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Multiple Cores on Chip

A Simpler and lower power than a single large core

A Large scale parallelism on chip
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With Multiple Cores on Chip

What we want:

¢ N times the performance with N times the cores when we
parallelize an application on N cores

What we get:
¢ Amdahl& Law (serial bottleneck)
¢ Bottlenecks in the parallel portion



Caveats of Parallelism

Amdahl s Law
¢ f. Parallelizable fraction of a program
¢ N: Number of processors

Speedup =

f
N

1-f 4+

¢ Amdahl, Validity of the single processor approach to achieving large scale
computing capabilities, AFIPS 1967.

Maximum speedup limited by serial portion: Serial bottleneck

Parallel portion is usually not perfectly parallel
¢ Synchronizationoverhead (e.g., updates to shared data)
¢ Load imbalance overhead (imperfect parallelization)

¢ Resource sharingoverhead (contention among N processors)
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The Problem: Serialized Code Sections

Many parallel programs cannot be parallelized completely

Causes of serialized code sections

¢ Sequential portions (Amdahl® fserial parto)
¢ Critical sections

¢ Barriers

¢ Limiter stages in pipelined programs

Serialized code sections
¢ Reduce performance

¢ Limit scalability

¢ Waste energy

SAFARI



Example from MySQL
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Demands in Different Code Sections

What we want:

In a serialized code section A one powerful Aargeo core
In a parallel code section A many wimpy fismallo cores

These two conflict with each other:

¢ If you have a single powerful core, you cannot have many
cores

¢ A small core is much more energy and area efficient than a
large core



oLarg®vs.oSmalb Cores

Large Small
Core Core
A Out-of-order A In-order
A Wide fetch e.g. 4-wide A Narrow Fetch e.g. 2-wide

A Deeper pipeline

_ A Shallow pipeline
A Aggressive branch

predictor (e.g. hybrid) A Simple branch predictor
A Multiple functional units (e.9. Gshare)
A Trace cache A Few functional units
A Memory dependence
speculation
r 2

Large Cores are power inefficient:
e.g., 2x performance for 4x area (power)
\_ J




Large vs. Small Cores

A Grochowski et al., Best of both Latency and Throughput,
ICCD 2004.

Large core Small core
Microarchitecture Qut-of-order, In-order
128-256 entry
ROB
Width 3-4 1
Pipeline depth 20-30
MNormalized 5-8x 1%
performance
Normalized power 20-50x 1x
Normalized 4-6x 1%
energy/instruction




Meet Small Cores: Piranha Chip Multiproces

Barroso et al., Piranha: A Scalable Architecture Based on Single
Chip Multiprocessing ISCA 2000.

An early example of a symmetric multi-core processor
Large-scale server based on CMP nodes
Designed for commercial workloads

Read:

¢ Barroso et al., iIMemory System Characterization of Commercial
Workloads,0 ISCA 1998.

¢ Ranganathan et al., "lPerformance of Database Workloads on
Shared-Memory Systems with Out-of-Order Processorso ASPLOS
1998.



Commercial Workload Characteristics

Memory system is the main bottleneck

¢ Very high CPI

¢ Execution time dominated by memory stall times
¢ Instruction stalls as important as data stalls

¢ Fast/large L2 caches are critical

Very poor Instruction Level Parallelism (ILP) with existing
techniques

¢ Frequent hard-to-predict branches
¢ Large L1 miss ratios
¢ Small gains from wide-issue out-of-order techniques

No need for floating point and multimedia units
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Piranha Processing Node

Alpha core:
1-issue, in-order,
500MHz

Next few slides from
Luiz Barroso s ISCA 2000 presentation of

Piranha: A Scalable Architecture
Based on Single-Chip Multiprocessing




Piranha Processing Node

Alpha core:
1-issue, in-order,
500MHz

L1 caches:
1&D, 64KB, 2-way
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Piranha Processing Node

Alpha core:
1-issue, in-order,

L1 caches:
1&D, 64KB, 2-way
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Piranha Processing Node

Alpha core:
1-issue, in-order,
500MHz

L1 caches:

1&D, 64KB, 2-way
Intra-chip switch (ICS)
32GB/sec, 1-cycle

delay

L2 cache:
shared, 1MB, 8-way




Piranha Processing Node

Alpha core:
1-issue, in-order,
500MHz

L1 caches:

1&D, 64KB, 2-way
Intra-chip switch (ICS)
32GB/sec, 1-cycle

delay

L2 cache:
shared, 1MB, 8-way

Memory Controller

(MC)

RDRAM, 12.8GB/sec
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Piranha Processing Node

Alpha core:
1-issue, in-order,
500MHz
L1 caches:
|1&D, 64KB, 2-way
Intra-chip switch (ICS)
32GB/sec, 1-cycle
delay
L2 cache:
shared, 1MB, 8-way
Memory Controller (MC)
RDRAM, 12.8GB/sec
Protocol Engines (HE &
RE)
nprog., 1K mnstr.,
even/odd interleaving




Piranha Processing Node

Alpha core:
4 Links 1-issue, in-order,
@ 8GBI/s 500MHz

L1 caches:

|1&D, 64KB, 2-way
Intra-chip switch (ICS)

32GB/sec, 1-cycle
delay
L2 cache:

shared, 1MB, 8-way
Memory Controller (MC)

RDRAM, 12.8GB/sec
Protocol Engines (HE &
RE):

nprog., 1K mnstr.,

even/odd interleaving
System Interconnect:

4-port Xbar router

topology independent
el il ielele 32GB/sec total
bandwidth




Piranha Processing Node

. Alpha core:
1-issue, in-order,
500MHz
: L1 caches:
: 1&D, 64KB, 2-way
: Intra-chip switch (ICS)
:  32GB/sec, 1-cycle
: delay
: L2 cache:
:  shared, 1MB, 8-way
: Memory Controller (MC)
:  RDRAM, 12.8GB/sec
: Protocol Engines (HE &
: RE):
i nprog., 1K ninstr.,
:  even/odd interleaving
: System Interconnect:
4- port Xbar router

to ndent




Piranha Processing Node

Interconnect Links
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Inter-Node Coherence Protocol Engine

From Packet Switch From Intra-Chip Switch
Input Stage Input Controller (FSM)
(Hardwired) v v
Input Buffers
I ’-r[ ——— < > I:I |—
I TSRFs
+ I i _Ifindﬂimia] Branching
Execution Stage Test & Execution )
(Firmware Conirolled) Unit < Instn;ﬁun v
Output Buffers Microcode
I — g
i | RAM
v v
Qutput Stage Output Controller (FSM)
(Hardwired) v v
To Packet Switch To Intra-Chip Switch

Figure 4. Block diagram of a protocol engine.
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Piranha System

Figure 3. Example configuration for a Piranha system with six
processing (8 CPUs each) and two I/O chips.
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Piranha I/O Node
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Figure 2. Block diagram of a single-chip Piranha I/O node.



Meet Small: Sun Niagara (UltraSPARC

A Kongetira et al.,

Niagara: A 32-Way Multithreaded SPARC
Processor |EEE Micro 2005.
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Niagara Core

A

4-way fine-grain multithreaded, 6 -stage, dual-issue in-order

Round robin thread selection (unless cache miss)
Shared FP unit among cores

A

A

A

‘ Fatch | Thread select | Decode | Exacute ‘ Memuory | Wihiteback
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fil
ICache ALl DCache -
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Niagara Design Point

A Designed for commercial applications

Table 1. Commercial server applications.

) Memory latency [l Compute latency

Instruction-level Thread-level Working Data
Benchmark Application category parallelism parallelism set sharing
Web38 Web server Low High Large Low
J3B Java application server Low High Large Medium
TPC-C Transaction processing Low High Large High
SAP-2T Enterprise resource planning Medium High Medium Medium
SAP-3T Enterprise resource planning Low High Large High
TPC-H Decision support system High High Large Medium
Single =~
LPE M € MC M [ ==
TLP|C M ,
{onshared — Time saved
singleissue € M T =
pipeline) e M |
-
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Meet Small: Sun Niagara Il (UltraSPARC T

- r___—__
L2 Data | SH : r “‘“
Bank 0 e

SPARC SPAR'“ SPARL, SPARC
Corer Core ¥ Move 5 Core™?

L2B0
L2 Data

Bank 1| S | F
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SPARC., oP, (3’;‘ il RC .,PARC
“Core 2 "Cor@ & =Core I Corg 6"
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L

A

8 SPARC cores, 8
threads/core. 8 stages. 16 KB
|$ per Core. 8 KB D$ per
Core. FP, Graphics, Crypto,
units per Core.

4 MB Shared L2, 8 banks, 16-
way set associative.

4 dual-channel FBDIMM
memory controllers.

X8 PCI-Express @ 2.5 Gb/s.

Two 10G Ethernet ports @
3.125 Gb/s.
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Meet Small, but Larger: Sun ROCK

Chaudhry et al., Rock: A High-Performance Sparc CMT Processor
IEEE Micro, 2009.

Chaudhry et al., Simultaneous Speculative Threading: A Novel Pipeline
Architecture Implemented in Sun's ROCK Processor ISCA 2009

Goals:
¢ Maximize throughput when threads are available

¢ Boost single-thread performance when threads are not
available and on cache misses

ldeas:

¢ Runahead on a cache missA ahead thread executes miss
Independent instructions, behind thread executes dependent
Instructions

¢ Branch prediction (gshare)

28



Sun ROCK

e

16 cores, 2 threads
per core (fewer
threads than Niagara
2)

A 4 cores share a 32KB
Instruction cache

2 cores share a 32KB
data cache

A 2MB L2 cache (smaller
than Niagara 2)

29



Runahead Execution (1)

A simple pre-execution method for prefetching purposes

Mutlu et al., Runahead Execution: An Alternative to Very
Large Instruction Windows for Out-of-order Processors
HPCA 2003, IEEE Micro 2003.

When the oldest instruction is a long-latency cache miss:
¢ Checkpoint architectural state and enter runahead mode

In runahead mode:

¢ Speculatively pre-execute instructions

¢ The purpose of pre-execution is to generate prefetches

¢ L2-miss dependent instructions are marked INV and dropped
Runahead mode ends when the original miss returns

¢ Checkpoint is restored and normal execution resumes

30



Runahead Execution (I

Small Window:
Load 1 Miss Load 2 Miss

Miss 1 Miss 2

Runahead: :
Load 1 Miss  Load 2Miss Load 1Hit  Load 2 Hit :

Saved Cycles

Miss 1
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Runahead Execution (l1)

Advantages

+ Very accurate prefetches for data/instructions (all cache levels)
+ Follows the program path
+ Simple to implement, most of the hardware is already built in

Disadvantages
-- Extra executed instructions

Limitations

-- Limited by branch prediction accuracy
-- Cannot prefetch dependent cache misses. Solution?
-- Effectiveness limited by available Memory Level Parallelism

Mutlu et al., Efficient Runahead Execution: PowerEfficient
Memory Latency Tolerance |EEE Micro Jan/Feb 2006.

Implemented in IBM POWERG6, Sun ROCK
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Performance of Runahead Execution

1.3

12% B No prefetcher, no runahead
1.2 Bl Only prefetcher (baseline)
1.1 B Only runahead
10 B Prefetcher + runahead
09 . 22% 12%

16%  52%

Micro-operations Per Cycle
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Performance of Runahead Execution (|
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More Powerful Cores in Sun ROCK

A Chaudhry talk, Aug 2008.

3.00
2.50 " No
d Scout
£ 2.00 Vd
5 ' | Buys 12 MB
D 1
= 1.50 - Buys 7 MB ,./V
o
< 1.00 40% Better
= Performance
0.50 .
256KB512KB 1iMB 2MB 4MB 8MB 16MB 32MB 64MB
L2 Cache Size

35



Sun ROCK Cores: Speculative Parallelizatic

Load miss in L1 cache starts parallelization using 2 HW threads

Ahead thread

¢ Checkpoints state and executes speculatively

¢ Speculatively executes instructions independent of the load miss

¢ Defers load miss(es) and dependent instructions to the behind thread

Behind thread
¢ Executes deferred instructions and re-defers them if necessary

Exploits Memory-Level Parallelism (MLP)
¢ Run ahead on load miss and generate additional load misses

Exploits Instruction-Level Parallelism (ILP)

¢ Ahead and behind threads execute independent instructions from
different points in program in parallel

36



ROCK Pipeline
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More Powerful Cores in Sun ROCK

Advantages
+ Higher single-thread performance (MLP + ILP)
+ Better cache miss tolerance A Can reduce on-chip cache sizes

Disadvantages

- Bigger cores A Fewer coresA Lower parallel throughput (in
terms of threads).

How about each thread s response time?

- More complex than Niagara cores (but simpler than
conventional out-of-order execution) A Longer design time?
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More Powerful Cores in Sun ROCK

Chaudhry et al., Simultaneous Speculative Threading: A Novel Pipeline
Architecture Implemented in Sun's ROCK Processaor ISCA 2009

Performance Improvement over STALL
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Figure 9: Commercial Performance. 25



Meet Large: IBM POWERA4

A Tendler et al., POWER4 system microarchitecture IBM J
R&D, 2002.

A Another symmetric multi-c or e ¢
A But, fewer and more powerful cores

=



IBM POWERA4

2 cores, out-of-order execution

100-entry instruction window in each core
8-wide instruction fetch, issue, execute
Large, local+global hybrid branch predictor
1.5MB, 8-way L2 cache

Aggressive stream based prefetching

41



IBM POWERS

A Kallaetal, IBM Power5 Chip: A DualCore Multithreaded Processor |IEEE
Micro 2004.
[ o Dynamic
| Branch prediction J instruction
t selection
Shared Shared
Program Branch| || Return| | Target o execution
counter nistory| li| stack | | cache queues units
tables LSUO Data Data
- [FXUo) Translation Cache
lnbufferlt‘;" G f tio LSt
: roup formation s - £ =
Init;gﬁtéon Instruction decode [— ¢ . v T PXUT—= S
Dispatch FPUD
Instruction
translation 2l
[BXU |
Thread CAL Data Data
priority Shared- Read Write translation | |cache
reqister shared- shared- =
mappers register files reqister files L2
cache
[—_)Shared by two threads [[) Thread O resources [l Thread 1 resources

Figure 4. Power5 instruction data flow (BXU = branch execution unit and CRL = condition register logical execution unit).
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Meet Large, but Smaller: IBM POWERK

A

>

Le etal., IBMPOWERG
microarchitecture, IBM J R&D,
2007.

2 cores, in order, high
frequency (4.7 GHz)

8 wide fetch

Simultaneous multithreading in
each core

Runahead execution in each
core

c Similar to Sun ROCK
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IBM POWERY

Kalla et al., iPower7: IBM& Next-Generation Server
Processoro IEEE Micro 2010.

8 out-of-order cores, 4-way SMT In each core

TurboCore mode

¢ Can turn off cores so that other cores can be run at higher
frequency

44



Remember the Demands

What we want:

In a serialized code section A one powerful Aargeo core
In a parallel code section A many wimpy fismallo cores

These two conflict with each other:

¢ If you have a single powerful core, you cannot have many
cores

¢ A small core is much more energy and area efficient than a
large core

Can we get the best of both worlds?
45



Performance vs. Parallelism

Assumptions:

1. Small cores takes an area budget of 1 and has
performance of 1

2. Large core takes an area budget of 4 and has
performance of 2
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Tile-Large Approach

Large Large
core core
Large Large
core core
Tile-Large

Tile a few large cores

IBM Power 5, AMD Barcelona, Intel Core2Quad, Intel Nehalem
+ High performance on single thread, serial code sections (2 units)
- Low throughput on parallel program portions (8 units)



Tile-Small Approach

Small | Small | Small | Small
core core core core

Small | Small | Small | Small
core core core core

Small | Small | Small | Small
core core core core

Small | Small | Small | Small
core core core core

Tile-Small

Tile many small cores

Sun Niagara, Intel Larrabee, Tilera TILE (tile ultra-small)
+ High throughput on the parallel part (16 units)
- Low performance on the serial part, single thread (1 unit)



Can we get the best of both worlds?

Tile Large

+ High performance on single thread, serial code sections (2
units)

- Low throughput on parallel program portions (8 units)

Tile Small
+ High throughput on the parallel part (16 units)

- Low performance on the serial part, single thread (1 unit),
reduced single-thread performance compared to existing single
thread processors

ldea: Have both large and small on the same chip A
Performance asymmetry
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Asymmetric MukCore




Asymmetric Chip Multiprocessor (ACMI

Small | Small | Small | Small Small | Small
core core core core core core

Large Large Large

core core Small | Small | Small | Small core Small | Small
core core core core core core
Small | Small | Small | Small Small | Small | Small | Small
core core core core core core core core

Large Large

core core Small | Small | Small | Small Small | Small | Small | Small
core core core core core core core core

Tile-Large Tile-Smalll ACMP

Provide one large core and many small cores
+ Accelerate serial part using the large core (2 units)

+ Execute parallel part on small cores and large core for high
throughput (12+2 units)
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Accelerating Serial Bottlenecks

Single thread A Large core

Small
Small

Small

Small Small Small Small
core core core core

ACMP Approach
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Performance vs. Parallelism

Assumptions:

1. Small cores takes an area budget of 1 and has
performance of 1

2. Large core takes an area budget of 4 and has
performance of 2
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ACMP Performance vs. Parallelism

Area-budget = 16 small cores

( \ (Small Small|Small[{Small \ ( Small|Small
Large Large core | core | core | core Large core | core
core core Small|Small{Small|Small core |Small{Small
core | core | core | core core | core
Small{Small{Small{Small Small{Small{Small{Small
Large Large core | core | core | core core | core | core | core
core core Small|Small{Small|Small Small|Small{Small|Small
core | core | core | core core | core | core | core
Tile-Large Tile-Small ACMP
Large 4 0 1
Cores
Small 0 16 12
Cores
Serial 2 1 2
Performance
Parallel 2x4=8 1x16=16 1x2 + 1x12 =14
Throughput
N > 4 ‘E—‘r > 4 N




Some Analysis

Hill and Marty, Amdahl s Law in the Multi-Core Era IEEE
Computer 2008.

Each ChipBounded to N BCEs (Base Core Equivalents)
One R-BCE Coreleaves N-R BCEs

Use N-R BCEs for NR Base Cores

Therefore, 1 + N - R Cores per Chip

Foran N = 16 BCE Chip:

H2 0 ! | [HEH D 11 1Y 1B

D:%}Wﬂm D:%}Wﬂm Bl Eﬁim e

D:%i: I D:%i: I it R ot

4 ISR
Symmetric: Four 4-BCE cores Asymmetric: One 4-BCE core

& Twelve 1-BCE base cores 55



Amdahl s Law Modified

A Serial Fraction 1-F same, sotime = (1 T F) / Perf(R)

A Parallel Fraction F
¢ One core at rate Perf(R)
¢ N-Rcores atrate 1
¢ Paralleltime=F/ (Perf(R)+ N - R)

A Therefore, w.r.t. one base core:

Asymmetric Speedup = =
1-F

+
Perf(R) Perf(R) + N - R
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AsymmetridMulticore ChipN = 256 BCEs

250

AsymmetricSpeedup
S g 3

(6}
o

o

F=0.99
/ F=0.975
/ F:0.9
F=0.5
‘?T T T T T T T 1
4 8 16 32 64 128 256
R BCEs:s

A Number of Cores = 1 (Enhanced) + 256 T R (Base)
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