
Computer Architecture:

Parallel Processing Basics

Prof. Onur Mutlu

Carnegie Mellon University

Readings

 Required

 Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-
560 in Readings in Computer Architecture.

 Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in
Readings in Computer Architecture.

 Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009.

 Joao et al., “Bottleneck Identification and Scheduling in
Multithreaded Applications,” ASPLOS 2012.

 Recommended

 Culler & Singh, Chapter 1

 Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE,
1966

2

Related Video

 18-447 Spring 2013 Lecture 30B: Multiprocessors

 http://www.youtube.com/watch?v=7ozCK_Mgxfk&list=PL5PH
m2jkkXmidJOd59REog9jDnPDTG6IJ&index=31

3

http://www.youtube.com/watch?v=7ozCK_Mgxfk&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=31
http://www.youtube.com/watch?v=7ozCK_Mgxfk&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=31

Parallel Processing Basics

4

Flynn’s Taxonomy of Computers

 Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

 SISD: Single instruction operates on single data element

 SIMD: Single instruction operates on multiple data elements

 Array processor

 Vector processor

 MISD: Multiple instructions operate on single data element

 Closest form: systolic array processor, streaming processor

 MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

 Multiprocessor

 Multithreaded processor

5

Why Parallel Computers?

 Parallelism: Doing multiple things at a time

 Things: instructions, operations, tasks

 Main Goal

 Improve performance (Execution time or task throughput)
 Execution time of a program governed by Amdahl’s Law

 Other Goals

 Reduce power consumption

 (4N units at freq F/4) consume less power than (N units at freq F)

 Why?

 Improve cost efficiency and scalability, reduce complexity

 Harder to design a single unit that performs as well as N simpler units

 Improve dependability: Redundant execution in space

 6

Types of Parallelism and How to Exploit

Them
 Instruction Level Parallelism

 Different instructions within a stream can be executed in parallel

 Pipelining, out-of-order execution, speculative execution, VLIW

 Dataflow

 Data Parallelism

 Different pieces of data can be operated on in parallel

 SIMD: Vector processing, array processing

 Systolic arrays, streaming processors

 Task Level Parallelism

 Different “tasks/threads” can be executed in parallel

 Multithreading

 Multiprocessing (multi-core)

 7

Task-Level Parallelism: Creating Tasks

 Partition a single problem into multiple related tasks
(threads)

 Explicitly: Parallel programming

 Easy when tasks are natural in the problem

 Web/database queries

 Difficult when natural task boundaries are unclear

 Transparently/implicitly: Thread level speculation

 Partition a single thread speculatively

 Run many independent tasks (processes) together

 Easy when there are many processes

 Batch simulations, different users, cloud computing workloads

 Does not improve the performance of a single task

8

Multiprocessing Fundamentals

9

Multiprocessor Types

 Loosely coupled multiprocessors

 No shared global memory address space

 Multicomputer network

 Network-based multiprocessors

 Usually programmed via message passing

 Explicit calls (send, receive) for communication

 Tightly coupled multiprocessors

 Shared global memory address space

 Traditional multiprocessing: symmetric multiprocessing (SMP)

 Existing multi-core processors, multithreaded processors

 Programming model similar to uniprocessors (i.e., multitasking
uniprocessor) except

 Operations on shared data require synchronization

10

Main Issues in Tightly-Coupled MP

 Shared memory synchronization

 Locks, atomic operations

 Cache consistency

 More commonly called cache coherence

 Ordering of memory operations

 What should the programmer expect the hardware to provide?

 Resource sharing, contention, partitioning

 Communication: Interconnection networks

 Load imbalance

11

Aside: Hardware-based Multithreading

 Idea: Multiple threads execute on the same processor with
multiple hardware contexts; hardware controls switching
between contexts

 Coarse grained

 Quantum based

 Event based (switch-on-event multithreading)

 Fine grained

 Cycle by cycle

 Thornton, “CDC 6600: Design of a Computer,” 1970.

 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

 Simultaneous

 Can dispatch instructions from multiple threads at the same time

 Good for improving utilization of multiple execution units

12

Metrics of Multiprocessors

13

Parallel Speedup

Time to execute the program with 1 processor

 divided by

Time to execute the program with N processors

14

Parallel Speedup Example

 a4x4 + a3x3 + a2x2 + a1x + a0

 Assume each operation 1 cycle, no communication cost,
each op can be executed in a different processor

 How fast is this with a single processor?

 Assume no pipelining or concurrent execution of instructions

 How fast is this with 3 processors?

15

16

17

Speedup with 3 Processors

18

Revisiting the Single-Processor Algorithm

19

Horner, “A new method of solving numerical equations of all orders, by continuous

approximation,” Philosophical Transactions of the Royal Society, 1819.

20

Takeaway

 To calculate parallel speedup fairly you need to use the
best known algorithm for each system with N processors

 If not, you can get superlinear speedup

21

Superlinear Speedup

 Can speedup be greater than P with P processing
elements?

 Consider:

 Cache effects

 Memory effects

 Working set

 Happens in two ways:

 Unfair comparisons

 Memory effects

22

Utilization, Redundancy, Efficiency

 Traditional metrics

 Assume all P processors are tied up for parallel computation

 Utilization: How much processing capability is used

 U = (# Operations in parallel version) / (processors x Time)

 Redundancy: how much extra work is done with parallel
processing

 R = (# of operations in parallel version) / (# operations in best
single processor algorithm version)

 Efficiency

 E = (Time with 1 processor) / (processors x Time with P processors)

 E = U/R

23

Utilization of a Multiprocessor

24

25

Caveats of Parallelism (I)

26

Amdahl’s Law

27

Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” AFIPS 1967.

Caveats of Parallelism (I): Amdahl’s Law

 Amdahl’s Law

 f: Parallelizable fraction of a program

 P: Number of processors

 Amdahl, “Validity of the single processor approach to achieving large scale

computing capabilities,” AFIPS 1967.

 Maximum speedup limited by serial portion: Serial bottleneck

28

Speedup =
1

+ 1 - f
f

P

Amdahl’s Law Implication 1

29

Amdahl’s Law Implication 2

30

Sequential Bottleneck

31

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

0

0
.0

4

0
.0

8

0
.1

2

0
.1

6

0
.2

0
.2

4

0
.2

8

0
.3

2

0
.3

6

0
.4

0
.4

4

0
.4

8

0
.5

2

0
.5

6

0
.6

0
.6

4

0
.6

8

0
.7

2

0
.7

6

0
.8

0
.8

4

0
.8

8

0
.9

2

0
.9

6

1

N=10

N=100

N=1000

f (parallel fraction)

Why the Sequential Bottleneck?

 Parallel machines have the
sequential bottleneck

 Main cause: Non-parallelizable
operations on data (e.g. non-
parallelizable loops)
 for (i = 0 ; i < N; i++)

 A[i] = (A[i] + A[i-1]) / 2

 Single thread prepares data
and spawns parallel tasks
(usually sequential)

32

Another Example of Sequential Bottleneck

33

Implications of Amdahl’s Law on Design

 CRAY-1

 Russell, “The CRAY-1
computer system,”
CACM 1978.

 Well known as a fast
vector machine

 8 64-element vector
registers

 The fastest SCALAR
machine of its time!

 Reason: Sequential
bottleneck!

34

Caveats of Parallelism (II)

 Amdahl’s Law

 f: Parallelizable fraction of a program

 P: Number of processors

 Amdahl, “Validity of the single processor approach to achieving large scale

computing capabilities,” AFIPS 1967.

 Maximum speedup limited by serial portion: Serial bottleneck

 Parallel portion is usually not perfectly parallel

 Synchronization overhead (e.g., updates to shared data)

 Load imbalance overhead (imperfect parallelization)

 Resource sharing overhead (contention among N processors)

35

Speedup =
1

+ 1 - f
f

P

Bottlenecks in Parallel Portion

 Synchronization: Operations manipulating shared data
cannot be parallelized

 Locks, mutual exclusion, barrier synchronization

 Communication: Tasks may need values from each other

- Causes thread serialization when shared data is contended

 Load Imbalance: Parallel tasks may have different lengths

 Due to imperfect parallelization or microarchitectural effects

- Reduces speedup in parallel portion

 Resource Contention: Parallel tasks can share hardware
resources, delaying each other

 Replicating all resources (e.g., memory) expensive

- Additional latency not present when each task runs alone

 36

Difficulty in Parallel Programming

 Little difficulty if parallelism is natural

 “Embarrassingly parallel” applications

 Multimedia, physical simulation, graphics

 Large web servers, databases?

 Big difficulty is in

 Harder to parallelize algorithms

 Getting parallel programs to work correctly

 Optimizing performance in the presence of bottlenecks

 Much of parallel computer architecture is about

 Designing machines that overcome the sequential and parallel
bottlenecks to achieve higher performance and efficiency

 Making programmer’s job easier in writing correct and high-
performance parallel programs

37

Parallel and Serial Bottlenecks

 How do you alleviate some of the serial and parallel
bottlenecks in a multi-core processor?

 We will return to this question in the next few lectures

 Reading list:

 Annavaram et al., “Mitigating Amdahl’s Law Through EPI
Throttling,” ISCA 2005.

 Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009.

 Joao et al., “Bottleneck Identification and Scheduling in
Multithreaded Applications,” ASPLOS 2012.

 Ipek et al., “Core Fusion: Accommodating Software Diversity
in Chip Multiprocessors,” ISCA 2007.

 Hill and Marty, “Amdahl’s Law in the Multi-Core Era,” IEEE
Computer 2008.

38

Bottlenecks in the Parallel Portion

 Amdahl’s Law does not consider these

 How do synchronization (e.g., critical sections), and load
imbalance, resource contention affect parallel speedup?

 Can we develop an intuitive model (like Amdahl’s Law) to
reason about these?

 A research topic

 Example papers:

 Eyerman and Eeckhout, “Modeling critical sections in Amdahl's
law and its implications for multicore design,” ISCA 2010.

 Suleman et al., “Feedback-driven threading: power-efficient
and high-performance execution of multi-threaded workloads
on CMPs,” ASPLOS 2008.

 Need better analysis of critical sections in real programs

39

Computer Architecture:

Parallel Processing Basics

Prof. Onur Mutlu

Carnegie Mellon University

Backup slides

41

Readings

 Required

 Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-
560 in Readings in Computer Architecture.

 Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in
Readings in Computer Architecture.

 Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009.

 Joao et al., “Bottleneck Identification and Scheduling in
Multithreaded Applications,” ASPLOS 2012.

 Recommended

 Culler & Singh, Chapter 1

 Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE,
1966

42

Referenced Readings (I)

 Thornton, “CDC 6600: Design of a Computer,” 1970.

 Smith, “A pipelined, shared resource MIMD computer,”
ICPP 1978.

 Horner, “A new method of solving numerical equations of
all orders, by continuous approximation,” Philosophical
Transactions of the Royal Society, 1819.

 Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” AFIPS 1967.

 Russell, “The CRAY-1 computer system,” CACM 1978.

43

Referenced Readings (II)

 Annavaram et al., “Mitigating Amdahl’s Law Through EPI Throttling,”
ISCA 2005.

 Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009.

 Joao et al., “Bottleneck Identification and Scheduling in Multithreaded
Applications,” ASPLOS 2012.

 Ipek et al., “Core Fusion: Accommodating Software Diversity in Chip
Multiprocessors,” ISCA 2007.

 Hill and Marty, “Amdahl’s Law in the Multi-Core Era,” IEEE Computer
2008.

 Eyerman and Eeckhout, “Modeling critical sections in Amdahl's law and
its implications for multicore design,” ISCA 2010.

 Suleman et al., “Feedback-driven threading: power-efficient and high-
performance execution of multi-threaded workloads on CMPs,” ASPLOS
2008.

 44

Related Video

 18-447 Spring 2013 Lecture 30B: Multiprocessors

 http://www.youtube.com/watch?v=7ozCK_Mgxfk&list=PL5PH
m2jkkXmidJOd59REog9jDnPDTG6IJ&index=31

45

http://www.youtube.com/watch?v=7ozCK_Mgxfk&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=31
http://www.youtube.com/watch?v=7ozCK_Mgxfk&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=31

