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Readings: Memory Consistency 

 Required 

 Lamport, “How to Make a Multiprocessor Computer That 
Correctly Executes Multiprocess Programs,” IEEE Transactions 
on Computers, 1979 

 

 Recommended 

 Gharachorloo et al., “Memory Consistency and Event Ordering 
in Scalable Shared-Memory Multiprocessors,” ISCA 1990. 

 Charachorloo et al., “Two Techniques to Enhance the 
Performance of Memory Consistency Models,” ICPP 1991. 

 Ceze et al., “BulkSC: bulk enforcement of sequential 
consistency,” ISCA 2007. 
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Brief Review: Multiprocessors and 

Issues in Multiprocessing 

 

 

 

 



Review: Multiprocessor Types 

 Loosely coupled multiprocessors 

 No shared global memory address space 

 Multicomputer network 

 Network-based multiprocessors 

 Usually programmed via message passing 

 Explicit calls (send, receive) for communication 

 

 Tightly coupled multiprocessors 

 Shared global memory address space 

 Traditional multiprocessing: symmetric multiprocessing (SMP) 

 Existing multi-core processors, multithreaded processors 

 Programming model similar to uniprocessors (i.e., multitasking 
uniprocessor) except 

 Operations on shared data require synchronization 

 

 

4 



Review: Main Issues in Tightly-Coupled MP  

 Shared memory synchronization 

 Locks, atomic operations 

 

 Cache consistency 

 More commonly called cache coherence 

 

 Ordering of memory operations  

 What should the programmer expect the hardware to provide? 

 

 Resource sharing, contention, partitioning 

 Communication: Interconnection networks 

 Load imbalance 
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Review: Caveats of Parallelism 

 Amdahl’s Law 

 f: Parallelizable fraction of a program 

 N: Number of processors 

 

 

 

 
 Amdahl, “Validity of the single processor approach to achieving large scale 

computing capabilities,” AFIPS 1967.  

 Maximum speedup limited by serial portion: Serial bottleneck 

 Parallel portion is usually not perfectly parallel 

 Synchronization overhead (e.g., updates to shared data) 

 Load imbalance overhead (imperfect parallelization) 

 Resource sharing overhead (contention among N processors) 
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Bottlenecks in Parallel Portion 

 Synchronization: Operations manipulating shared data 
cannot be parallelized 

 Locks, mutual exclusion, barrier synchronization 

 Communication: Tasks may need values from each other 

- Causes thread serialization when shared data is contended 

 

 Load Imbalance: Parallel tasks may have different lengths 

 Due to imperfect parallelization or microarchitectural effects 

- Reduces speedup in parallel portion 

 

 Resource Contention: Parallel tasks can share hardware 
resources, delaying each other 

 Replicating all resources (e.g., memory) expensive 

- Additional latency not present when each task runs alone 
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Difficulty in Parallel Programming 

 Little difficulty if parallelism is natural 

 “Embarrassingly parallel” applications 

 Multimedia, physical simulation, graphics 

 Large web servers, databases? 

 

 Difficulty is in  

 Getting parallel programs to work correctly 

 Optimizing performance in the presence of bottlenecks 

 

 Much of parallel computer architecture is about 

 Designing machines that overcome the sequential and parallel 
bottlenecks to achieve higher performance and efficiency 

 Making programmer’s job easier in writing correct and high-
performance parallel programs 
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Memory Ordering in 

Multiprocessors 
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Ordering of Operations 

 Operations: A, B, C, D 

 In what order should the hardware execute (and report the 
results of) these operations? 

 

 A contract between programmer and microarchitect 

 Specified by the ISA 
 

 Preserving an “expected” (more accurately, “agreed upon”) 
order simplifies programmer’s life 
 Ease of debugging; ease of state recovery, exception handling 

 

 Preserving an “expected” order usually makes the hardware 
designer’s life difficult 
 Especially if the goal is to design a high performance processor: Load-store 

queues in out of order execution 
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Memory Ordering in a Single Processor 

 Specified by the von Neumann model 

 Sequential order 

 Hardware executes the load and store operations in the order 
specified by the sequential program 
 

 Out-of-order execution does not change the semantics 

 Hardware retires (reports to software the results of) the load 
and store operations in the order specified by the sequential 
program 
 

 Advantages: 1) Architectural state is precise within an execution. 2) 

Architectural state is consistent across different runs of the program  

Easier to debug programs 

 Disadvantage: Preserving order adds overhead, reduces 

performance 
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Memory Ordering in a Dataflow Processor 

 A memory operation executes when its operands are ready 

 

 Ordering specified only by data dependencies 

 

 Two operations can be executed and retired in any order if 
they have no dependency 

 

 Advantage: Lots of parallelism  high performance 

 Disadvantage: Order can change across runs of the same 
program  Very hard to debug 
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Memory Ordering in a MIMD Processor 

 Each processor’s memory operations are in sequential order 
with respect to the “thread” running on that processor 
(assume each processor obeys the von Neumann model) 

 

 Multiple processors execute memory operations 
concurrently 

 

 How does the memory see the order of operations from all 
processors?  

 In other words, what is the ordering of operations across 
different processors? 
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Why Does This Even Matter? 

 Ease of debugging 

 It is nice to have the same execution done at different times 
have the same order of memory operations 

 

 Correctness 

 Can we have incorrect execution if the order of memory 
operations is different from the point of view of different 
processors? 

 

 Performance and overhead 

 Enforcing a strict “sequential ordering” can make life harder 
for the hardware designer in implementing performance 
enhancement techniques (e.g., OoO execution, caches) 
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Protecting Shared Data 

 Threads are not allowed to update shared data concurrently 

 For correctness purposes 

 

 Accesses to shared data are encapsulated inside  
critical sections or protected via synchronization constructs 
(locks, semaphores, condition variables) 

 

 Only one thread can execute a critical section at  
a given time 

 Mutual exclusion principle 

 

 A multiprocessor should provide the correct execution of 
synchronization primitives to enable the programmer to 
protect shared data 
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Supporting Mutual Exclusion 
 Programmer needs to make sure mutual exclusion 

(synchronization) is correctly implemented 

 We will assume this  

 But, correct parallel programming is an important topic 

 Reading: Dijkstra, “Cooperating Sequential Processes,” 1965. 

 http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD
123.html  

 See Dekker’s algorithm for mutual exclusion 

 

 Programmer relies on hardware primitives to support correct 
synchronization 

 If hardware primitives are not correct (or unpredictable), 
programmer’s life is tough 

 If hardware primitives are correct but not easy to reason about 
or use, programmer’s life is still tough 
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Protecting Shared Data 

Assume P1 is in critical section. 

Intuitively, it must have executed A,  

which means F1 must be 1 (as A happens before B),  

which means P2 should not enter the critical section. 



A Question 

 Can the two processors be in the critical section at the 
same time given that they both obey the von Neumann 
model? 

 Answer: yes 
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Both Processors in Critical Section 
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How Can We Solve The Problem? 

 Idea: Sequential consistency 

 

 All processors see the same order of operations to memory 

 i.e., all memory operations happen in an order (called the 
global total order) that is consistent across all processors 

 

 Assumption: within this global order, each processor’s 
operations appear in sequential order with respect to its 
own operations. 
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Sequential Consistency 

 Lamport, “How to Make a Multiprocessor Computer That 
Correctly Executes Multiprocess Programs,” IEEE Transactions on 
Computers, 1979 

 

 A multiprocessor system is sequentially consistent if: 

 the result of any execution is the same as if the operations of all 
the processors were executed in some sequential order 

AND 

 the operations of each individual processor appear in this 
sequence in the order specified by its program 

 

 This is a memory ordering model, or memory model 

 Specified by the ISA 
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Programmer’s Abstraction 

 Memory is a switch that services one load or store at a time 
form any processor 

 All processors see the currently serviced load or store at the 
same time 

 Each processor’s operations are serviced in program order 
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Sequentially Consistent Operation Orders 

 Potential correct global orders (all are correct): 

 

 A B X Y 

 A X B Y 

 A X Y B 

 X A B Y 

 X A Y B 

 X Y A B 

 

 Which order (interleaving) is observed depends on 
implementation and dynamic latencies 
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Consequences of Sequential Consistency 

 Corollaries 

 

1. Within the same execution, all processors see the same 
global order of operations to memory 

      No correctness issue 

      Satisfies the “happened before” intuition 

 

 

2. Across different executions, different global orders can be 
observed (each of which is sequentially consistent) 

      Debugging is still difficult (as order changes across runs) 
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Issues with Sequential Consistency? 

 Nice abstraction for programming, but two issues: 

 Too conservative ordering requirements 

 Limits the aggressiveness of performance enhancement 
techniques 

 

 Is the total global order requirement too strong? 

 Do we need a global order across all operations and all 
processors? 

 How about a global order only across all stores? 

 Total store order memory model; unique store order model 

 How about a enforcing a global order only at the boundaries 
of synchronization? 

 Relaxed memory models 

 Acquire-release consistency model 
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Issues with Sequential Consistency? 

 Performance enhancement techniques that could make SC 
implementation difficult 

 

 Out-of-order execution  

 Loads happen out-of-order with respect to each other and 
with respect to independent stores 

 

 Caching  

 A memory location is now present in multiple places 

 Prevents the effect of a store to be seen by other processors 
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Weaker Memory Consistency 

 The ordering of operations is important when the order 
affects operations on shared data  i.e., when processors 
need to synchronize to execute a “program region” 

 

 Weak consistency 

 Idea: Programmer specifies regions in which memory 
operations do not need to be ordered 

 “Memory fence” instructions delineate those regions 

 All memory operations before a fence must complete before the 
fence is executed 

 All memory operations after the fence must wait for the fence to 
complete 

 Fences complete in program order 

 All synchronization operations act like a fence 

29 



Tradeoffs: Weaker Consistency 

 Advantage 

 No need to guarantee a very strict order of memory 
operations 

     Enables the hardware implementation of performance      

   enhancement techniques to be simpler  

     Can be higher performance than stricter ordering 

 

 Disadvantage 

 More burden on the programmer or software (need to get the 
“fences” correct) 

 

 Another example of the programmer-microarchitect tradeoff 
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Issues with Sequential Consistency? 

 Performance enhancement techniques that could make SC 
implementation difficult 

 

 Out-of-order execution  

 Loads happen out-of-order with respect to each other and 
with respect to independent stores 

 

 Caching  

 A memory location is now present in multiple places 

 Prevents the effect of a store to be seen by other processors 
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Related Videos 

 Multiprocessor Correctness and Cache Coherence 

 http://www.youtube.com/watch?v=U-VZKMgItDM 
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Related Questions 

 Question 4 in 

 http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?medi
a=final.pdf 
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