Computer Architecture:
Parallel Processing Basics

Prof. Onur Mutlu
Carnegie Mellon University

Readings

o Required

Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-
560 in Readings in Computer Architecture.

Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in
Readings in Computer Architecture.

Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009.

Joao et al., "Bottleneck Identification and Scheduling in
Multithreaded Applications,” ASPLOS 2012.

o Recommended

Culler & Singh, Chapter 1
Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE,
1966

Related Video

= 18-447 Spring 2013 Lecture 30B: Multiprocessors
a http://www.youtube.com/watch?v=70zCK Magxfk&Ilist=PL5PH

m2ikkXmidJOd59REo0g9iDnPDTG6IJ&index=31

http://www.youtube.com/watch?v=7ozCK_Mgxfk&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=31
http://www.youtube.com/watch?v=7ozCK_Mgxfk&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=31

Parallel Processing Basics

Flynn’s Taxonomy of Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

SISD: Single instruction operates on single data element

SIMD: Single instruction operates on multiple data elements
o Array processor

o Vector processor

MISD: Multiple instructions operate on single data element
o Closest form: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

a Multiprocessor

o Multithreaded processor

Why Parallel Computers?

= Parallelism: Doing multiple things at a time
= Things: instructions, operations, tasks

= Main Goal

a Improve performance (Execution time or task throughput)
= Execution time of a program governed by Amdahl’ s Law

= Other Goals

a Reduce power consumption

= (4N units at freq F/4) consume less power than (N units at freq F)
= Why?
a Improve cost efficiency and scalability, reduce complexity
= Harder to design a single unit that performs as well as N simpler units

o Improve dependability: Redundant execution in space

I'ypes of Parallelism and How to Exploit

“]fgsli}luction Level Parallelism

o Different instructions within a stream can be executed in parallel
o Pipelining, out-of-order execution, speculative execution, VLIW
o Dataflow

Data Parallelism

o Different pieces of data can be operated on in parallel
o SIMD: Vector processing, array processing

o Systolic arrays, streaming processors

Task Level Parallelism

o Different “tasks/threads” can be executed in parallel
o Multithreading

o Multiprocessing (multi-core)

Task-Level Parallelism: Creating Tasks

Partition a single problem into multiple related tasks
(threads)
o Explicitly: Parallel programming

Easy when tasks are natural in the problem
0 Web/database queries

Difficult when natural task boundaries are unclear

o Transparently/implicitly: Thread level speculation
Partition a single thread speculatively

Run many independent tasks (processes) together

o Easy when there are many processes
Batch simulations, different users, cloud computing workloads

o Does not improve the performance of a single task

Multiprocessing Fundamentals

Multiprocessor Types

Loosely coupled multiprocessors
o No shared global memory address space
o Multicomputer network

Network-based multiprocessors

o Usually programmed via message passing
Explicit calls (send, receive) for communication

Tightly coupled multiprocessors

o Shared global memory address space

o Traditional multiprocessing: symmetric multiprocessing (SMP)
Existing multi-core processors, multithreaded processors

o Programming model similar to uniprocessors (i.e., multitasking
uniprocessor) except

Operations on shared data require synchronization
10

Main Issues in Tightly-Coupled MP

Shared memory synchronization
o Locks, atomic operations

Cache consistency
o More commonly called cache coherence

Ordering of memory operations
o What should the programmer expect the hardware to provide?

Resource sharing, contention, partitioning
Communication: Interconnection networks
Load imbalance

11

Aside: Hardware-based Multithreading

Idea: Multiple threads execute on the same processor with
multiple hardware contexts; hardware controls switching
between contexts

Coarse grained

o Quantum based

o Event based (switch-on-event multithreading)

Fine grained

o Cycle by cycle

o Thornton, “CDC 6600: Design of a Computer,” 1970.

o Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

Simultaneous
o Can dispatch instructions from multiple threads at the same time
o Good for improving utilization of multiple execution units

12

Metrics ot Multiprocessors

13

Parallel Speedup

Time to execute the program with 1 processor
divided by
Time to execute the program with N processors

14

Parallel Speedup Example

adx* + a3x3 + a2x? + alx + a0

Assume each operation 1 cycle, no communication cost,
each op can be executed in a different processor

How fast is this with a single processor?
o Assume no pipelining or concurrent execution of instructions

How fast is this with 3 processors?

15

R = Q‘Lx" + aaxsk + Olz_‘X?- + a,%X + B¢

Srgle prvesse M operatms (olal—‘:%?f-ph)

16

R. = o“xh - Q,X1+ az_xz'* a,n + Qo

- — -

Three pf-aa.ss;r& . T: ({mc:..mwa'h 3 (.wtrc.>
X l);' - Og X 0‘_ X—
() . (o)
Qq —— e
\) & e 1 a.x QQ
(& *)
Qe G [0a%3 oM+ G0

S5 e

S
1)
U
Vi
&
I

17

Speedup with 3 Processors

Ty =5 cycles

Specdup winh Ipressws = ._1_. -

11>
Ts

lg THS a fov conpoicen]

18

Revisiting the Single-Processor Algorithm

Rewsit Tt

Bete— s‘%\e’—pmaésa‘ a\smwn:

28

|

Qi N 3+ 0 %X> 1 a.X* + a X% + g,

R :(((a,‘x»f a3) X+ 0z)X + a.)x + Qg

(I"‘}WACF'S et e)

Horner, “A new method of solving numerical equations of all orders, by continuous
approximation,” Philosophical Transactions of the Royal Society, 1819.

19

Takeaway

To calculate parallel speedup fairly you need to use the
best known algorithm for each system with N processors

If not, you can get superlinear speedup

21

Superlinear Speedup

Can speedup be greater than P with P processing

elements?

Consider:

o Cache effects
o Memory effects
o Working set

Happens in two ways:

o Unfair comparisons
o Memory effects

4

Parallel
Speedup

Superlinear ,

P Typical
Success

Sublinear

— # Processors

22

Utilization, Redundancy, Etficiency

Traditional metrics
o Assume all P processors are tied up for parallel computation

Utilization: How much processing capability is used
o U = (# Operations in parallel version) / (processors x Time)

Redundancy: how much extra work is done with parallel
processing

o R = (# of operations in parallel version) / (# operations in best
single processor algorithm version)

Efficiency

o E = (Time with 1 processor) / (processors x Time with P processors)

a E=U/R
23

Utilization ot a Multiprocessor

Mullvpreaasc— mediC s
w—a‘w‘“’i_ 2 Pw mudh porewssmg Cogpoblifhy we vse-
P —
TIx| x| X i
_ Z_\P X1 XX U= 10 vpedtwns (o "m:.f%rm)
X | |
= 10
e 135

24

Redmdma’: : I—M ~udh exiva wr'k, due d¢ m‘/fhpvzt‘&&v\f)

besk
R_ = OPS- Wi o v i 10
— Ot R T g
R, is alwrong >/ -
EH{C{&:OV F)"ow mudh Nsw{tz_ Wt uSe Cuvered 4t hhow

rAech BSVTC e Con el Gy W

;E - Tbes’r [“‘7"‘3 ve 1 pafor "[‘f Mm;&s}
Tbes\— <h,4r'\sdr: PP"“&“tP)NM>

=N (E:—Q‘B' | |
15 o N

Caveats of Parallelism (I)

Specdwp
ki _ Mrﬁ/‘ a—— |rneor spedvp
5o Pt
$ " s — T 4——'""‘“‘)
1 <+
L P(:Ii cf prucssr&)

-w*\y +re (‘colo-,? (dnmvnﬁktha /W"‘&)

o=l (1=)-Tq
P

taa | il q
L—3 pon- pratelrzebole oot

poralldzeloe por-ldimctin
of Tre Smee-pricessc
progfz-?n

Amdahl’s L.aw

5puduf> — Tf Sl 1 —
'rh
P prec. TP ' % +— (4 —04‘3
condll M 4'@\% bdhercck o pedled

Speeohip

Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” AFIPS 1967.

27

Caveats of Parallelism (I): Amdahl’s L.aw

Amdahl’ s Law

a f: Parallelizable fraction of a program
a P: Number of processors

Speedup =

1-f + ;

o Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

Maximum speedup limited by serial portion: Serial bottleneck

28

Amdahl’s Law Implication 1

B T -
<= .aS
o= +9

Amdahl's

L_onnJ
I Nusivated

Addmg moe pnd moe
be&cs‘a‘s Hrres)e&SgAc&

bowe fil if o< L

29

Amdahl’s Law Implication 2

| * p‘: Tre beacff (spedup)
+ / ' i5 srmall il @L’X.i.
!

30

Sequential Bottleneck

—N=10

=—N=100

N=1000

— 0.36

N .

(parallel fraction

31

Why the Sequential Bottleneck?

= Parallel machines have the
sequential bottleneck

= Main cause: Non-parallelizable
operations on data (e.g. non-
parallelizable loops)
for(i=0;i<N;i++)
Ali] = (A[i] + A[i-1]) / 2

= Single thread prepares data
and spawns parallel tasks
(usually sequential)

32

Another Example of Sec

InitPriorityQueue(PQ): e A”;EGHEND o
. o = ani's serial pa
SpawnThreads(); @ B: Parallel Portion

D: Qutside critical section

(while (problem not solved)

-,

SubProblem = PQ.remove();

{Luck X)
Unlock(X);

Solve(SubProblem);
lf(problem solved) break;

NewSubProblems = Partition(SubProblem);

Lock(X)
Unlock(X)

PD.insert(NewEubPrublems};} C2.

PrintSolution(); (E)

(a)

uential Bottleneck

T1 ------IPIF------C@::
I - 7 s 1 (7)o a—UTTT L o C2
) > en— > S (i) > esss——L LT TEEE

Yo) e e TTTTT TN a C2 S o (7 i ea— iime
t T T T T T T
begin tn t| tz ta t4 ts te end

33

Implications of Amdahl’s .aw on Design

[vi
ﬁj_-_.—.—E 1L wEd
il Wl
\ 1 51
MEMCRY| —="%1| POINT
Tk

ﬁran REGISTERS
- r;: ¥
. WE
Al Rk =
¥

SCALAR ,—P>

13
Al
e Haletsl
Agd
|
T |ADDRESS -
i

H
FUNCTIONAL UNITS

B

CRAY-1

Russell, “The CRAY-1
computer system,”
CACM 1978.

Well known as a fast
vector machine

o 8 64-element vector
registers

The fastest SCALAR
machine of its time!

o Reason: Sequential
bottleneck!

INSTRUCTION BUFFERS

34

Caveats of Parallelism (1)

Amdahl’ s Law

a f: Parallelizable fraction of a program
a P: Number of processors

Speedup = f

P

1-f 4+

o Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

Maximum speedup limited by serial portion: Serial bottleneck

Parallel portion is usually not perfectly parallel
o Synchronization overhead (e.g., updates to shared data)
o Load imbalance overhead (imperfect parallelization)

o Resource sharing overhead (contention among N processors)
35

Bottlenecks in Parallel Portion

Synchronization: Operations manipulating shared data
cannot be parallelized

o Locks, mutual exclusion, barrier synchronization

o Communication: Tasks may need values from each other

- Causes thread serialization when shared data is contended

Load Imbalance: Parallel tasks may have different lengths
o Due to imperfect parallelization or microarchitectural effects
- Reduces speedup in parallel portion

Resource Contention: Parallel tasks can share hardware
resources, delaying each other
o Replicating all resources (e.g., memory) expensive

- Additional latency not present when each task runs alone
36

Ditticulty in Parallel Programming

Little difficulty if parallelism is natural
o “Embarrassingly parallel” applications

o Multimedia, physical simulation, graphics
o Large web servers, databases?

Big difficulty is in

o Harder to parallelize algorithms

o Getting parallel programs to work correctly

o Optimizing performance in the presence of bottlenecks

Much of parallel computer architecture is about

o Designing machines that overcome the sequential and parallel
bottlenecks to achieve higher performance and efficiency

o Making programmer’s job easier in writing correct and high-

performance parallel programs
37

Parallel and Serial Bottlenecks

How do you alleviate some of the serial and parallel
bottlenecks in a multi-core processor?

We will return to this question in the next few lectures
Reading list:

o Annavaram et al., “Mitigating Amdahl’ s Law Through EPI
Throttling,” ISCA 2005.

o Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 20009.

o Joao et al., "Bottleneck Identification and Scheduling in
Multithreaded Applications,” ASPLOS 2012.

o Ipek et al., “Core Fusion: Accommodating Software Diversity
in Chip Multiprocessors,” ISCA 2007.

o Hill and Marty, “Amdahl’ s Law in the Multi-Core Era,” IEEE
Computer 2008.

38

Bottlenecks in the Parallel Portion

Amdahl’s Law does not consider these

How do synchronization (e.q., critical sections), and load
imbalance, resource contention affect parallel speedup?

Can we develop an intuitive model (like Amdahl’s Law) to
reason about these?

a A research topic
Example papers:

o Eyerman and Eeckhout, “"Modeling critical sections in Amdahl's
law and its implications for multicore design,” ISCA 2010.

o Suleman et al., “Feedback-driven threading: power-efficient
and high-performance execution of multi-threaded workloads
on CMPs,” ASPLOS 2008.

Need better analysis of critical sections in real programs

39

Computer Architecture:
Parallel Processing Basics

Prof. Onur Mutlu
Carnegie Mellon University

Backup slides

Readings

o Required

Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-
560 in Readings in Computer Architecture.

Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in
Readings in Computer Architecture.

Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009.

Joao et al., "Bottleneck Identification and Scheduling in
Multithreaded Applications,” ASPLOS 2012.

o Recommended

Culler & Singh, Chapter 1
Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE,
1966

42

Referenced Readings (I)

Thornton, “CDC 6600: Design of a Computer,” 1970.

Smith, “A pipelined, shared resource MIMD computer,”
ICPP 1978.

Horner, “A new method of solving numerical equations of
all orders, by continuous approximation,” Philosophical
Transactions of the Royal Society, 1819.

Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” AFIPS 1967.

Russell, “The CRAY-1 computer system,” CACM 1978.

43

Referenced Readings (1I)

Annavaram et al., “Mitigating Amdahl’ s Law Through EPI Throttling,”
ISCA 2005.

Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009.

Joao et al., "Bottleneck Identification and Scheduling in Multithreaded
Applications,” ASPLOS 2012.

Ipek et al., “Core Fusion: Accommodating Software Diversity in Chip
Multiprocessors,” ISCA 2007.

Hill and Marty, “Amdahl’ s Law in the Multi-Core Era,” IEEE Computer
2008.

Eyerman and Eeckhout, "Modeling critical sections in Amdahl's law and
its implications for multicore design,” ISCA 2010.

Suleman et al., “"Feedback-driven threading: power-efficient and high-
performance execution of multi-threaded workloads on CMPs,” ASPLOS
2008.

44

Related Video

= 18-447 Spring 2013 Lecture 30B: Multiprocessors
a http://www.youtube.com/watch?v=70zCK Magxfk&Ilist=PL5PH

m2ikkXmidJOd59REo0g9iDnPDTG6IJ&index=31

45

http://www.youtube.com/watch?v=7ozCK_Mgxfk&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=31
http://www.youtube.com/watch?v=7ozCK_Mgxfk&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=31

