

registers using delay buffer or shared-memory exception 
handler 

Ç Restore A-stream memory state: invalidate A-stream L1 data 
cache (or speculatively written blocks by A-stream) 
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Slipstream Questions 

Â How to construct the advanced thread 

Ç Original proposal:  

Â Dynamically eliminate redundant instructions (silent stores, 
dynamically dead instructions) 

Â Dynamically eliminate easy-to-predict branches 

Ç Other ways: 

Â Dynamically ignore long-latency stalls 

Â Static based on profiling 

 

Â How to speed up the redundant thread  

Ç Original proposal: Reuse instruction results (control and data 
flow outcomes from the A -stream) 

Ç Other ways: Only use branch results and prefetched data as 
predictions 
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Dual Core Execution 

Â Idea: One thread context speculatively runs ahead on load 
misses and prefetches data for another thread context 

Â Zhou, Dual-Core Execution: Building a Highly Scalable 
Single- Thread Instruction Window,  PACT 2005.  
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Dual Core Execution: Front Processor 

 

 

 

 

 

Â The front processor runs faster by invalidating long -latency cache-
missing loads, same as runahead execution  

Ç Load misses and their dependents are invalidated  

Ç Branch mispredictions dependent on cache misses cannot be resolved 

 

Â Highly accurate execution as independent operations are not 
affected  

Ç Accurate prefetches to warm up caches  

Ç Correctly resolved miss-independent branch mispredictions 
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Dual Core Execution: Back Processor 

 

 

 

 

 

 

Â Re-execution ensures correctness and provides precise program 
state 

Ç Resolve branch mispredictions dependent on long-latency cache 
misses  

Â Back processor makes faster progress with help from the front 
processor 

Ç Highly accurate instruction stream  

Ç Warmed up data caches  
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Dual Core Execution 

 

56 



DCE Microarchitecture 
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Dual Core Execution vs. Slipstream 

Â Dual-core execution does not  

Ç remove dead instructions 

Ç reuse instruction register results 

Ç uses the leading  hardware context solely for prefetching 
and branch prediction 

 

+ Easier to implement, smaller hardware cost and complexity  

+ Tolerates memory latencies better with the use of runahead 
execution in the front processor 

- Leading thread  cannot run ahead as much as in slipstream 
when there are no cache misses 

- Not reusing results in the trailing thread  can reduce 
overall performance benefit 
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Some Results 
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