
740: Computer Architecture

Memory Consistency

Prof. Onur Mutlu

Carnegie Mellon University

Readings: Memory Consistency

 Required

 Lamport, “How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs,” IEEE Transactions
on Computers, 1979

 Recommended

 Gharachorloo et al., “Memory Consistency and Event Ordering
in Scalable Shared-Memory Multiprocessors,” ISCA 1990.

 Charachorloo et al., “Two Techniques to Enhance the
Performance of Memory Consistency Models,” ICPP 1991.

 Ceze et al., “BulkSC: bulk enforcement of sequential
consistency,” ISCA 2007.

2

Brief Review: Multiprocessors and

Issues in Multiprocessing

Review: Multiprocessor Types

 Loosely coupled multiprocessors

 No shared global memory address space

 Multicomputer network

 Network-based multiprocessors

 Usually programmed via message passing

 Explicit calls (send, receive) for communication

 Tightly coupled multiprocessors

 Shared global memory address space

 Traditional multiprocessing: symmetric multiprocessing (SMP)

 Existing multi-core processors, multithreaded processors

 Programming model similar to uniprocessors (i.e., multitasking
uniprocessor) except

 Operations on shared data require synchronization

4

Review: Main Issues in Tightly-Coupled MP

 Shared memory synchronization

 Locks, atomic operations

 Cache consistency

 More commonly called cache coherence

 Ordering of memory operations

 What should the programmer expect the hardware to provide?

 Resource sharing, contention, partitioning

 Communication: Interconnection networks

 Load imbalance

5

Review: Caveats of Parallelism

 Amdahl’s Law

 f: Parallelizable fraction of a program

 N: Number of processors

 Amdahl, “Validity of the single processor approach to achieving large scale

computing capabilities,” AFIPS 1967.

 Maximum speedup limited by serial portion: Serial bottleneck

 Parallel portion is usually not perfectly parallel

 Synchronization overhead (e.g., updates to shared data)

 Load imbalance overhead (imperfect parallelization)

 Resource sharing overhead (contention among N processors)

6

Speedup =
1

+ 1 - f
f

N

Bottlenecks in Parallel Portion

 Synchronization: Operations manipulating shared data
cannot be parallelized

 Locks, mutual exclusion, barrier synchronization

 Communication: Tasks may need values from each other

- Causes thread serialization when shared data is contended

 Load Imbalance: Parallel tasks may have different lengths

 Due to imperfect parallelization or microarchitectural effects

- Reduces speedup in parallel portion

 Resource Contention: Parallel tasks can share hardware
resources, delaying each other

 Replicating all resources (e.g., memory) expensive

- Additional latency not present when each task runs alone

 7

Difficulty in Parallel Programming

 Little difficulty if parallelism is natural

 “Embarrassingly parallel” applications

 Multimedia, physical simulation, graphics

 Large web servers, databases?

 Difficulty is in

 Getting parallel programs to work correctly

 Optimizing performance in the presence of bottlenecks

 Much of parallel computer architecture is about

 Designing machines that overcome the sequential and parallel
bottlenecks to achieve higher performance and efficiency

 Making programmer’s job easier in writing correct and high-
performance parallel programs

8

Memory Ordering in

Multiprocessors

9

Ordering of Operations

 Operations: A, B, C, D

 In what order should the hardware execute (and report the
results of) these operations?

 A contract between programmer and microarchitect

 Specified by the ISA

 Preserving an “expected” (more accurately, “agreed upon”)
order simplifies programmer’s life
 Ease of debugging; ease of state recovery, exception handling

 Preserving an “expected” order usually makes the hardware
designer’s life difficult
 Especially if the goal is to design a high performance processor: Load-store

queues in out of order execution

 10

Memory Ordering in a Single Processor

 Specified by the von Neumann model

 Sequential order

 Hardware executes the load and store operations in the order
specified by the sequential program

 Out-of-order execution does not change the semantics

 Hardware retires (reports to software the results of) the load
and store operations in the order specified by the sequential
program

 Advantages: 1) Architectural state is precise within an execution. 2)

Architectural state is consistent across different runs of the program

Easier to debug programs

 Disadvantage: Preserving order adds overhead, reduces

performance

11

Memory Ordering in a Dataflow Processor

 A memory operation executes when its operands are ready

 Ordering specified only by data dependencies

 Two operations can be executed and retired in any order if
they have no dependency

 Advantage: Lots of parallelism high performance

 Disadvantage: Order can change across runs of the same
program Very hard to debug

12

Memory Ordering in a MIMD Processor

 Each processor’s memory operations are in sequential order
with respect to the “thread” running on that processor
(assume each processor obeys the von Neumann model)

 Multiple processors execute memory operations
concurrently

 How does the memory see the order of operations from all
processors?

 In other words, what is the ordering of operations across
different processors?

 13

Why Does This Even Matter?

 Ease of debugging

 It is nice to have the same execution done at different times
have the same order of memory operations

 Correctness

 Can we have incorrect execution if the order of memory
operations is different from the point of view of different
processors?

 Performance and overhead

 Enforcing a strict “sequential ordering” can make life harder
for the hardware designer in implementing performance
enhancement techniques (e.g., OoO execution, caches)

14

Protecting Shared Data

 Threads are not allowed to update shared data concurrently

 For correctness purposes

 Accesses to shared data are encapsulated inside
critical sections or protected via synchronization constructs
(locks, semaphores, condition variables)

 Only one thread can execute a critical section at
a given time

 Mutual exclusion principle

 A multiprocessor should provide the correct execution of
synchronization primitives to enable the programmer to
protect shared data

15

Supporting Mutual Exclusion
 Programmer needs to make sure mutual exclusion

(synchronization) is correctly implemented

 We will assume this

 But, correct parallel programming is an important topic

 Reading: Dijkstra, “Cooperating Sequential Processes,” 1965.

 http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD
123.html

 See Dekker’s algorithm for mutual exclusion

 Programmer relies on hardware primitives to support correct
synchronization

 If hardware primitives are not correct (or unpredictable),
programmer’s life is tough

 If hardware primitives are correct but not easy to reason about
or use, programmer’s life is still tough

16

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html

17

Protecting Shared Data

Assume P1 is in critical section.

Intuitively, it must have executed A,

which means F1 must be 1 (as A happens before B),

which means P2 should not enter the critical section.

A Question

 Can the two processors be in the critical section at the
same time given that they both obey the von Neumann
model?

 Answer: yes

18

19

Both Processors in Critical Section

20

21

How Can We Solve The Problem?

 Idea: Sequential consistency

 All processors see the same order of operations to memory

 i.e., all memory operations happen in an order (called the
global total order) that is consistent across all processors

 Assumption: within this global order, each processor’s
operations appear in sequential order with respect to its
own operations.

22

Sequential Consistency

 Lamport, “How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs,” IEEE Transactions on
Computers, 1979

 A multiprocessor system is sequentially consistent if:

 the result of any execution is the same as if the operations of all
the processors were executed in some sequential order

AND

 the operations of each individual processor appear in this
sequence in the order specified by its program

 This is a memory ordering model, or memory model

 Specified by the ISA

23

Programmer’s Abstraction

 Memory is a switch that services one load or store at a time
form any processor

 All processors see the currently serviced load or store at the
same time

 Each processor’s operations are serviced in program order

24

Sequentially Consistent Operation Orders

 Potential correct global orders (all are correct):

 A B X Y

 A X B Y

 A X Y B

 X A B Y

 X A Y B

 X Y A B

 Which order (interleaving) is observed depends on
implementation and dynamic latencies

25

Consequences of Sequential Consistency

 Corollaries

1. Within the same execution, all processors see the same
global order of operations to memory

 No correctness issue

 Satisfies the “happened before” intuition

2. Across different executions, different global orders can be
observed (each of which is sequentially consistent)

 Debugging is still difficult (as order changes across runs)

26

Issues with Sequential Consistency?

 Nice abstraction for programming, but two issues:

 Too conservative ordering requirements

 Limits the aggressiveness of performance enhancement
techniques

 Is the total global order requirement too strong?

 Do we need a global order across all operations and all
processors?

 How about a global order only across all stores?

 Total store order memory model; unique store order model

 How about a enforcing a global order only at the boundaries
of synchronization?

 Relaxed memory models

 Acquire-release consistency model

 27

Issues with Sequential Consistency?

 Performance enhancement techniques that could make SC
implementation difficult

 Out-of-order execution

 Loads happen out-of-order with respect to each other and
with respect to independent stores

 Caching

 A memory location is now present in multiple places

 Prevents the effect of a store to be seen by other processors

28

Weaker Memory Consistency

 The ordering of operations is important when the order
affects operations on shared data i.e., when processors
need to synchronize to execute a “program region”

 Weak consistency

 Idea: Programmer specifies regions in which memory
operations do not need to be ordered

 “Memory fence” instructions delineate those regions

 All memory operations before a fence must complete before the
fence is executed

 All memory operations after the fence must wait for the fence to
complete

 Fences complete in program order

 All synchronization operations act like a fence

29

Tradeoffs: Weaker Consistency

 Advantage

 No need to guarantee a very strict order of memory
operations

 Enables the hardware implementation of performance

 enhancement techniques to be simpler

 Can be higher performance than stricter ordering

 Disadvantage

 More burden on the programmer or software (need to get the
“fences” correct)

 Another example of the programmer-microarchitect tradeoff

30

Issues with Sequential Consistency?

 Performance enhancement techniques that could make SC
implementation difficult

 Out-of-order execution

 Loads happen out-of-order with respect to each other and
with respect to independent stores

 Caching

 A memory location is now present in multiple places

 Prevents the effect of a store to be seen by other processors

31

740: Computer Architecture

Memory Consistency

Prof. Onur Mutlu

Carnegie Mellon University

Backup slides

33

Referenced Readings

 Lamport, “How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs,” IEEE Transactions on
Computers, 1979

 Gharachorloo et al., “Memory Consistency and Event Ordering in
Scalable Shared-Memory Multiprocessors,” ISCA 1990.

 Charachorloo et al., “Two Techniques to Enhance the
Performance of Memory Consistency Models,” ICPP 1991.

 Ceze et al., “BulkSC: bulk enforcement of sequential
consistency,” ISCA 2007.

 Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” AFIPS 1967.

 Dijkstra, “Cooperating Sequential Processes,” 1965.

 http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123
.html

34

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html

Related Videos

 Multiprocessor Correctness and Cache Coherence

 http://www.youtube.com/watch?v=U-VZKMgItDM

35

http://www.youtube.com/watch?v=U-VZKMgItDM
http://www.youtube.com/watch?v=U-VZKMgItDM
http://www.youtube.com/watch?v=U-VZKMgItDM

Related Questions

 Question 4 in

 http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?medi
a=final.pdf

36

http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=final.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=final.pdf

