
Computer Architecture: 

Parallel Processing Basics 

 

 

Prof. Onur Mutlu 

Carnegie Mellon University 

 



Readings 

 Required 

 Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-
560 in Readings in Computer Architecture. 

 Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in 
Readings in Computer Architecture. 

 

 Suleman et al., “Accelerating Critical Section Execution with 
Asymmetric Multi-Core Architectures,” ASPLOS 2009.  

 Joao et al., “Bottleneck Identification and Scheduling in 
Multithreaded Applications,” ASPLOS 2012. 

 

 Recommended 

 Culler & Singh, Chapter 1 

 Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE, 
1966 
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Related Video 

 18-447 Spring 2013 Lecture 30B: Multiprocessors 

 http://www.youtube.com/watch?v=7ozCK_Mgxfk&list=PL5PH
m2jkkXmidJOd59REog9jDnPDTG6IJ&index=31  
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Parallel Processing Basics 
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Flynn’s Taxonomy of Computers 

 Mike Flynn, “Very High-Speed Computing Systems,” Proc. 
of IEEE, 1966 

 

 SISD: Single instruction operates on single data element 

 SIMD: Single instruction operates on multiple data elements 

 Array processor 

 Vector processor 

 MISD: Multiple instructions operate on single data element 

 Closest form: systolic array processor, streaming processor 

 MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams) 

 Multiprocessor 

 Multithreaded processor 
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Why Parallel Computers? 

 Parallelism: Doing multiple things at a time 

 Things: instructions, operations, tasks 

 

 Main Goal 

 Improve performance (Execution time or task throughput) 
 Execution time of a program governed by Amdahl’s Law 

 

 Other Goals 

 Reduce power consumption 

 (4N units at freq F/4) consume less power than (N units at freq F) 

 Why?  

 Improve cost efficiency and scalability, reduce complexity 

 Harder to design a single unit that performs as well as N simpler units  

 Improve dependability: Redundant execution in space 
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Types of Parallelism and How to Exploit 

Them 
 Instruction Level Parallelism 

 Different instructions within a stream can be executed in parallel 

 Pipelining, out-of-order execution, speculative execution, VLIW 

 Dataflow 

 

 Data Parallelism 

 Different pieces of data can be operated on in parallel 

 SIMD: Vector processing, array processing 

 Systolic arrays, streaming processors 

 

 Task Level Parallelism 

 Different “tasks/threads” can be executed in parallel 

 Multithreading 

 Multiprocessing (multi-core) 
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Task-Level Parallelism: Creating Tasks 

 Partition a single problem into multiple related tasks 
(threads) 

 Explicitly: Parallel programming 

 Easy when tasks are natural in the problem 

 Web/database queries 

 Difficult when natural task boundaries are unclear 

 

 Transparently/implicitly: Thread level speculation 

 Partition a single thread speculatively 

 

 Run many independent tasks (processes) together 

 Easy when there are many processes 

 Batch simulations, different users, cloud computing workloads 

 Does not improve the performance of a single task 
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Multiprocessing Fundamentals 
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Multiprocessor Types 

 Loosely coupled multiprocessors 

 No shared global memory address space 

 Multicomputer network 

 Network-based multiprocessors 

 Usually programmed via message passing 

 Explicit calls (send, receive) for communication 

 

 Tightly coupled multiprocessors 

 Shared global memory address space 

 Traditional multiprocessing: symmetric multiprocessing (SMP) 

 Existing multi-core processors, multithreaded processors 

 Programming model similar to uniprocessors (i.e., multitasking 
uniprocessor) except 

 Operations on shared data require synchronization 
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Main Issues in Tightly-Coupled MP  

 Shared memory synchronization 

 Locks, atomic operations 

 

 Cache consistency 

 More commonly called cache coherence 

 

 Ordering of memory operations  

 What should the programmer expect the hardware to provide? 

 

 Resource sharing, contention, partitioning 

 Communication: Interconnection networks 

 Load imbalance 
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Aside: Hardware-based Multithreading 

 Idea: Multiple threads execute on the same processor with 
multiple hardware contexts; hardware controls switching 
between contexts 

 

 Coarse grained 

 Quantum based 

 Event based (switch-on-event multithreading) 

 Fine grained 

 Cycle by cycle 

 Thornton, “CDC 6600: Design of a Computer,” 1970. 

 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978. 

 Simultaneous 

 Can dispatch instructions from multiple threads at the same time 

 Good for improving utilization of multiple execution units 
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Metrics of Multiprocessors 
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Parallel Speedup 

 

 

 

Time to execute the program with 1 processor 

                     divided by 

Time to execute the program with N processors 
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Parallel Speedup Example 

 a4x4 + a3x3 + a2x2 + a1x + a0 

 

 Assume each operation 1 cycle, no communication cost, 
each op can be executed in a different processor 

 

 How fast is this with a single processor? 

 Assume no pipelining or concurrent execution of instructions 

 

 How fast is this with 3 processors?  
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Speedup with 3 Processors 

18 



Revisiting the Single-Processor Algorithm 

19 

Horner, “A new method of solving numerical equations of all orders, by continuous  

approximation,” Philosophical Transactions of the Royal Society, 1819. 



20 



Takeaway 

 To calculate parallel speedup fairly you need to use the 
best known algorithm for each system with N processors 

 

 If not, you can get superlinear speedup 
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Superlinear Speedup 

 Can speedup be greater than P with P processing 
elements? 

 

 Consider: 

 Cache effects 

 Memory effects 

 Working set 

 

 Happens in two ways: 

 Unfair comparisons 

 Memory effects 
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Utilization, Redundancy, Efficiency 

 Traditional metrics 

 Assume all P processors are tied up for parallel computation 

 

 Utilization: How much processing capability is used  

 U = (# Operations in parallel version) / (processors x Time) 

 

 Redundancy: how much extra work is done with parallel 
processing 

 R = (# of operations in parallel version) / (# operations in best 
single processor algorithm version) 

 

 Efficiency  

 E = (Time with 1 processor) / (processors x Time with P processors) 

 E = U/R 
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Utilization of a Multiprocessor 
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Caveats of Parallelism (I) 
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Amdahl’s Law 

27 

Amdahl, “Validity of the single processor approach to 
achieving large scale computing capabilities,” AFIPS 1967.  



Caveats of Parallelism (I): Amdahl’s Law 

 Amdahl’s Law 

 f: Parallelizable fraction of a program 

 P: Number of processors 

 

 

 

 
 Amdahl, “Validity of the single processor approach to achieving large scale 

computing capabilities,” AFIPS 1967.  

 

 

 Maximum speedup limited by serial portion: Serial bottleneck 
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Speedup = 
1 

+ 1 - f 
f 

P 



Amdahl’s Law Implication 1 
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Amdahl’s Law Implication 2 
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Sequential Bottleneck 
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Why the Sequential Bottleneck? 

 Parallel machines have the 
sequential bottleneck 

 

 Main cause: Non-parallelizable 
operations on data (e.g. non-
parallelizable loops) 
 for ( i = 0 ; i < N; i++) 

    A[i] = (A[i] + A[i-1]) / 2 

 

 Single thread prepares data 
and spawns parallel tasks 
(usually sequential) 
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Another Example of Sequential Bottleneck 
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Implications of Amdahl’s Law on Design 

 CRAY-1 

 Russell, “The CRAY-1 
computer system,” 
CACM 1978. 

 

 Well known as a fast 
vector machine 

 8 64-element vector 
registers 

 

 The fastest SCALAR 
machine of its time! 

 Reason: Sequential 
bottleneck! 
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Caveats of Parallelism (II) 

 Amdahl’s Law 

 f: Parallelizable fraction of a program 

 P: Number of processors 

 

 

 

 
 Amdahl, “Validity of the single processor approach to achieving large scale 

computing capabilities,” AFIPS 1967.  

 Maximum speedup limited by serial portion: Serial bottleneck 

 Parallel portion is usually not perfectly parallel 

 Synchronization overhead (e.g., updates to shared data) 

 Load imbalance overhead (imperfect parallelization) 

 Resource sharing overhead (contention among N processors) 
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Bottlenecks in Parallel Portion 

 Synchronization: Operations manipulating shared data 
cannot be parallelized 

 Locks, mutual exclusion, barrier synchronization 

 Communication: Tasks may need values from each other 

- Causes thread serialization when shared data is contended 

 

 Load Imbalance: Parallel tasks may have different lengths 

 Due to imperfect parallelization or microarchitectural effects 

- Reduces speedup in parallel portion 

 

 Resource Contention: Parallel tasks can share hardware 
resources, delaying each other 

 Replicating all resources (e.g., memory) expensive 

- Additional latency not present when each task runs alone 
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Difficulty in Parallel Programming 

 Little difficulty if parallelism is natural 

 “Embarrassingly parallel” applications 

 Multimedia, physical simulation, graphics 

 Large web servers, databases? 
 

 Big difficulty is in  

 Harder to parallelize algorithms 

 Getting parallel programs to work correctly 

 Optimizing performance in the presence of bottlenecks 
 

 Much of parallel computer architecture is about 

 Designing machines that overcome the sequential and parallel 
bottlenecks to achieve higher performance and efficiency 

 Making programmer’s job easier in writing correct and high-
performance parallel programs 
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Parallel and Serial Bottlenecks 

 How do you alleviate some of the serial and parallel 
bottlenecks in a multi-core processor? 

 We will return to this question in the next few lectures 

 Reading list: 

 Annavaram et al., “Mitigating Amdahl’s Law Through EPI 
Throttling,” ISCA 2005. 

 Suleman et al., “Accelerating Critical Section Execution with 
Asymmetric Multi-Core Architectures,” ASPLOS 2009.  

 Joao et al., “Bottleneck Identification and Scheduling in 
Multithreaded Applications,” ASPLOS 2012.  

 Ipek et al., “Core Fusion: Accommodating Software Diversity 
in Chip Multiprocessors,” ISCA 2007. 

 Hill and Marty, “Amdahl’s Law in the Multi-Core Era,” IEEE 
Computer 2008. 
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Bottlenecks in the Parallel Portion 

 Amdahl’s Law does not consider these 
 

 How do synchronization (e.g., critical sections), and load 
imbalance, resource contention affect parallel speedup? 
 

 Can we develop an intuitive model (like Amdahl’s Law) to 
reason about these?  

 A research topic 

 Example papers: 

 Eyerman and Eeckhout, “Modeling critical sections in Amdahl's 
law and its implications for multicore design,” ISCA 2010. 

 Suleman et al., “Feedback-driven threading: power-efficient 
and high-performance execution of multi-threaded workloads 
on CMPs,” ASPLOS 2008. 

 Need better analysis of critical sections in real programs 
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Readings 

 Required 

 Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-
560 in Readings in Computer Architecture. 

 Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in 
Readings in Computer Architecture. 

 

 Suleman et al., “Accelerating Critical Section Execution with 
Asymmetric Multi-Core Architectures,” ASPLOS 2009.  

 Joao et al., “Bottleneck Identification and Scheduling in 
Multithreaded Applications,” ASPLOS 2012. 

 

 Recommended 

 Culler & Singh, Chapter 1 

 Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE, 
1966 
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Referenced Readings (I) 

 Thornton, “CDC 6600: Design of a Computer,” 1970. 

 Smith, “A pipelined, shared resource MIMD computer,” 
ICPP 1978. 

 Horner, “A new method of solving numerical equations of 
all orders, by continuous approximation,” Philosophical 
Transactions of the Royal Society, 1819. 

 Amdahl, “Validity of the single processor approach to 
achieving large scale computing capabilities,” AFIPS 1967.  

 Russell, “The CRAY-1 computer system,” CACM 1978. 
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Referenced Readings (II) 

 Annavaram et al., “Mitigating Amdahl’s Law Through EPI Throttling,” 
ISCA 2005. 

 Suleman et al., “Accelerating Critical Section Execution with 
Asymmetric Multi-Core Architectures,” ASPLOS 2009.  

 Joao et al., “Bottleneck Identification and Scheduling in Multithreaded 
Applications,” ASPLOS 2012.  

 Ipek et al., “Core Fusion: Accommodating Software Diversity in Chip 
Multiprocessors,” ISCA 2007. 

 Hill and Marty, “Amdahl’s Law in the Multi-Core Era,” IEEE Computer 
2008. 

 Eyerman and Eeckhout, “Modeling critical sections in Amdahl's law and 
its implications for multicore design,” ISCA 2010. 

 Suleman et al., “Feedback-driven threading: power-efficient and high-
performance execution of multi-threaded workloads on CMPs,” ASPLOS 
2008. 
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Related Video 

 18-447 Spring 2013 Lecture 30B: Multiprocessors 

 http://www.youtube.com/watch?v=7ozCK_Mgxfk&list=PL5PH
m2jkkXmidJOd59REog9jDnPDTG6IJ&index=31  
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