Computer Architecture:
Speculation (in Parallel I\/IachineT)

Prof. Onur Mutlu
Carnegie Mellon University

Readings: Speculation

Required

¢
¢

Sohi eMultisaalar Proce$sorso ISCA 1995.

Zhou, Dual-Core Execution: Building a Highly Scalable Single
Thread Instruction Window, PACT 2005.

Her | I hy aTnadsadiloma Blemorii. Architectural Support for
Lock-Free Data Structures o ISCA 1993.

Raj war and Goodman, A Sknabtng Highly i v e
Concurrent Multithreaded Execution, 06 MI CRO 2001.

Recommended

¢

¢

¢

Col o han Aé&dalabtéelApproach to ThreadLevel Speculationo
ISCA 2000.

Ak kary an dAdhamicsnwlothrdading firocessor, 0 MI CR
1998.

And, many others

Speculation in Parallel Machine

Speculation

Speculation: Doing something before you know it is needed.
Mainly used to enhance performance

Single processor context
¢ Branch prediction

¢ Data value prediction

¢ Prefetching

Multi-processor context

¢ Thread-level speculation
¢ Transactional memory

¢ Helper threads

Speculative Parallelization Concepts

|dea: Execute threads unsafely in parallel
¢ Threads can be from a sequential or parallel application

Hardware or software monitors for data dependence
violations

If data dependence ordering is violated
¢ Offending thread is squashed and restarted

If data dependences are not violated

¢ Thread commits

¢ If threads are from a sequential order, the sequential order
needs to be preserved A threads commit one by one and in

order

Inter-Thread Value Communication

Can happen via
¢ Registers
¢ Memory

Register communication

¢ Needs hardware support between processors

¢ Dependences between threads known by compiler
¢ Can be producer initiated or consumer initiated
C

If consumer executes first:
consumer stalls, producer forwards
¢ If producer executes first
producer writes and continues, consumer reads later
¢ Can be implemented with Full/Empty bits in registers

Memory Communication

Memory dependences not known by the compiler

True dependencies between predecessor/successor threads
need to be preserved

Threads perform loads speculatively
¢ get the data from the closest predecessor

¢ keep record that they read the data (in L1 cache or another
structure)

Stores performed speculatively

¢ buffer the update while speculative (write buffer or L1)

¢ check successors for premature reads

¢ If successor did a premature read: squash

¢ typically squash the offending thread and all successors

Dependences and Versioning

Only true data dependence violations should cause a thread
sguash

Types of dependence violations:

¢ LD AA ST A: name dependence; hardware may handle
¢ ST AA ST A: name dependence; hardware may handle
¢ ST AA LD A: true dependence; causes a squash

Name dependences can be resolved using versioning

Idea: Every store to a memory location creates a new
version

Exampl e: GoaoSpexdlative Versmning Cachigo HPCA
1998.

Where to Keep Speculative Memory St

Separate buffers

¢ E.g. store gueue shared between threads

¢ Address resolution buffer in Multiscalar processors
¢ Runahead cache in Runahead execution

L1 cache

¢ Speculatively stored blocks marked as speculative

Not visible to other threads

Need to make them non-speculative when thread commits
Need to invalidate them when thread is squashed

O O 0

Specul ati on to
SingleThreaded Programs

Referenced Readings

Sohi eMultisaalar. ProceBsorso ISCA 1995.

Her | i hy aTmadsadibma lgemoryi Architectural Support for Lock-Free Data
Structures,0 ISCA 1993.

S mi tApipeliiied, shared resource MIMD computer, 6 | CPP 197 8.
Gopal Speculative Versigning Cached HPCA 1998.
Steffan et al.,, A Scalable Approach to ThreadLevel Speculation ISCA 2000.

Frankl|l i n ARB:d hddware mechanism for dynamic reordering of memory
references,0 IEEE TC 1996.

Mo s h o v o s Dymamic &deculatiomand Synchronization of Data Dependences ISCA
1997.

Chr ysos a Wemory bepandencé Prediction using Store Setso ISCA 1998.
Dubois and Song, Assisted Execution USC Tech Report 1998.

Chappell et al., Simultaneous Subordinate Microthreading (SSMT) ISCA 1999.
Zilles and Sohi, Execution-based Prediction Using Speculative Slices, ISCA 2001.

Mutlu et al., Runahead Execution: An Alternative to Very Large Instruction Windows for
Out-of-order Processors HPCA 2003.

Sundaramoorthy et al., Slipstream Processors: Improving both Performance and Fault
Tolerance, 06 ASPLOS 2000.

Zhou, Dual-Core Execution: Building a Highly Scalable SingleThread Instruction Window,
PACT 2005.
11

Thread Level Speculation

Specul ative multithreadi ng,

Idea: Divide a single instruction stream (speculatively) into
multiple threads at compile time or run -time

¢ Execute speculative threads in multiple hardware contexts
¢ Merge results into a single stream

Hardware/software checks if any true dependencies are
violated and ensures sequential semantics
Threads can be assumed to be independent

Value/branch prediction can be used to break dependencies
between threads

Need to verify such predictions: can be done by executing a

Nnsafe versiono or checking 1 nveée
12

Thread Level Speculation Example

A Steffan et al., A Scalable Approach to ThreadLevel
Speculation, ISCA 2000.

(a) Example psuedo-code
while{continue condition) |

% = hash[indexl];
hash[index2] = v;
}

(b) Execution using thread-level speculation
Processorl Processor2 Processor3 Processord

Epech 1 Epoch 2
L Epoch 3 .
- hash([3] = hash[19] .-”hauh[3_'1] o =Er
. Violation! = hash[10]

hash[10] = —

hash|2l] = | .
hash|3D] =
hash[25) =
v . (23]

L%t-t-ﬂi"t_ml-ﬁ'-t'::' attempt_cosmit | | sutempt_cosmit|] b
-+ - attaspt_comsdt()
Epoch 4 } Hedo

Epoch 5 = hash[10]

Epock 6 Epoch 7

L hash|30] L hash(9]]’h . hask[25] =
- asg

Ll

atbaspt_comsdt()

TLS Conflict Detection Example

Epoch 5 Epoch 6

e become speculative()
LOAD a = *p:

@) sone vq - 2; 2% FAIL

@ attempt commit ()

Processor1 , _ . - zx) Processor2 TlmBJ

L1 Cache L1 Cache

Epoch #=5 Epoch #=6 | @
Violation? = False Violation? = TRUE
Speculatively
-~ Loaded?

Speculatively
— Modified?

x=1—=>2|T|T

\ SLSM
Invalidation
(Epoch #5)

Figure 2. Using cache coherence to detect a RAW dependence
violation.

14

Some Sample Resydisiohan+ ISCA 2000]

Table 3. Performance impact of TLS on our baseline architecture
(a four-processor single-chip multiprocessor).

Overall Region | Parallel | Program
Application Speedup Coverage | Speedup
buk 2.26 56.6% 146
compress95 1.27 47 3% 1.12
equake 1.77 393% 121
ijpeg 1.94 22.1% 1.08

(a) Execution Time

b
=
o

Q

E o} 100 100 100

Lo .] 93 —

c = o7 91

9 o -

5 o2

(3] i3 spawn
a || sync
w homefree
c .

(o] s idle
o)

o L | istall
o dcache_miss
©

T busy
N

©

E

=

=]

=

=]

12 3 4 6 8 12 34 6 8 12 34 6 8 1 2 34 6 8
buk compress95 equake ijpeg

15

Multiscalar Processors (ISCA 1992, 19¢

Expl oi t ni mMevel patcalletis;m within a s=rsald
program

Compiler divides program into tasks

Tasks scheduled on independent processing resources

Hardware handles register dependences between tasks

¢ Compiler specifies which registers should be communicated
between tasks

Memory speculation for memory dependences
¢ Hardware detects and resolves misspeculation

Frankl| i n Theakpa®iableisplit window paradigm for
exploiting fine-grain parallelism,0 ISCA 1992.

Sohi eMultisaalar. procegsorso ISCA 1995.
16

Multiscalar vs. Large Instruction Windo

Instruction Stream Instruction Stream

li-pored Distributed
Ei::';;::lfn? Eﬂt R:gi’:l:lur File
" (i)
Figure 1: Splitting a large window of instructions

into smaller windows
(i) A single large window (ii) A number of small windows

17

Multiscalar Model of Execution

Superscalar

single centralized window

PC —*

N\

Multiscalar

multiple distributed windows

P — J task
task

PC—" ,
J task

PC—*" !
task

PC—*" ,

dynam IC IFISUUC!IDFI STI’EEHT'I

AR R Y

=t

18

Multiscalar Tasks

A task is a subgraph of the control

flow graph (CFG)

¢ e.d., a basic block, multiple basic
blocks, loop body, function

Tasks are selected by compiler and
conveyed to hardware

Tasks are predicted and scheduled
by processor

Tasks may have data and/or control CE
dependences

19

Multiscalar Processor

Task

sequencer

l

Tail l Head 1 l 1
|-cache |-cache |-cache |-cache
Processing Processing Processing Processing

Element (PE)

Element (PE)

Element {PE)

Register
File

Element {PE)

Register
File

i

!

|

Interconnection Metwork

!

ARB

D—cache

!

ARB

[
b |

D—cache

20

Multiscalar Compiler

Task selection: partition CFG into tasks
¢ Load balance across processors
¢ Minimize inter-task data dependences

¢ Minimize inter-task control dependences
By embedding hard-to-predict branches within tasks

Convey task and communication information in the executable

c Task headers

create_mask (1 bit per register)

¢ Indicates all registers that are possibly modified or created by the task
(better: live -out of the task)

c Dondét forward 7 nstances recei/ved
PCs of successor tasks

¢ Release instructions: Release a register to be forwarded to a

receiving task
21

Multiscalar Program Example

for (ndx = 0 indx < BUFSIZE: indx++) {
*# get the symbol for which to search */
symbal = SYMVAL(buffer[indx]);

/* do a linear search for the symbol in the list */
for (list = listhd; list; list = LNEXT(list}) |
/# if symbol already present, process entry */
if (symbol == LELE(list)) |
process(hst);
break;

}

[+ if symbol not found in the list, add 1o the il +/
if {!ist) {
addlist(symbaol);

Figure 3: An Example Code Segment.

Targ Spec Branch, Branch
Targl OUTER
Targ2 OUTERFALLOUT

Create mask $4,58,517,520,%23

OUTER:

addu %20, $20, 16

1d %23, SYMVAL-16(520)

move $17, 521

beq $17,50, SKIPINNER
INNER.:

1d %8, LELE(S$1T

bne %8, 523, SKIPCALL

move §4, 517

jal Process

jump INNERFALLOUT
SKIPCALL:

1d %17, NEXTLIST($17)

bne %17, 50, INNER
INNERFALLOUT:

release $8,517

bne %17, 80, SKIPINNER

move 54,523

jal addlist
SKIPINNER:

release 34

bne %20, 516, OUTER
OUTERFALLOUT:

5 =
(=9
=]
£ &
F
F
F
Stop
Always

Figure 4: An Example of a Multiscalar Program.

22

Forwarding Registers Between Tasks

Compiler must identify the last instance of write to a

register within a task

¢ Opcodes that write a register have additional forward bit,

Indicating the instance should be forwarded
¢ Stop bits - indicate end of task
¢ Release instruction

tells PE to forward the register value

Task

23

Task Sequencing

A Task prediction analogous to branch prediction
A Predict inter-task control flow

Control ndependent Highly predictable
inter-task branch

24

Handling IntefTask Dependences

Control dependences
¢ Predict

¢ Squash subsequent tasks on intertask misprediction

Intra -task mispredictions do not need to cause flushing of later
tasks

Data dependences
¢ Regqister file: mask bits and forwarding (stall until available)

¢ Memory: address resolution buffer (speculative load, squash
on violation)

25

Address Resolution Buffer

Multiscalar issues loads to ARB/Dcache as soon as address
IS computed

ARB Is organized like a cache, maintaining state for all
outstanding load/store addresses

FranklI| I n ARB:.dAh&8dware mechanism for
dynamic reordering of memory references,0 IEEE TC 1996.

An ARB entry:

' ' ! | Stage = Task = PE
Tag |L|S| Data L|S| Data L|S| Data L|S| Data L: load performed

i ! | = store performed
Stage 0 ' Stage 1 '+ Stage 2 ' Stage 3 Data: store data

26

Address Resolution Buffer

Loads
¢ ARB miss: data comes from D-cache (no prior stores yet)

¢ ARB hit: get most recent data to the load, which may be from
D-cache, or nearest prior task with S=1

Stores
¢ ARB buffers speculative stores

¢ If store from an older task finds a load from a younger task to
the same address A misspeculation detected

¢ When a task commits, commi t al |/ of tt he
D-cache

27

Address Resolution Buffer

A Frankl I n ARB:dA h&@dware mechanism for
dynamic reordering of memory references,0 |IEEE TC 1996.

| i]]
_.fl. I. 1I :
l'l o i \ 1.\.
Looo [30 [0 Ti7 [hbwl i
| I HE—- - o - |
Be Address L8Vl & r ;
2000 P P 1:
Bank 0 :
T N P A
Bgge 01 : Stage 1 Elape 2 Rlage 3 Stuge 4 I] Stage §
I Hend [-
e Active ARB Window ——

Figure 1: A 4-Way Interleaved, f-stage ARB

28

Memory Dependence Prediction

ARB performs memory renaming

However, it does not perform dependence prediction

¢ Can reduce intra-task dependency flushes by accurate
memory dependence prediction

ldea: Predict whether or not a load instruction will be
dependent on a previous store (and predict which store).
Delay the execution of the load if it is predicted to be
dependent.

Mo s h o v o s Dyaamic &peculatiornand Synchronization of
Data Dependenceso ISCA 1997.

Chr ysos a NMemory bepandenca Prediction using Store

Sets,0ISCA 1998.
29

Handling of Stortoad Dependencies

A load s dependence status is not known until all previous store
addresses are available.

How does the processor detect dependence of a load instruction on a
previous store?

¢ Option 1: Wait until all previous stores committed (no need to
check)

¢ Option 2: Keep a list of pending stores in a store buffer and check
whether load address matches a previous store address

How does the processor engine treat the scheduling of a load
Instruction with respect to previous stores?

¢ Option 1: Assume load independent of all previous stores
¢ Option 2: Assume load dependent on all previous stores
¢ Option 3: Predict the dependence of a load on an outstanding store

30

Memory Disambiguation

Option 1: Assume load independent of all previous stores

+ Simple and can be common case: no delay for independent loads

-- Requires recovery and re-execution of load and dependents on misprediction

Option 2: Assume load dependent on all previous stores

+ No need for recovery
-- Too conservative: delays independent loads unnecessarily

Option 3: Predict the dependence of a load on an
outstanding store

+ More accurate. Load store dependencies persist over time

-- Still requires recovery/re-execution on misprediction
¢ Alpha 21264: Initially assume load independent, delay loads found to be dependent

¢ Moshovos et al., Dynamic speculation and synchronization of data dependences
ISCA 1997.

¢ Chrysos and Emer, Memory Dependence Prediction Using Store Sets ISCA 1998.

31

IPC

Memory Disambiguation

Chrysos and Emer, Memory Dependence Prediction Using Store
Sets, ISCA 1998.

7
6
5
4
THE
0 4 i 1
s | — o e [>
2 & 2 g& 8 & ©® E£E 2 £ 5 g 2 B 3z ¢ §
g < ¢t g @ = 2 2 = £ 3 § 5§ 5 g =
E - 2 T & ° § =2 =2 Z
o £ Q. <
(&)

‘A no speculatlon BEna |ve shécuiation . ﬁeffect

Predicting store-load dependencies important for performance

Simple predictors (based on past history) can achieve most of
the potential performance

32

Multiscalar Comparisons and Question:

VS. superscalar, out-of-order?
vs. multi-core?

vs. CMP and SM1based thread-level speculation
mechanisms

¢ What is different in multiscalar hardware?

Scalability of fine-grained register communication

Scalability of memory renaming and dependence
speculation

33

Helper Threading for Prefetching

ldea: Pre-execute a piece of the (pruned) program solely
for prefetching data

¢ Only need to distill pieces that lead to cache misses

Speculative thread: Pre-executed program piece can
be considered a thread

Speculative thread can be executed

On a separate processor/core
On a separate hardware thread context
On the same thread context in idle cycles (during cache misses)

34

Generalized Thred8hsed PrEXxecution

A Dubois and Song, Assisted
Execution, USC Tech
Report 1998.

fork

prediction

A Chappell et al.,
Simultaneous Subordinate
Microthreading (SSMT)
ISCA 1999.

BRANCH

A Zilles and Sohi, Execution
based Prediction Using
Speculative Slices, ISCA
speedup 2001.

35

ThreadBased Pr&xecution Issues

Where to execute the precomputation thread?
1. Separate core (least contention with main thread)
2. Separate thread context on the same core (more contention)
3. Same core, same context
When the main thread is stalled

When to spawn the precomputation thread?
1. Insert spawn instructions well before the problem load

How far ahead?
¢ Too early: prefetch might not be needed
¢ Too late: prefetch might not be timely

2. When the main thread Is stalled

When to terminate the precomputation thread?
1. With pre-inserted CANCEL instructions
2. Based on effectiveness/contention feedback

36

ThreadBased Pr&xecution Issues

Read

¢ Luk, Tolerating Memory Latency through Software-Controlled
Pre-Execution in Simultaneous Multithreading Processors

ISCA 2001.
¢ Many issues in software-based pre-execution discussed

Key {a) Multiple Pointer Chains {b) Non-Affine Array Accesses

=3 Main Execution

h ™ Pre-Execution

L > = Array Elements Accessed

{d) Multiple Control-Flow Paths

37

An Example

(a) Original Code

register int 1;
register arc_t *arcout;
for(; i< trips;){
I loap over ‘trips” lists
if (arcout[1] 1dent != FIXED) {

first_of_sparse_list = arcout + 1;

I
arcin = (arc_t *)first_of sparse_list
—tail— mark;
!l traverse the list starting with
! the first node just assigned
while (arcin) {
tail = arein— tail;

arcin = (arc_t *)tail—» mark:
}
1++, arcout+=3;

}

(b) Code with Pre-Execution

register it 1;
register arc_t *arcout;
for(; 1< tips;)|
I/l loop over ‘trips™ lists
if (arcout[1] ident != FIXED) {

first_of_sparse_list = arcout + 1;
I
[/l inveke a pre-execution starting
/ at END_FOR
PreExecute StartitEND_FOR);
arcin = (arc_t *)first_of_sparse_list

ktajlkmark,

/f traverse the list starting with
I the first node just assigned
while (arcin) |

tail = arcin— tail;

arcin = (arc_t *)tail— marlk;
}
/f terminate this pre-execution after
I/l prefetching the entire list
PreExecute _Stop();
END_FOR:
/I the target address of the pre-
!l execution
1++, arcout+=3;
1
/I terminate this pre-execution if we
I have passed the end of the for-loop
PreExecute_Stop();

Figure 2. Abstract versions of an important loop nest in the
Spec2000 benchmarkmc £. Loads that incur many cache miss-

es are underlined.

The Spec2000 benchmark mcf spends roughly half of its ex-
ecution time in a nested loop which traverses a set of linked list-
s. An abstract version of this loop is shown in Figure 2(a), in
which the for-loop iterates over the lists and the while-loop vis-
its the elements of each list. As we observe from the figure, the
first node of each list is assigned by dereferencing the pointer
first_of_sparse_list, whose value is in fact determined by
arcout, an induction variable of the for-loop. Therefore, even
when we are still working on the current list, the first and the re-
maining nodes on the next list can be loaded speculatively by pre-
executing the next iteration of the for-loop.

Figure 2(b) shows a version of the program with pre-execution
code inserted (shown in boldface). END_FOR is simply a label
to denote the place where arcout gets updated. The new in-
struction PreExecute_Start(END_FOR) initiates a pre-execution
thread, say 1", starting at the PC represented by END_FOR. Right
after the pre-execution begins, 1'’s registers that hold the values
of 1 and arcout will be updated. Then i's value is compared
against trips to see if we have reached the end of the for-loop.
If so, thread 1" will exit the for-loop and encounters a PreExe-
cute_Stop(), which will terminate the pre-execution and free up
T for future use. Otherwise, 7' will continue pre-executing the
body of the for-loop, and hence compute the first node of the next
list automatically. Finally, after traversing the entire list through
the while-loop. the pre-execution will be terminated by another
PreExecute_Stop(). Notice that any PreExecute_Start() instruc-
tions encountered during pre-execution are simply ignored as we
do not allow nested pre-execution in order to keep our design sim-
ple. Similarly, PreExecute_Stop() instructions cannot terminate
the main thread either.

38

Example ISA Extensions

{'hread_{ D = PreExecute_Start(Stari_FPC', Mar_Insts):
Request for an 1idle context to start pre-execution at
Start_PC and stop when Mar_Insts instructions have
been executed: T'hread_{) holds either the identity of
the pre-execution thread or -1 if there is no idle context.

This instruction has effect only if it 1s executed by the main
thread.

PreExecute_Stop(): The thread that executes this instruction
will be self terminated 1if it 1s a pre-execution thread: no
effect otherwise.

PreExecute_Cancel(! hread_{1)): Terminate the pre-
execution thread with T'hread_{). This instruction has
effect only 1f 1t 1s executed by the main thread.

Figure 4. Proposed instruction set extensions to support pre-
execution. (C syntax is used to improve readability.)

39

Results on an SMT Processor

105 (a) Execution Time Normalized to the Original Case

© 100 | J0O 100 100 100 100 100 100
E 92
: ™
=
2 l /3 load L2-miss stall
3 64 .
E load L2-hit stall
w50 |- other stall
E busy
(1]
E
[=]
=

0 0 PX 0 PX 0 PX 0 PX] PX 0 PX 0 PX

Compress Em3d Equake Mcf Mst Raytrace Twolf

40

Problem Instructions

A Zi1 | 1 es @redutidh-balead Predittion Using Speculative Slices, ISCA
2001.
AZi Il es aJndbrst&dirlyithe backward slices of performance degrading

instructions, 6 | SCA 2000.

Figure 2. Example problem instructions from heap insertion
roufine in vpr.

struct s_heap **heap; // from [l..heap size]
int heap size; // # of slots in the heap
int heap tail; // first unused slot in heap

void add to heap (struct s heap *hptr) {

heap[heap tail] = hptr; branch

int ifrom = heap_ tail; misprediction
int ito = ifrom/2; .
heap_tail++; cache miss
while ((ito >= 1) &&

(heap[ifrom]->cost < heap[itec]->cost))
struct s heap *temp ptr = heap[itc];
heap[itc] = heap[ifrom];
heap[ifrom] = temp ptr;
ifrom = ito;
ito = ifrom/2;

H O W @ =] oW i Wk
= & & &8 &8 & 8 &

= &

41

Fork Point for Prefetching Thread

Figure 3. The node teo heap function, which serves as
the fork point for the slice that covers add _to heap.

void node to heap (..., fleat cost, ...) {
struct s heap *hptr; -+———— fork point

hptr = alloc heap data();
hptr->cost = cost;

add to heap (hptr);

42

Preexecution Slice Construction

Figure 4. Alpha assembly for the add te heap function.
The insfructions are annotated with the number of the Iine in
Figure 2 to which they correspond. The problem instrucfions
are in bold and the shaded instructions comprise fhe
un-optimized slice.

/* skips ~40 instructions */

node to heap:

2 lda sl, 252(gp)
2 1d1 t2, 0(sl)

1 ldg t5, —76(=1)
3 cmplt t2, 0, t4
4 addl £2, 0Oxl, t6
1 sBaddg t2, t5, t3
4 atl t6, 0(sl)

1 stq s0, 0(t3)
3 addl t2, t4, t4
3 sra t4, Oxl1l, t4
5 ble t4, return
loop:

6 sBaddg t2, t5, a0
& sBaddg t4, t5, t7
11 cmplt t4, 0, t9
10 move td, t2

B ldg az, 0(a0)

& ldg ad, 0(t7)
11 addl t4, t9, t9
11 sSra t9, Oxl1l, t4
6 1ds sfo, 4(a2)
6 1ds 5f1, 4(aq)
& cmptlt $f0,$f1,5f0
[fheq 5f0, return
B stq a2, 0(t7)

9 stg ad, 0(ad)

5 bgt t4, loop
return:

H H:

e e e ome He oo T He e T e e e R e e He e He M T H M T

theap tail
ifrom = heap tail
theap[0]

see note
heap_tail +4
theap[heap tail]
store heap tail
heap[heap tail]
see note

ito = ifrom/2
{ito < 1)

theap[ifrom]
theap[ito]

see note

ifrom = ito
heap[ifrom]
heap[iteo]

see note

ite = ifrom/2
heap[ifroem]->cost
heap[ito]=>cost
{heap[ifrom]->cost
< heap[ito]->cost)
heap[iteo]
heap[ifrom]

{ito >= 1)

/* register restore code & return */

note: the divide by 2 operation is implemented by a 3 instruc-

tion sequence described in the strength reduction optimization.

43

Review: Runahead Execution

A simple pre-execution method for prefetching purposes

When the oldest instruction is a long-latency cache miss:
¢ Checkpoint architectural state and enter runahead mode

In runahead mode:

¢ Speculatively pre-execute instructions

¢ The purpose of pre-execution is to generate prefetches

¢ L2-miss dependent instructions are marked INV and dropped
Runahead mode ends when the original miss returns

¢ Checkpoint is restored and normal execution resumes

Mutlu et al., Runahead Execution: An Alternative to Very Large
Instruction Windows for Out -of-order Processors HPCA 2003.

44

Review: Runahead Execution (Mutlu et al., HPCA 2C

Small Window:

Load 1 Miss Load 2 Miss
Miss 1 Miss 2

Runahead: :
Load 1 Miss Load 2Miss Load 1Hit Load 2 Hit :

Saved Cycles

Miss 1

Miss 2

45

Slipstream Processors

Goal: use multiple hardware contexts to speed up single
thread execution (implicitly parallelize the program)
|dea: Divide program execution into two threads:

¢ Advanced thread executes a reduced instruction stream,
speculatively

¢ Redundant thread uses results, prefetches, predictions
generated by advanced thread and ensures correctness

Benefit: Execution time of the overall program reduces

Core idea is similar to many thread-level speculation
approaches, except with a reduced instruction stream

Sundaramoorthy et al., Slipstream Processors: Improving

both Performance and Fault Tolerance 0 ASPLOS 2
46

Slipstreaming

ANAt speeds i n excess of 190 m. g
the front of a race car and a partial vacuum forms behind it. This
creates drag and |1 mits the <car

A second car can position itself close behind the first (a process
called s/ipstreaming or drafting). This fills the vacuum behind the
lead car, reducing its drag. And the trailing car now has less wind
resistance in front (and by some accounts, the vacuum behind
the lead car actually helps pull the trailing car).

As a result, both cars speed up by several m.p.h.: the two
combined go faster than either

47

Slipstream Processors

Detect and remove Ineffectual instructions; run a shortened
effectual version of the program (Advanced or A-stream)
In one thread context

Ensure correctness by running a complete version of the
program (Redundant or R-stream) in another thread
context

Shortened A-stream runs fast; R-stream consumes near
perfect control and data flow outcomes from A -stream and
finishes close behind

Two streams together lead to faster execution (by helping
each other) than a single one alone

48

Slipstream Idea and Possible Hardware

A-stream R-stream
Branch Reorder
Predictor IR-D < Buffer >
k -Detector Execution
L Core
Instruction T
L1 <—IR-Predictol T L1
Data Cache D Data
Cache | g ‘nsiruction Cache
l i Cache
Execution ?
Core , [TTTTT] (
~ Reorder Delay Buffe|— Branch
Buffer Predictor
A

«—»

L2 Cache (Rstream state only)

49

Instruction Removal in Slipstream

IR detector
¢ Monitors retired R-stream instructions
¢ Detects ineffectual instructions and conveys them to the IR predictor
¢ Ineffectual instruction examples:
dynamic instructions that repeatedly and predictably have no

observable effect (e.g., unreferenced writes, non -modifying
writes)

dynamic branches whose outcomes are consistently predicted
correctly.
IR predictor

¢ Removes an instruction from A-stream after repeated
Indications from the IR detector

A stream skips ineffectual instructions, executes everything
else and inserts their results into delay buffer

R stream executes all instructions but uses results from the

delay buffer as predictions
50

What If Astream Deviates from Correct Executior

Why

¢ A-stream deviates due to incorrect removal or stale data
access in L1 data cache

How to detect it?

¢ Branch or value misprediction happens in R-stream (known as
an IR misprediction)

How to recover?

¢ Restore A-stream register state: copy values from R-stream
registers using delay buffer or shared-memory exception
handler

¢ Restore A-stream memory state: invalidate A-stream L1 data
cache (or speculatively written blocks by A-stream)

51

Slipstream Questions

How to construct the advanced thread
¢ Original proposal:

Dynamically eliminate redundant instructions (silent stores,
dynamically dead instructions)

Dynamically eliminate easy-to-predict branches

¢ Other ways:
Dynamically ignore long-latency stalls
Static based on profiling

How to speed up the redundant thread

¢ Original proposal: Reuse instruction results (control and data
flow outcomes from the A-stream)

¢ Other ways: Only use branch results and prefetched data as
predictions

52

Dual Core Execution

A ldea: One thread context speculatively runs ahead on load
misses and prefetches data for another thread context

A Zhou, Dual-Core Execution: Building a Highly Scalable
Single- Thread Instruction Window, PACT 2005.

front processor

In-order superscalar

fetch core
j result queue

2 . In-order
upers ' retire
superscalar .

back processor coic

53

Dual Core Execution: Front Processor

———

In-order ‘| superscalar Jront processor

fetch core
j result queue
i)

(\ In-order
superscals | retire
superscalar | .

bﬂck processor COIE

The front processor runs faster by mvalldatlng long -latency cache-
missing loads, same as runahead execution

¢ Load misses and their dependents are invalidated
¢ Branch mispredictions dependent on cache misses cannot be resolved

Highly accurate execution as independent operations are not
affected

¢ Accurate prefetches to warm up caches

¢ Correctly resolved missindependent branch mispredictions
54

Dual Core Execution: Back Processor

front processor

In-order | superscalar

5 result queue i
: 2 In-order
superscalar retire

back processor i

__

A Re-execution ensures correctness and provides precise program
state

¢ Resolve branch mispredictions dependent on longlatency cache
misses

A Back processor makes faster progress with help from the front
processor
¢ Highly accurate instruction stream
¢ Warmed up data caches

55

Dual Core Execution

Runahead:
Load 1 Miss Load 2 Miss Load 1 Hit Load 2 Hit

Saved
Cycles

Miss 2

Miss

DCE: front processor

Load 1 Miss Load 2 Miss Load 3 Miss

Miss 1

Miss 3

DCE: back processor
Load 1 Miss

Saved Cycles

56

DCE Microarchitecture

From front processor’s insttuction cache From back processor’s instruction cache
Resolving branch misprediction (global

Resolving branch misprediction (local)

Izsue | Reg Fead Execution Write Back| Eetire

Fetch| Dispatch{Issue IReg Read [Execution [Write Back| Retire

Physical IE LSQ Physical
rTegister file v P LsSQ register file
_FromtProcessorl 1 L — 1 /7 N T L) BackProcessor
Read.n"\‘.n"rite]:f etk Zieisieiitstuis ittt :
Run dhead | LT |
cache Read only | tail head Result Quene : Write Read
e
- - - -"-"F-"F-""-"-"""—-"-"-"-"/"-""-""-"-"—-""-""-""-""-""-""-"-"""""""-""-"""-""-"-"-""¥"-"— - —_ "~ /- /~_ /- /- v/ r-/ /- //-/// |
: v Write to both L1 caches v !
[|
! L1 Data Cache (front core) L1 Data Cache (back core) !
[|
: Read only T :
: v ReadWnte I
[
I] |
: L2 Cache (shared) Memory Hicrarchy |

Dual Core Execution vs. Slipstream

Dual-core execution does not
c remove dead instructions
¢ reuse instruction register results

¢ usesthe leading hardware context solely for prefetching
and branch prediction

+ Easier to implement, smaller hardware cost and complexity

+ Tolerates memory latencies better with the use of runahead
execution in the front processor

- Leading thread cannot run ahead as much as in slipstream
when there are no cache misses

- Not reusing results in the trailing thread can reduce
overall performance benefit

58

Some Results

59

