
MICRO Submission – Confidential Draft – Do Not Distribute!!

Linearly Compressed Pages: A Main Memory Compression Framework
with Low Complexity and Low Latency

Gennady Pekhimenko† Vivek Seshadri† Yoongu Kim† Hongyi Xin†

Onur Mutlu† Michael A. Kozuch? Phillip B. Gibbons? Todd C. Mowry†

†Carnegie Mellon University ?Intel Labs Pittsburgh

Abstract
Data compression is a promising approach for meeting the

increasing memory capacity demands expected in future sys-
tems. Unfortunately, existing compression algorithms do not
translate well when directly applied to main memory because
they require the memory controller to perform non-trivial com-
putations to locate a cache line within a compressed memory
page, thereby increasing access latency and degrading system
performance. Prior proposals for addressing this performance
degradation problem are either costly or energy inefficient.

By leveraging the key insight that all cache lines within
a page should be compressed to the same size, this paper
proposes a new approach to main memory compression—
Linearly Compressed Pages (LCP)—that avoids the perfor-
mance degradation problem without requiring costly or energy-
inefficient hardware. We show that any compression algo-
rithm can be adapted to fit the requirements of LCP, and we
specifically adapt two previously proposed compression algo-
rithms to LCP: Frequent Pattern Compression and Base-Delta-
Immediate Compression.

Evaluations using benchmarks from SPEC CPU2006 and
five server benchmarks show that our approach can signifi-
cantly increase the effective memory capacity (69% on aver-
age). In addition to the capacity gains, we evaluate the benefit
of transferring consecutive compressed cache lines between the
memory controller and main memory. Our new mechanism con-
siderably reduces the memory bandwidth requirements of most
of the evaluated benchmarks (34% on average), and improves
overall performance (6.1%/13.9%/10.7% for single-/two-/four-
core workloads on average) compared to a baseline system
that does not employ main memory compression. LCP also
decreases energy consumed by the main memory subsystem
(9.5% on average over the best prior mechanism).

1. Introduction
Main memory (which is commonly implemented using DRAM
technology) is a critical resource in modern systems. To avoid
the devastating performance loss resulting from frequent page
faults, main memory capacity must be sufficiently provisioned
to prevent the target application’s working set from overflowing
into the orders-of-magnitude-slower backing store (e.g., hard
disk or flash storage).

Unfortunately, this minimum main memory capacity is ex-
pected to increase rapidly in future systems due to two major
trends: (i) applications are generally becoming more data-
intensive with increasing working sets, and (ii) with more cores
integrated onto single chips, more applications are running
concurrently on the system, thereby increasing the aggregate
working set size. Simply scaling up main memory capacity at a
commensurate rate is unattractive for two reasons: (i) DRAM
already constitutes a significant portion of the system’s cost and

power budget [18], and (ii) for signal integrity reasons, today’s
high frequency memory channels prevent many DRAM mod-
ules from being connected to the same channel [16], effectively
limiting the maximum amount of DRAM in a system unless
one resorts to expensive off-chip signaling buffers.

If its potential could be realized in practice, data compres-
sion would be a very attractive approach to effectively increase
main memory capacity without requiring significant increases
in cost or power, since a compressed piece of data can be
stored in a smaller amount of physical memory. Further, such
compression could be hidden from application (and most sys-
tem1) software by materializing the uncompressed data as it
is brought into the processor cache. Building upon the ob-
servation that there is significant redundancy in in-memory
data, previous work has proposed a variety of techniques for
compressing data in caches [2, 3, 5, 11, 24, 35, 37] and in main
memory [1, 6, 7, 9, 33].

1.1. Shortcomings of Prior Approaches

A key stumbling block with making data compression practi-
cal is that decompression lies on the critical path of accessing
any compressed data. Sophisticated compression algorithms,
such as Lempel-Ziv and Huffman encoding [12, 38], typically
achieve high compression ratios at the expense of large decom-
pression latencies that can significantly degrade performance.
To counter this problem, prior work [3, 24, 37] on cache com-
pression proposed specialized compression algorithms that
exploit some regular patterns present in in-memory data, and
showed that such specialized algorithms have reasonable com-
pression ratios compared to more complex algorithms while
incurring much lower decompression latencies.

While promising, applying compression algorithms, sophis-
ticated or simpler, to compress data stored in main memory
requires first overcoming the following three challenges. First,
main memory compression complicates memory management,
because the operating system has to map fixed-size virtual
pages to variable-size physical pages. Second, because modern
processors employ on-chip caches with tags derived from the
physical address to avoid aliasing between different cache lines
(as physical addresses are unique, while virtual addresses are
not), the cache tagging logic needs to be modified in light of
memory compression to take the main memory address compu-
tation off the critical path of latency-critical L1 cache accesses.
Third, in contrast with normal virtual-to-physical address trans-
lation, the physical page offset of a cache line is often different
from the corresponding virtual page offset, since compressed
physical cache lines are smaller than their corresponding vir-

1We assume that main memory compression is made visible to the memory
management functions of the operating system (OS). In Section 2.3, we discuss
the drawbacks of a design that makes main memory compression mostly
transparent to the OS [1].



tual cache lines. In fact, the location of a compressed cache
line in a physical page in main memory depends upon the sizes
of the compressed cache lines that come before it in that same
physical page. As a result, accessing a cache line within a
compressed page in main memory requires an additional layer
of address computation to compute the location of the cache
line in main memory (which we will call the main memory
address). This additional main memory address computation
not only adds complexity and cost to the system, but it can
also increase the latency of accessing main memory (e.g., it
requires up to 22 integer addition operations in one prior design
for main memory compression [9]), which in turn can degrade
system performance.

While simple solutions exist for these first two challenges
(as we describe later in Section 4), prior attempts to mitigate
the performance degradation of the third challenge are either
costly or inefficient [1, 9]. One approach (IBM MXT [1]) aims
to reduce the number of main memory accesses, the causes of
long-latency main memory address computations, by adding a
large (32MB) uncompressed cache managed at the granularity
at which blocks are compressed (1kB). If locality is present
in the program, this approach can avoid the latency penalty of
main memory address computations to access compressed data.
Unfortunately, its benefit comes at a significant additional area
and energy cost, and the approach is ineffective for accesses
that miss in the large cache. A second approach [9] aims to
hide the latency of main memory address computations by
speculatively computing the main memory address of every
last-level cache request in parallel with the cache access (i.e.,
before it is known whether or not the request needs to access
main memory). While this approach can effectively reduce
the performance impact of main memory address computation,
it wastes a significant amount of energy (as we show in Sec-
tion 7.3) because many accesses to the last-level cache do not
result in an access to main memory.

1.2. Our Approach: Linearly Compressed Pages (LCP)

We aim to build a main memory compression framework that
neither incurs the latency penalty for memory accesses nor
requires power-inefficient hardware. Our goals are: (i) having
low complexity and low latency (especially when perform-
ing memory address computation for a cache line within a
compressed page), (ii) being compatible with compression em-
ployed in on-chip caches (thereby minimizing the number of
compressions/decompressions performed), and (iii) supporting
compression algorithms with high compression ratios.

To this end, we propose a new approach to compress pages,
which we call Linearly Compressed Pages (LCP). The key idea
of LCP is to compress all of the cache lines within a given
page to the same size. Doing so simplifies the computation of
the physical address of the cache line, since the page offset is
simply the product of the index of the cache line and the com-
pressed cache line size. Based on this idea, a target compressed
cache line size is determined for each page. Cache lines that
cannot be compressed to the target size for its page are called
exceptions. All exceptions, along with the metadata required
to locate them, are stored separately in the same compressed
page. If a page requires more space in compressed form than
in uncompressed form, then this page is not compressed. The
page table indicates what form the page is stored in.

The LCP framework can be used with any compression
algorithm. We adapt two previously proposed compression
algorithms (Frequent Pattern Compression (FPC) [2] and Base-
Delta-Immediate Compression (BDI) [24]) to fit the require-
ments of LCP, and show that the resulting designs can signif-
icantly improve effective main memory capacity on a wide
variety of workloads.

Note that, throughout this paper, we assume that compressed
cache lines are decompressed before being placed in the pro-
cessor caches. LCP may be combined with compressed cache
designs by storing compressed lines in the higher-level caches
(as in [2, 24]), but the techniques are largely orthogonal, and
for clarity, we present a LCP design where only main memory
is compressed.

An additional, potential benefit of compressing data in main
memory, which has not been fully explored by prior work on
main memory compression, is memory bandwidth reduction.
When data are stored in compressed format in main memory,
multiple consecutive compressed cache lines can be retrieved
for the cost of accessing a single uncompressed cache line.
Given the increasing demand on main memory bandwidth, such
a mechanism can significantly reduce the memory bandwidth
requirement of applications, especially those with high spatial
locality. Prior works on bandwidth compression [25, 30, 34]
assumed efficient variable-length off-chip data transfers that are
hard to achieve with general-purpose DRAM (e.g., DDR3 [22]).
We propose a mechanism that allows the memory controller to
retrieve multiple consecutive cache lines with a single access
to DRAM, with negligible additional cost. Evaluations show
that our mechanism provides significant bandwidth savings,
leading to improved system performance.

In summary, this paper makes the following contributions:
• We propose a new main memory compression framework–

Linearly Compressed Pages (LCP) – that solves the prob-
lem of efficiently computing the physical address of a com-
pressed cache line in main memory with much lower cost
and complexity than prior proposals. We also demonstrate
that any compression algorithm can be adapted to fit the
requirements of LCP.

• We evaluate our design with two state-of-the-art compression
algorithms (FPC [2] and BDI [24]), and observe that it can
significantly increase the effective main memory capacity
(by 69% on average).
• We evaluate the benefits of transferring compressed cache

lines over the bus between DRAM and the memory con-
troller and observe that it can considerably reduce memory
bandwidth consumption (34% on average), and improve
overall performance by 6.1%/13.9%/10.7% for single-/two-
/four-core workloads, relative to a system without main mem-
ory compression. LCP also decreases energy consumed by
the main memory subsystem (9.5% on average over the best
prior mechanism).

2. Background on Main Memory Compression

Data compression is widely used in storage structures to in-
crease the effective capacity and bandwidth without increasing
the system cost and power consumption significantly. One
primary downside of compression is that the compressed data
must be decompressed before it can be used. Therefore, for

2



latency-critical applications, using complex dictionary-based
compression algorithms [38] significantly degrades perfor-
mance due to their high decompression latencies. Thus, prior
works on compression of in-memory data have proposed sim-
pler algorithms with low decompression latencies and reason-
ably high compression ratios, as discussed next.

2.1. Compressing In-Memory Data

Several studies [2, 3, 24, 37] have shown that in-memory data
have exploitable patterns that allow for simpler compression
techniques. Frequent value compression (FVC) [37] is based
on the observation that an application’s working set is often
dominated by a small set of values. FVC exploits this observa-
tion by encoding such frequently-occurring 4-byte values with
fewer bits. Frequent pattern compression (FPC) [3] shows that
a majority of words (4-byte elements) in memory fall under a
few frequently occurring patterns. FPC compresses individual
words within a cache line by encoding the frequently occurring
patterns with fewer bits. Base-Delta-Immediate (BDI) com-
pression [24] observes that in many cases words co-located
in memory have small differences in their values. BDI com-
pression encodes a cache line as a base-value and an array of
differences that represent the deviation either from the base-
value or from zero (for small values) for each word. These
three low-latency compression algorithms have been proposed
for on-chip caches, but can be adapted for use as part of the
main memory compression framework proposed in this paper.

2.2. Challenges in Main Memory Compression

LCP leverages the fixed-size memory pages of modern systems
for the basic units of compression. However, three challenges
arise from the fact that different pages (and cache lines within
a page) compress to different sizes depending on the compress-
ibility of the data.

Challenge 1: Main Memory Page Mapping. Irregular
page sizes in main memory complicate the memory manage-
ment module of the operating system for two reasons (as shown
in Figure 1). First, the operating system needs to allow map-
pings between the fixed-size virtual pages presented to software
and the variable-size physical pages stored in main memory.
Second, the operating system must implement mechanisms to
efficiently handle fragmentation in main memory.

Virtual
Address

Virtual Page
(4kB)

Physical
Address

Physical Page 

(?kB)
Fragmentation

Figure 1: Main Memory Page Mapping Challenge

Challenge 2: Physical Address Tag Computation. On-
chip caches (including L1 caches) typically employ tags de-
rived from the physical address of the cache line to avoid alias-
ing, and in such systems, every cache access requires the phys-
ical address of the corresponding cache line to be computed.
Hence, because the main memory addresses of the compressed
cache lines differ from the nominal physical addresses of those
lines, care must be taken that the computation of cache line

tags does not lengthen the critical path of latency-critical L1
cache accesses.

Challenge 3: Cache Line Address Computation. When
main memory is compressed, different cache lines within a
page can be compressed to different sizes. The main memory
address of a cache line is therefore dependent on the sizes of the
compressed cache lines that come before it in the page. As a
result, the processor (or the memory controller) must explicitly
compute the location of a cache line within a compressed main
memory page before accessing it (Figure 2), e.g., as in [9].
This computation not only increases complexity, but can also
lengthen the critical path of accessing the cache line from both
the main memory and the physically addressed cache. Note
that systems that do not employ main memory compression do
not suffer from this problem because the offset of a cache line
within the physical page is the same as the offset of the cache
line within the corresponding virtual page.

LN-1· · · L1 L2Uncompressed Page

0 64 128 (N-1)×64Address Offset

L0

Cache Line (64B)

Compressed Page LN-1· · · L1 L2

? ? ?

L0

0Address Offset

Figure 2: Cache Line Address Computation Challenge

As will be seen shortly, while prior research efforts have
considered subsets of these challenges, this paper is the first
design that provides a holistic solution to all three challenges,
particularly Challenge 3, with low latency and low complexity
(both hardware and software complexity).

2.3. Prior Work on Memory Compression

Of the many prior works on using compression for main mem-
ory [1, 6, 7, 9, 17, 25, 33], two in particular are the most closely
related to the design proposed in this paper, because both of
them are mostly hardware designs. We describe these two
designs along with their shortcomings.

Tremaine et al. [32] proposed a memory controller de-
sign, Pinnacle, based on IBM Memory Extension Technology
(MXT) [1] that employed Lempel-Ziv compression [38] to man-
age main memory. To address the three challenges described
above, Pinnacle employs two techniques. First, Pinnacle inter-
nally uses a 32MB cache managed at 1kB granularity, same
as the granularity at which blocks are compressed. This cache
reduces the number of accesses to main memory by exploit-
ing locality in access patterns, thereby reducing the perfor-
mance degradation due to the address computation (Challenge
3). However, there are several drawbacks to this technique: i)
such a large cache adds significant cost to the memory con-
troller, ii) the approach requires the main memory address com-
putation logic to be present and used when an access misses in
the 32MB cache, and iii) if caching is not effective (e.g., due
to lack of locality or larger-than-cache working set sizes), this
approach cannot reduce the performance degradation due to
main memory address computation. Second, to avoid complex
changes to the operating system and on-chip cache-tagging
logic, Pinnacle introduces a real address space between the
virtual and physical address spaces. The real address space
is uncompressed and is twice the size of the actual available

3



physical memory. The operating system maps virtual pages
to same-size pages in the real address space, which addresses
Challenge 1. On-chip caches are tagged using the real address
(instead of the physical address, which is dependent on com-
pressibility), which effectively solves Challenge 2. On a miss
in the 32MB cache, Pinnacle maps the corresponding real ad-
dress to the physical address of the compressed block in main
memory, using a memory resident mapping-table managed
by the memory controller. Following this, Pinnacle retrieves
the compressed block from main memory, performs decom-
pression and sends the data back to the processor. Clearly,
the additional access to the memory-resident mapping table
on every cache miss significantly increases the main memory
access latency. In addition to this, Pinnacle’s decompression
latency, which is on the critical path of a memory access, is 64
processor cycles.

Ekman and Stenstrom [9] proposed a main memory com-
pression design to address the drawbacks of MXT. In their
design, the operating system maps the uncompressed virtual
address space directly to a compressed physical address space.
To compress pages, they use a variant of the Frequent Pat-
tern Compression technique [2, 3], which has a much smaller
decompression latency (5 cycles) than the Lempel-Ziv com-
pression in Pinnacle (64 cycles). To avoid the long latency of
a cache line’s main memory address computation (Challenge
3), their design overlaps this computation with the last-level
(L2) cache access. For this purpose, their design extends the
page table entries to store the compressed sizes of all the lines
within the page. This information is loaded into a hardware
structure called the Block Size Table (BST). On an L1 cache
miss, the BST is accessed in parallel with the L2 cache to
compute the exact main memory address of the corresponding
cache line. While the proposed mechanism reduces the latency
penalty of accessing compressed blocks by overlapping main
memory address computation with L2 cache access, the main
memory address computation is performed on every L2 cache
access. This leads to significant wasted work and additional
power consumption. Even though BST has the same number
of entries as the translation lookaside buffer (TLB), its size
is at least twice that of the TLB. This adds to the complexity
and power consumption of the system significantly. To address
Challenge 1, the operating system uses multiple pools of fixed-
size physical pages. This reduces the complexity of managing
physical pages at a fine granularity. Ekman and Stenstrom [9]
do not address Challenge 2.

In summary, prior works on hardware-based main memory
compression mitigate the performance degradation due to the
main memory address computation problem (Challenge 3) by
either adding large hardware structures that consume significant
area and power [1] or by using techniques that require energy-
inefficient hardware and lead to wasted energy [9].

3. Linearly Compressed Pages

In this section, we provide the basic idea and a brief overview
of our proposal, Linearly Compressed Pages (LCP), which
overcomes the above-mentioned shortcomings of prior propos-
als. Further details will follow in Section 4.

· · · 
4:1 Compression

M E0 E1

1kB: 64 x 16B Metadata (64B)

Exceptions 
(64B each)

LN-1· · · L1 L2Uncompressed Page

0 64 128 (N-1)×64Address Offset

L0

Cache Line (64B)

Compressed Page LN-1· · · L1 L2

? ? ?
L0

0Address Offset

Virtual
Address

Virtual Page
(4kB)

Physical
Address

Physical Page 
(?kB) Fragmentation

data tag
data tag
data tag
data tag

On-Chip Cache

load %r1,[0xFF]

Physical Tags

Virtual
Addr.

Translation

Core

Physical
Addr. Critical-Path

data tag
data tag
data tag
data tag

On-Chip Cache

Ph
ys

ic
al

 T
ag

s

Virtual
Addr.

TranslationCore

Physical
Addr.

64B 64B 64B 64B 64B· · · 

· · · 
4:1 Compression

M E

1kB: 64 x 16B Metadata (64B)

Exceptions

64B 64B 64B 64B 64B· · · 

· · · 
4:1 Compression

M E

Compressed Data
Region

Metadata
Region

Exception
Storage
Region

Virtual
Address

Virtual Page
(4kB)

Physical
Address

Physical Page 
(?kB) Fragmentation

64B 64B 64B 64B 64B· · · 
Uncompressed Page (4kB: 64 x 64B)

Compressed Page (1kB + α)

Ca
ch

e 
Li

ne
s

Uncompressed Page (4kB: 64 x 64B)

Compressed Page (1kB + α)

Uncompressed Page (4kB: 64 x 64B)

Figure 3: Organization of a Linearly Compressed Page

3.1. LCP: Basic Idea

The main shortcoming of prior approaches to main memory
compression is that different cache lines within a physical page
can be compressed to different sizes depending on the com-
pression scheme. As a result, the location of a compressed
cache line within a physical page depends on the sizes of all
the compressed cache lines before it in the same page. This re-
quires the memory controller to explicitly perform this complex
calculation (or cache the mapping in a large energy-inefficient
structure) in order to access the line.

To address this shortcoming, we propose a new approach
to compressing pages, called the Linearly Compressed Page
(LCP). The key idea of LCP is to use a fixed size for compressed
cache lines within a given page (alleviating the complex and
long-latency main memory address calculation problem that
arises due to variable-size cache lines), and yet still enable
a page to be compressed even if not all cache lines within
the page can be compressed to that fixed size (enabling high
compression ratios).

Because all the cache lines within a given page are com-
pressed to the same size, the location of a compressed cache
line within the page is simply the product of the index of the
cache line within the page and the size of the compressed cache
line – essentially a linear scaling using the index of the cache
line (hence the name Linearly Compressed Page). LCP greatly
simplifies the task of computing a cache line’s main memory
address. For example, if all cache lines within a page are
compressed to 16 bytes, the byte offset of the third cache line
(index within the page is 2) from the start of the physical page
is 16×2 = 32, if the line is compressed.

Figure 3 shows the organization of an example Linearly
Compressed Page, based on the ideas described above. In
this example, we assume that the virtual page size is 4kB, the
uncompressed cache line size is 64B, and the target compressed
cache line size is 16B. As shown in the figure, the LCP contains
three distinct regions.

The first region, the compressed data region, contains a 16-
byte slot for each cache line in the virtual page. If a cache line
is compressible, the corresponding slot stores the compressed
version of the cache line. However, if the cache line is not
compressible, the corresponding slot is assumed to contain
invalid data. In our design, we refer to such an incompressible
cache line as an “exception”. The second region, metadata,
contains all the necessary information to identify and locate
exceptions of a page. We provide more details on what exactly
is stored in the metadata region in Section 4.2. The third region,
the exception storage, is the place where all the exceptions of
the LCP are stored in their uncompressed form. Our LCP
design enables the exception storage to contain unused space.
In other words, not all entries in the exception storage may store

4



valid exceptions. As we will describe in Section 4, this enables
the memory controller to use the unused space for storing
future exceptions, and also simplifies the operating system
page management mechanism. Now that we have described
our LCP organization, we will provide a brief overview of the
main memory compression framework we build using LCP.

3.2. LCP Operation
Our LCP-based main memory compression framework con-
sists of components that handle three key issues: (i) page com-
pression (and recompression), (ii) cache line reads from main
memory, and (iii) cache line writebacks into main memory.
Figure 4 shows the high-level design and operation.

Processor
Disk

DRAM
Core

Compress/
Decompress

Last-Level
Cache

TLB MD Cache

Memory
Controller

Page Table Entry c-size(2b)

c-bit(1b)
c-type(3b)

c-base(3b)

Figure 4: Memory request flow

Page Compression. When a page is accessed for the first
time from disk, the operating system (with the help of the
memory controller) first determines if the page is compressible
using the compression algorithm employed by the framework
(described in Section 4.7). If the page is compressible, the
OS allocates a physical page of appropriate size and stores the
compressed page (LCP) in the corresponding location. It also
updates the relevant portions of the corresponding page table
mapping to indicate i) whether the page is compressed, and
if so, ii) the compression scheme used to compress the page
(details in Section 4.1).

Cache Line Read. Later, when the memory controller re-
ceives a read request for a cache line within an LCP, it must
find and decompress the data. Multiple design solutions are
possible to perform this task efficiently. A naïve way of reading
a cache line from an LCP would require at least two accesses
to the corresponding page in main memory. First, the mem-
ory controller accesses the metadata in the LCP to determine
whether the cache line is stored in the compressed format. Sec-
ond, depending on the result, the controller accesses the cache
line either in the compressed format from the compressed data
region or uncompressed from the exception storage.

To avoid two accesses to main memory, we propose two
optimizations that allow the controller to retrieve the cache line
with the latency of just one main memory access in the common
case. First, we add a small metadata (MD) cache to the memory
controller that caches the metadata of the recently accessed
LCPs—the controller avoids the first main memory access to
the metadata in cases when the metadata is present in the MD
cache. Second, in cases when the metadata is not present in the
metadata cache, the controller speculatively assumes that the
cache line is stored in the compressed format and first accesses
the data corresponding to the cache line from the compressed
data region. The controller then overlaps the latency of the
cache line decompression with the access to the metadata of
the LCP. In the common case, when the speculation is correct
(i.e., the cache line is actually stored in the compressed format),
this approach significantly reduces the latency of serving the

read request. In the case of a misspeculation (uncommon case),
the memory controller issues another request to retrieve the
cache line from the exception storage.

Cache Line Writeback. If the memory controller receives
a request for a cache line writeback, it then attempts to com-
press the cache line using the compression scheme associated
with the corresponding LCP. Depending on the original state
of the cache line (compressible or incompressible), there are
four different possibilities: the cache line (1) was compressed
and stays compressed, (2) was uncompressed and stays uncom-
pressed, (3) was uncompressed but becomes compressed, and
(4) was compressed but becomes uncompressed. In the first
two cases, the memory controller simply overwrites the old
data with the new data at the same location associated with the
cache line. In case 3, the memory controller frees the exception
storage slot for the cache line and writes the compressible data
in the compressed data region of the LCP. (Section 4.2 provides
more details on how the exception storage is managed.) In case
4, the memory controller checks if there is enough space in the
exception storage region to store the uncompressed cache line.
If so, it stores the cache line in an available slot in the region.
If there are no free exception storage slots in the exception
storage region of the page, the memory controller traps to the
operating system, which migrates the page to a new location
(which can also involve page recompression). In both cases 3
and 4, the memory controller appropriately modifies the LCP
metadata corresponding to the cache line.

Note that in the case of an LLC writeback to main memory
(and assuming that TLB information is not available), the cache
tag entry is augmented with similar bits to represent page
encoding. Cache compression mechanisms, e.g., FPC [2] and
BDI [24], already have the corresponding bits for encoding,
so that the tag size overhead is minimal when main memory
compression is used together with cache compression.

4. Detailed Design
In this section, we provide a detailed description of LCP, along
with the changes to the memory controller, operating system
and on-chip cache tagging logic. In the process, we explain
how our proposed design addresses each of the challenges.

4.1. Page Table Entry Extension

To keep track of virtual pages that are stored in compressed
format in main memory, the page table entries need to be ex-
tended to store information related to compression (Figure 5).
In addition to the information already maintained in the page
table entries (such as the base address for a corresponding
physical page, p-base), each virtual page in the system is asso-
ciated with the following pieces of metadata: (i) c-bit, a bit
that indicates if the page is mapped to a compressed physical
page (LCP), (ii) c-type, a field that indicates the compression
scheme used to compress the page, (iii) c-size, a field that in-
dicates the size of the LCP, and (iv) c-base, a p-base extension
that enables LCPs to start at an address not aligned with the
virtual page size. The number of bits required to store c-type,
c-size and c-base depends on the exact implementation of
the framework. In our current implementation, we assume 3
bits for c-type, 2 bits for c-size (4 possible page sizes: 512B,
1kB, 2kB, 4kB), and 3 bits for c-base (at most eight 512B com-

5



pressed pages can fit into 4kB uncompressed slot). Note that
existing systems, e.g., [14], usually have enough unused bits
(up to 15 bits in Intel X64 systems [14]) in their PTE entries
that can be utilized by LCP without increasing the PTE size.

Processor
Disk

DRAM
Core

Compress/
Decompress

Last-Level
Cache

TLB MD Cache

Memory
Controller

Page Table Entry

c-size(2b)

c-bit(1b)
c-type(3b)

c-base(3b)

p-base

Figure 5: Page table entry extension.

When a virtual page is compressed (the c-bit is set), all the
compressible cache lines within the page are compressed to
the same size, say C ∗. The value of C ∗ is uniquely determined
by the compression scheme used to compress the page, i.e.,
the c-type (Section 4.7 discusses determining the c-type for a
page). We next describe the LCP organization in more detail.

4.2. LCP Organization

We will discuss each of an LCP’s three regions in turn. We
begin by define the following symbols: V is the virtual page
size of the system (e.g., 4kB);2 C is the uncompressed cache
line size (e.g., 64B); n = V

C is the number of cache lines per
virtual page (e.g., 64); and M is the size of LCP’s metadata
region. In addition, on a per-page basis, we define P to be
the compressed physical page size; C ∗ to be the compressed
cache line size; and navail to be the number of slots available
for exceptions.
4.2.1. Compressed Data Region. The compressed data region
is a contiguous array of n slots each of size C ∗. Each one of
the n cache lines in the virtual page are mapped to one of the
slots, irrespective of whether the cache line is compressible
or not. Therefore, the size of the compressed data region is
nC ∗. This organization simplifies the computation required to
determine the main memory address for the compressed slot
corresponding to a cache line. More specifically, the address
of the compressed slot for the ith cache line can be computed
as p-base+512c-base+ iC ∗, where the first two terms corre-
spond to the start of the LCP and the second indicates the offset
within the LCP of the ith compressed slot (see Figure 6). Thus,
computing the main memory address of a compressed cache
line requires one multiplication and two additions independent
of i (fixed latency). This computation requires a lower latency
and simpler hardware than prior approaches (e.g., up to 22
additions in the design proposed in [9]), thereby efficiently
addressing Challenge 3 (cache line address computation).
4.2.2. Metadata Region. The metadata region of an LCP con-
tains two parts (Figure 7). The first part stores two pieces of
information for each cache line in the virtual page: (i) a bit
indicating if the cache line is incompressible, i.e., whether the
cache line is an exception, e-bit, and (ii) the index of the cache
line in the exception storage (the third region), e-index. If the
e-bit is set for a cache line, then it means that the correspond-
ing cache line should be accessed in the uncompressed format
from the location e-index in the exception storage. The second
part of the metadata region is a bit (v-bit) vector to track the
state of the slots in the exception storage. If a v-bit is set, it

2LCP also works with larger pages sizes, e.g., 4MB or 1GB, by scaling the
corresponding sizes of the metadata and compressed data regions.

c-base

Page Table 4K

2K

…

2K

1K 1K 1K 1K

512B 512B ...
4K

PA1 + 512

VA0 PA0

…

VA1 PA1

512B

Figure 6: Physical memory layout with LCP framework.

indicates that the corresponding slot in the exception storage is
used by some uncompressed cache line within the page.

v-bit(1b)
e-index(6b)

...

64 pairs 64b

Metadata Region

e-bit(1b)

...

Figure 7: Metadata region, when n = 64.

The size of the first part depends on the size of e-index,
which in turn depends on the number of exceptions allowed
per page. Since the number of exceptions cannot exceed the
number of cache lines in the page (C ), we will need at most 1+
dlog2 ne bits for each cache line in the first part of the metadata.
For the same reason, we will need at most n bits in the bit vector
in the second part of the metadata. Therefore, the size of the
metadata region (M ) is given by M = n(1+dlog2 ne)+n bits.
Since n is fixed for the entire system, the size of the metadata
region (M ) is the same for all compressed pages (64B in our
implementation).
4.2.3. Exception Storage Region. The third region, the excep-
tion storage, is the place where all incompressible cache lines
of the page are stored. If a cache line is present in the location
e-index in the exception storage, its main memory address can
be computed as: p-base+512c-base+nC ∗+M + e-indexC .
The number of slots available in the exception storage (navail) is
dictated by the size of the compressed physical page allocated
by the operating system for the corresponding LCP. The follow-
ing equation expresses the relation between the physical page
size (P ), the compressed cache line size (C ∗) that is determined
by c-type, and the number of available slots in the exception
storage (navail):

navail = b(P − (nC ∗+M ))/Cc (1)

As mentioned before, the metadata region contains a bit vector
that is used to manage the exception storage. When the memory
controller assigns an exception slot to an incompressible cache
line, it sets the corresponding bit in the bit vector to indicate
that the slot is no longer free. If the cache line later becomes
compressible and no longer requires the exception slot, the
memory controller resets the corresponding bit in the bit vector.
In the next section, we describe the operating system memory
management policy which determines the physical page size
(P ) allocated for an LCP and hence, the number of available
exception slots (navail).

4.3. Operating System Memory Management

The first challenge related to main memory compression is to
provide operating system support for managing variable-size

6



compressed physical pages – i.e., LCPs. Depending on the
compression scheme employed by the framework, different
LCPs may be of different sizes. Allowing LCPs of arbitrary
sizes would require the OS to keep track of main memory at
a very fine granularity. It could also lead to fragmentation
across the entire main memory at a fine granularity. As a result,
the OS would need to maintain large amounts of metadata to
maintain the locations of individual pages and the free space,
which would also lead to increased complexity.

To avoid this problem, our mechanism allows the OS to
manage main memory using a fixed number of pre-determined
physical page sizes – e.g., 512B, 1kB, 2kB, 4kB (a similar
approach was proposed to address the memory allocation prob-
lem [4]). For each one of the chosen sizes, the OS maintains
a pool of allocated pages and a pool of free pages. When a
page is compressed for the first time or recompressed due to
overflow (described in Section 4.6), the OS chooses the small-
est available physical page size that fits the compressed page.
For example, if a page is compressed to 768B, then the OS
allocates a physical page of size 1kB. Once the physical page
size is fixed, the available number of exceptions for the page,
navail , can be determined using Equation 1.

4.4. Changes to the Cache Tagging Logic

As mentioned in Section 2.2, modern systems employ
physically-tagged caches to avoid aliasing problems. How-
ever, in a system that employs main memory compression,
using the physical (main memory) address to tag cache lines
puts the main memory address computation on the critical path
of L1 cache access (Challenge 2). To address this challenge,
we modify the cache tagging logic to use the tuple <physical
page base address, cache line index within the page> for tag-
ging cache lines. This tuple maps to a unique cache line in the
system, and hence avoids aliasing problems without requiring
the exact main memory address of a cache line to be computed.
The additional index bits are stored within the cacheline tag.

4.5. Changes to the Memory Controller

In addition to the changes to the memory controller operation
described in Section 3.2, our LCP-based framework requires
two hardware structures to be added to the memory controller:
(i) a small metadata cache to accelerate main memory lookups
in LCP, and (ii) compression/decompression hardware to per-
form the compression and decompression of cache lines.
4.5.1. Metadata Cache. As described in Section 3.2, a small
metadata cache in the memory controller enables our approach,
in the common case, to retrieve a compressed cache block in
a single main memory access. This cache stores the metadata
region of recently accessed LCP’s so that the metadata for
subsequent accesses to such recently-accessed LCPs can be
retrieved directly from the cache. In our study, we find that
a small 512-entry metadata cache (32kB 3) can service 88%
of the metadata accesses on average across all our workloads.
Some applications have significantly lower hit rate, especially
sjeng and astar. Analysis of the source code of these applica-
tions reveals that the memory accesses of these applications

3We evaluate the sensitivity of performance to MD cache size and find
that 32kB is the smallest size that allows our approach to avoid most of the
performance loss due to additional metadata accesses.

exhibit very low locality. As a result, we also observed a low
TLB hit rate for these applications. Since TLB misses are
costlier than MD cache misses (the former requires multiple
memory accesses), the low MD cache hit rate does not lead to
significant performance degradation for these applications.

We expect the MD cache power to be much lower than the
power consumed by other on-chip structures (e.g., L1 caches),
because the MD cache is accessed much less frequently (hits in
any on-chip cache do not lead to an access in the MD cache).
4.5.2. Compression/Decompression Hardware. Depending
on the compression scheme employed with our LCP-based
framework, the memory controller should be equipped with
the hardware necessary to compress and decompress cache
lines using the corresponding scheme. Although our frame-
work does not impose any restrictions on the nature of the
compression algorithm, it is desirable to have compression
schemes that have low complexity and decompression latency –
e.g., Frequent Pattern Compression (FPC) [2] and Base-Delta-
Immediate Compression (BDI) [24]. In Section 4.7, we provide
more details on how to adapt any compression algorithm to fit
the requirements of LCP and also the specific changes we made
to FPC and BDI as case studies of compression algorithms that
we adapted to the LCP framework.

4.6. Handling Page Overflows

As described in Section 3.2, when a cache line is written back
to main memory, it is possible for the cache line to switch
from being compressible to being incompressible. When this
happens, the memory controller should explicitly find a slot
in the exception storage to store the uncompressed cache line.
However, it is possible that all the slots in the exception stor-
age are already used by other exceptions in the LCP. We call
this scenario a page overflow. A page overflow increases the
size of the LCP and leads to one of two scenarios: (i) the
LCP requires a physical page size which is not larger than the
uncompressed virtual page size (type-1 page overflow), and
(ii) the LCP requires a physical page size which is larger than
the uncompressed virtual page size (type-2 page overflow).

Type-1 page overflow simply requires the operating system
to migrate the LCP to a physical page of larger size. The OS
first allocates a new page and copies the data from the old
location to the new location. It then modifies the mapping for
the virtual page to point to the new location. While in transition,
the page is locked, so any memory memory request to this page
is delayed. In our evaluations, we stall the application for
20,000 cycles 4 when a type-1 overflow occurs; we also find
that (on average) type-1 overflow happens less than once per
every two million instructions. We vary this latency between
10,000 – 100,000 cycles and observe that the benefits of our
framework (e.g., bandwidth compression) far outweigh the
overhead due to type-1 overflows.

In a type-2 page overflow, the size of the LCP exceeds the
uncompressed virtual page size. Therefore, the OS attempts

4 To fetch a 4KB page, we need to access 64 cache lines (64 bytes each). In
the worst case, this will lead to 64 accesses to main memory, most of which are
likely to be row-buffer hits. Since a row-buffer hit takes 7.5ns, the total time to
fetch the page is around 500ns. On the other hand, the latency penalty of two
context-switches (into the OS and out of the OS) is around 4us, assuming each
context-switch takes about 2us [19]. Overall, a type-1 overflow takes around
4.5us. For a 4Ghz processor, this is less than 20,000 cycles.

7



to recompress the page, possibly using a different encoding
(c-type) that fits well with the new data of the page. Depending
on whether the page is compressible or not, the OS allocates
a new physical page to fit the LCP or the uncompressed page,
and migrates the data to the new location. The OS also ap-
propriately modifies the c-bit, c-type and the c-base in the
corresponding page table entry. Clearly, a type-2 overflow
requires more work from the OS than the type-1 overflow.
However, we expect page overflows of type-2 to occur rarely.
In fact, we never observed a type-2 overflow in our evaluations.
4.6.1. Avoiding Recursive Page Faults. There are two types
of pages that require special consideration: (i) pages that keep
OS internal data structures, e.g., pages containing information
required to handle page faults, and (ii) shared data pages that
have more than one page table entry (PTE) mapping to the
same physical page. Compressing pages of the first type can
potentially lead to recursive page fault handling. The problem
can be avoided if the OS sets a special do not compress bit, e.g.,
as a part of the page compression encoding, so that the memory
controller does not compress these pages. The second type
of pages (shared pages) require consistency across multiple
page table entries, such that when one PTE’s compression in-
formation changes, the second entry is updated as well. There
are two possible solutions to this problem. First, as with the
first type of pages, these pages can be marked as do not com-
press. Second, the OS can maintain consistency of the shared
PTEs by performing multiple synchronous PTE updates (with
accompanying TLB shootdowns). While the second solution
can potentially lead to better average compressibility, the first
solution (used in our implementation) is simpler and requires
minimal changes inside the OS.

Another situation that can potentially lead to a recursive
exception is the eviction of dirty cache lines from the LLC
to DRAM due to some page overflow handling that leads to
another overflow. In order to solve this problem, we assume
that the memory controller has a small dedicated portion of
the main memory that is used as a scratchpad to store cache
lines needed to perform page overflow handling. Dirty cache
lines that are evicted from LLC to DRAM due to OS overflow
handling are stored in this buffer space. The OS is responsible
to minimize the memory footprint of the overflow handler.
Note that this situation is expected to be very rare in practice,
because even a single overflow is infrequent.

4.7. Compression Algorithms

Our LCP-based main memory compression framework can be
employed with any compression algorithm. In this section, we
describe how to adapt a generic compression algorithm to fit
the requirements of the LCP framework. Subsequently, we
describe how to adapt the two compression algorithms used in
our evaluation.
4.7.1. Adapting a Compression Algorithm to Fit LCP. Ev-
ery compression scheme is associated with a compression func-
tion, fc, and a decompression function, fd . To compress a
virtual page into the corresponding LCP using the compression
scheme, the memory controller carries out three steps. In the
first step, the controller compresses every cache line in the page
using fc and feeds the sizes of each compressed cache line to
the second step. In the second step, the controller computes
the total compressed page size (compressed data + metadata +

exceptions, using the formulas from Section 4.2) for each of
fixed set of target compressed cache line sizes and selects a
target compressed cache line size C ∗ that minimizes the overall
LCP size. In the third and final step, the memory controller
classifies any cache line whose compressed size is less than or
equal to the target size as compressible and all other cache lines
as incompressible (exceptions). The memory controller uses
this classification to generate the corresponding LCP based on
the organization described in Section 3.1.

To decompress a compressed cache line of the page, the
memory controller reads the fixed-target-sized compressed
data and feeds it to the hardware implementation of function
fd . Note the size of the uncompressed cache line (C ) is already
known to the memory controller.
4.7.2. FPC and BDI Compression Algorithms. Although
any compression algorithm can be employed with our frame-
work using the approach described above, it is desirable to use
compression algorithms that have low complexity hardware im-
plementation and low decompression latency, so that the overall
complexity and latency of the design are minimized. For this
reason, we adapt two state-of-the-art compression algorithms,
specifically designed for such design points in the context of
compressing in-cache data, to fit our LCP framework: (i) Fre-
quent Pattern Compression [2], and (ii) Base-Delta-Immediate
Compression [24].

Frequent Pattern Compression (FPC) is based on the obser-
vation that a majority of the words accessed by applications
fall under a small set of frequently occurring patterns [3]. FPC
compresses each cache line one word at a time. Therefore,
the final compressed size of a cache line is dependent on the
individual words within the cache line. To minimize the time
to perform the compression search procedure described in Sec-
tion 4.7.1, we limit the search to four different target cache line
sizes: 16B, 21B, 32B and 44B (similar to the fixed sizes used
in [9]).

Base-Delta-Immediate (BDI) Compression is based on the
observation that in most cases, words co-located in memory
have small differences in their values, a property referred to
as low dynamic range [24]. BDI encodes cache lines with
such low dynamic range using a base value and an array of
differences (∆s) of words within the cache line from either
the base value or from zero. The size of the final compressed
cache line depends only on the size of the base and the size
of the ∆s. To employ BDI within our framework, the memory
controller attempts to compress a page with different versions
of the Base-Delta encoding as described by Pekhimenko et
al. [24] and then chooses the combination that minimizes the
final compressed page size (according to the search procedure
in Section 4.7.1).

5. LCP Optimizations
In this section, we propose two simple optimizations to our
proposed LCP-based framework: (i) memory bandwidth reduc-
tion via compressed cache lines, and (ii) exploiting zero pages
and cache lines for higher bandwidth utilization.

5.1. Enabling Memory Bandwidth Reduction

One potential benefit of main memory compression that has
not been examined in detail by prior work on memory com-

8



pression is bandwidth reduction.5 When cache lines are stored
in compressed format in main memory, multiple consecutive
compressed cache lines can be retrieved at the cost of retrieving
a single uncompressed cache line. For example, when cache
lines of a page are compressed to 1/4 their original size, four
compressed cache lines can be retrieved at the cost of a single
uncompressed cache line access. This can significantly reduce
the bandwidth requirements of applications, especially those
with good spatial locality. We propose two mechanisms that
exploit this idea.

In the first mechanism, when the memory controller needs
to access a cache line in the compressed data region of LCP, it
obtains the data from multiple consecutive compressed slots
(which add up to the size of an uncompressed cache line). How-
ever, some of the cache lines that are retrieved in this manner
may not be valid. To determine if an additionally-fetched cache
line is valid or not, the memory controller consults the metadata
corresponding to the LCP. If a cache line is not valid, then the
corresponding data is not decompressed. Otherwise, the cache
line is decompressed and then stored in the cache.

The second mechanism is an improvement over the first
mechanism, where the memory controller additionally predicts
if the additionally-fetched cache lines are useful for the ap-
plication. For this purpose, the memory controller uses hints
from a stride prefetcher [13]. In this mechanism, if the stride
prefetcher suggests that an additionally-fetched cache line is
part of a useful stream, then the memory controller stores that
cache line in the cache. This approach has the potential to
prevent cache lines that are not useful from polluting the cache.
Section 7.4 shows the effect of this approach on both perfor-
mance and bandwidth consumption.

Note that prior works [10, 25, 30, 34] assumed that when a
cache line is compressed, only the compressed amount of data
can be transferred over the DRAM bus, thereby freeing the bus
for the future accesses. Unfortunately, modern DRAM chips
are optimized for full cache block accesses [36], so they need
to be modified to support such smaller granularity transfers.
Our proposal does not require modifications to DRAM itself or
the use of specialized DRAM such as GDDR3 [15].

5.2. Zero Pages and Zero Cache Lines

Prior work [2, 8, 9, 24, 35] observed that in-memory data con-
tains significant number of zeros at different granularity: all-
zero pages and all-zero cache lines. Because this pattern is
quite common, we propose two changes to the LCP-framework
to more efficiently compress such occurrences of zeros. First,
one value of the page compression encoding (e.g., c-type of
0) is reserved to indicate that the entire page is zero. When
accessing data from a page with c-type = 0, the processor
can avoid any LLC or DRAM access by simply zeroing out
the allocated cache line in the L1-cache. Second, to compress
all-zero cache lines more efficiently, we can add another bit per
cache line to the first part of LCP metadata. This bit, which we
call the z-bit, indicates if the corresponding cache line is zero.

5Prior works [10, 25, 30, 34] looked at the possibility of using compression
for bandwidth reduction between the memory controller and DRAM. While sig-
nificant reduction in bandwidth consumption is reported, prior works achieve
this reduction either at the cost of increased memory access latency [10,30,34],
as they have to both compress and decompress a cache line for every request,
or based on a specialized main memory design [25], e.g., GDDR3 [15].

CPU Processor 1–4 cores, 4GHz, x86 in-order

CPU L1-D cache 32kB, 64B cache-line, 2-way, 1 cycle

CPU L2 cache 2 MB, 64B cache-line, 16-way, 20 cycles

Main memory 2 GB, 4 Banks, 8 kB row buffers,
1 memory controller, DDR3-1066 [22]

LCP Design Type-1 Overflow Penalty: 20,000 cycles

Table 1: Major Parameters of the Simulated Systems.

Using this approach, the memory controller does not require
any main memory access to retrieve a cache line with the z-bit
set (assuming a metadata cache hit).

6. Methodology

Our evaluations use an in-house, event-driven 32-bit x86 sim-
ulator whose front-end is based on Simics [21]. All config-
urations have private L1 caches and shared L2 caches. Ma-
jor simulation parameters are provided in Table 1. We use
benchmarks from the SPEC CPU2006 suite [27], four TPC-
H/TPC-C queries [31], and an Apache web server. All results
are collected by running a representative portion (based on
PinPoints [23]) of the benchmarks for 1 billion instructions.
We build our energy model based on McPat [20], CACTI [29],
C-Pack [5], and Synopsys Design Compiler with 65nm library
(to evaluate the energy of compression/decompression with
BDI and address calculation in RMC [9]).

Metrics. We measure performance of our benchmarks us-
ing IPC (instruction per cycle) and effective compression ratio
(effective DRAM size increase, e.g., a compression ratio of
1.5 for 2GB DRAM means that a compression scheme em-
ployed with this DRAM achieves the size benefits of that of a
3GB DRAM). For multi-programmed workloads we use the

weighted speedup [26] performance metric: (∑i
IPCshared

i
IPCalone

i
). For

bandwidth consumption we use BPKI (bytes transferred over
bus per thousand instructions [28]).

Parameters of the Evaluated Schemes. As reported in the
respective previous works, we used a decompression latency
of 5 cycles for FPC [3] and 1 cycle for BDI [24].

7. Results

In our experiments for both single-core and multi-core systems,
we compare five different designs that employ different main
memory compression strategies (frameworks) and different
compression algorithms: (i) Baseline system with no compres-
sion, (ii) robust main memory compression (RMC-FPC) [9],
(iii) and (iv) LCP framework with both FPC and BDI compres-
sion algorithms (LCP-FPC and LCP-BDI), and (v) MXT [1].
Note that it is fundamentally possible to build the RMC-BDI
design as well, but we found that it leads to either low energy
efficiency (due to increase in BST metadata table entry size
with many more encodings in BDI) or low compression ra-
tio (when the number of encodings is artificially decreased).
Hence, for brevity, we exclude this potential design from our
experiments.

In addition, we evaluate two hypothetical designs: Zero

9



Name Framework Compression Algorithm

Baseline None None

RMC-FPC RMC [9] FPC [2]

LCP-FPC LCP FPC [2]

LCP-BDI LCP BDI [24]

MXT MXT [1] Lempel-Ziv [38]

ZPC None Zero Page Compression

LZ None Lempel-Ziv [38]

Table 2: List of evaluated designs.

Page Compression (ZPC) and Lempel-Ziv (LZ 6) to show some
practical boundaries on main memory compression. Table 2
summarizes all the designs.

7.1. Effect on DRAM Capacity

Figure 8 compares the compression ratio of all the designs
described in Table 2. We draw two major conclusions. First, as
expected, MXT, which employs the complex LZ algorithm, has
the highest average compression ratio (2.30) of all practical de-
signs and performs closely to our idealized LZ implementation
(2.60). At the same time, LCP-BDI provides a reasonably high
compression ratio (1.62 on average), outperforming RMC-FPC
(1.59), and LCP-FPC (1.52). (Note that LCP can be also used
with both BDI and FPC algorithms together, and the average
compression ratio in this case is as high as 1.69.)

Second, while the average compression ratio of ZPC is rela-
tively low (1.29), it greatly improves the effective memory ca-
pacity for a number of applications (e.g., GemsFDTD, zeusmp,
and cactusADM). This justifies our design decision of handling
zero pages at the TLB-entry level. We conclude that our LCP
framework achieves the goal of high compression ratio.

1

1.5

2

2.5

3

3.5

ap
ac
he

as
ta
r

bz
ip
2

ca
ct
us
AD

M
ca
lc
ul
ix

de
al
II

ga
m
es
s

gc
c

G
em

sF
DT

D
go
bm

k
gr
om

ac
s

h2
64

re
f

hm
m
er

lb
m

le
sli
e3
d

lib
qu

an
tu
m

m
cf

m
ilc

na
m
d

om
ne

tp
p

pe
rlb

en
ch

po
vr
ay

sj
en

g
so
pl
ex

sp
hi
nx
3

tp
cc

tp
ch
17

tp
ch
2

tp
ch
6

w
rf

xa
la
nc
bm

k
ze
us
m
p

G
eo

M
ea
nCo
m
pr
es
si
on

 R
at
io

ZPC RMC‐FPC LCP‐FPC LCP‐BDI MXT LZ
4.0 7.6‐8.1 176‐454 3.8 4.1 3.5 4.7‐14.1

Figure 8: Main memory compression ratio.

7.2. Effect on Performance

Main memory compression can improve performance in two
major ways: (i) reduced memory bandwidth requirements can
enable less contention on the main memory bus, which is an
increasingly important bottleneck in systems, and (ii) reduced
memory footprint can reduce long-latency disk accesses. We
evaluate the performance improvement due to memory band-
width reduction (including our optimizations for compressing
zero values described in Section 5.2) in Sections 7.2.1 and 7.2.2.
Evaluations using our LCP-based frameworks show that the

6Our implementation of LZ performs compression at 4kB page-granularity
and serves as an idealized upper boundary for the in-memory compression
ratio. In contrast, MXT employs Lempel-Ziv at 1kB granularity.

performance gains due to the bandwidth reduction more than
compensate for the slight increase in memory access latency.
We also evaluate the decrease in page faults in Section 7.2.3.
7.2.1. Single-Core Results. Figure 9 shows the performance
of single-core workloads using three key evaluated designs
(RMC-FPC, LCP-FPC, and LCP-BDI) normalized to the Base-
line. We draw two major conclusions from the figure.

0.8
0.9
1

1.1
1.2
1.3
1.4
1.5
1.6

ap
ac
he

as
ta
r

bz
ip
2

ca
ct
us
AD

M
ca
lc
ul
ix

de
al
II

ga
m
es
s

gc
c

G
em

sF
DT

D
go
bm

k
gr
om

ac
s

h2
64

re
f

hm
m
er

lb
m

le
sli
e3
d

lib
qu

an
tu
m

m
cf

m
ilc

na
m
d

om
ne
tp
p

pe
rlb

en
ch

po
vr
ay

sj
en

g
so
pl
ex

sp
hi
nx
3

tp
cc

tp
ch
17

tp
ch
2

tp
ch
6

w
rf

xa
la
nc
bm

k
ze
us
m
p

G
eo

M
ea
n

N
or
m
al
ize

d 
IP
C RMC‐FPC

LCP‐FPC

LCP‐BDI

1.68

Figure 9: Performance comparison (IPC) of different com-
pressed designs for single-core.

First, compared against an uncompressed system (Baseline),
the LCP-based designs (LCP-BDI and LCP-FPC) improve
performance by 6.1% / 5.2% and also outperform the compres-
sion design by Ekman and Stenstrom [9] (RMC-FPC 7). We
conclude that our LCP framework is effective in improving
performance by compressing main memory.

Second, LCP-FPC design outperforms RMC-FPC (on av-
erage) despite having slightly lower compression ratio. This
is mostly due to a lower overhead when accessing metadata
information (RMC-FPC needs two memory accesses to differ-
ent main memory pages in the case of a BST table miss, while
LCP-based framework performs two accesses to the same main
memory page that can be pipelined). This is especially notice-
able in several applications, e.g., astar, milc, and xalancbmk
that have low metadata table (BST) hit rates. We conclude
that our LCP framework is more effective in improving perfor-
mance than RMC [9].
7.2.2. Multi-Core Results. When the system has a single core,
the memory bandwidth pressure may not be large enough to
take full advantage of the bandwidth benefits of main memory
compression. However, in a multi-core system where multiple
applications are running concurrently, savings in bandwidth
(reduced number of memory bus transfers) may significantly
increase the overall system performance.

To study this effect, we conducted experiments using 100
randomly generated multiprogrammed mixes of applications
(for both 2-core and 4-core workloads). Our results show that
the bandwidth benefits of memory compression is indeed more
critical for multi-core workloads. Using our LCP-based design,
LCP-BDI, the average performance improvement (normalized
to the performance of the Baseline system without compres-
sion) is 13.9% for 2-core workloads and 10.7% for 4-core
workloads. We summarize our multi-core performance results
in Figure 10a.

We also vary the last-level cache size (1MB – 16MB) for
both single core and multi-core systems across all evaluated

7Note that in order to provide a fair comparison, we enhanced the RMC-
FPC approach with the same optimizations we did for LCP, e.g., bandwidth
compression. The original RMC-FPC design reported an average degradation
in performance [9].

10



workloads. We find that LCP-based designs outperform the
Baseline across all evaluated systems (average performance
improvement for single-core varies from 5.1% to 13.4%), even
when the L2 cache size of the system is as large as 16MB.
7.2.3. Effect on the Number of Page Faults. Modern systems
are usually designed such that concurrently running applica-
tions have enough main memory to avoid most of the potential
capacity page faults. At the same time, if the applications’ total
working set exceeds the main memory capacity, the increased
number of page faults can significantly affect performance.
To study the effect of LCP-based framework (LCP-BDI) on
the number of page faults, we evaluate twenty randomly gen-
erated 16-core multiprogrammed mixes of applications from
our benchmark set. We also vary the main memory capacity
from 256MB to 1GB (larger memories usually lead to almost
no page faults for these workload simulations). Our results
(Figure 10b) show that the LCP-based framework (LCP-BDI)
can decrease the number of page faults by as high as 25% on
average (for 1GB DRAM) when compared with the Baseline
design with no compression. We conclude that the LCP-based
framework can significantly decrease the number of page faults,
and hence improve system performance beyond the benefits it
provides due to reduced bandwidth.

0%

5%

10%

15%

1 2 4

Pe
rf
or
m
an

ce
 

Im
pr
ov
em

en
t, 
%

Number of Cores

LCP‐BDI

(a) Average performance improve-
ment (weighted speedup).

0
0.2
0.4
0.6
0.8
1

1.2

256MB 512MB 1GBN
or
m
al
iz
ed

 #
 o
f 

Pa
ge
 F
au

lts

DRAM Size

Baseline LCP‐BDI

(b) Number of page faults (normal-
ized to Baseline with 256MB).

Figure 10: Performance (with 2 GB DRAM) and number of
page faults (varying DRAM size) using LCP-BDI.

7.3. Effect on Bus Bandwidth and Memory Subsystem En-
ergy

When DRAM pages are compressed, the traffic between the
LLC and DRAM can be reduced. This can have two posi-
tive effects: (i) reduction in the average latency of memory
accesses, which can lead to improvement in the overall system
performance, and (ii) decrease in the bus energy consumption
due to the decrease in the number of transfers.

Figure 11 shows the reduction in main memory band-
width between LLC and DRAM (in terms of bytes per kilo-
instruction, normalized to the Baseline system with no compres-
sion) using different compression designs. The key observation
we make from this figure is that there is a strong correlation
between bandwidth compression and performance improve-
ment (Figure 9). Applications that show a significant reduction
in bandwidth consumption (e.g., GemsFDTD, cactusADM,
soplex, zeusmp, leslie3d, tpc*) also see large performance im-
provements. There are some noticeable exceptions to this ob-
servation, e.g., h264ref, wrf and bzip2. Although the memory
bus traffic is compressible in these applications, main memory
bandwidth is not the bottleneck for their performance.

Figure 12 shows the reduction in memory subsystem energy
of three systems that employ main memory compression—
RMC-FPC, LCP-FPC, and LCP-BDI—normalized to the en-

0
0.2
0.4
0.6
0.8
1

1.2

ap
ac
he

as
ta
r

bz
ip
2

ca
ct
us
AD

M
ca
lc
ul
ix

de
al
II

ga
m
es
s

gc
c

G
em

sF
DT

D
go
bm

k
gr
om

ac
s

h2
64

re
f

hm
m
er

lb
m

le
sli
e3
d

lib
qu

an
tu
m

m
cf

m
ilc

na
m
d

om
ne

tp
p

pe
rlb

en
ch

po
vr
ay

sj
en

g
so
pl
ex

sp
hi
nx
3

tp
cc

tp
ch
17

tp
ch
2

tp
ch
6

w
rf

xa
la
nc
bm

k
ze
us
m
p

G
eo

M
ea
n

N
or
m
al
iz
ed

 B
PK

I

RMC‐FPC LCP‐FPC LCP‐BDI

Figure 11: Effect of different main memory compression
schemes on memory bandwidth.

ergy of Baseline. The memory subsystem energy includes
the static and dynamic energy consumed by caches, TLBs,
memory transfers, and DRAM, plus the energy of addition-
ally used components: BST, MD cache, address calculation,
compressor/decompressor units. Two observations are in order.

0.5
0.6
0.7
0.8
0.9
1

1.1
1.2
1.3

ap
ac
he

as
ta
r

bz
ip
2

ca
ct
us
AD

M
ca
lc
ul
ix

de
al
II

ga
m
es
s

gc
c

G
em

sF
DT

D
go
bm

k
gr
om

ac
s

h2
64

re
f

hm
m
er

lb
m

le
sli
e3
d

lib
qu

an
tu
m

m
cf

m
ilc

na
m
d

om
ne

tp
p

pe
rlb

en
ch

po
vr
ay

sj
en

g
so
pl
ex

sp
hi
nx
3

tp
cc

tp
ch
17

tp
ch
2

tp
ch
6

w
rf

xa
la
nc
bm

k
ze
us
m
p

G
eo

M
ea
n

N
or
m
al
ize

d 
En

er
gy RMC‐FPC LCP‐FPC LCP‐BDI

Figure 12: Effect of different main memory compression
schemes on memory subsystem energy.

First, our LCP-based designs (LCP-BDI and LCP-FPC) im-
prove the memory subsystem energy by 5.2% / 3.4% on average
over the Baseline design with no compression, and by 11.3% /
9.5% over the state-of-the-art design (RMC-FPC) based on [9].
This is especially noticeable for bandwidth-limited applica-
tions, e.g., zeusmp and cactusADM. We conclude that our
framework for main memory compression enables significant
energy savings, mostly due to the decrease in bandwidth con-
sumption.

Second, RMC-FPC consumes significantly more energy than
Baseline (6.1% more energy on average, and as high as 21.7%
for dealII). The primary reason for this energy consumption in-
crease is the physical address calculation that RMC-FPC spec-
ulatively performs on every L1 cache miss (to avoid increasing
the memory latency due to complex address calculations). The
second reason is the frequent (every L1 miss) accesses to the
BST table (described in Section 2) that holds the information
to perform address calculation.

Note that other factors, e.g., compression/decompression
energy overheads or different compression ratios, are not the
reasons for this energy consumption increase. LCP-FPC uses
the same compression algorithm as RMC-FPC (and even has a
slightly lower compression ratio), but does not increase energy
consumption (in fact, LCP-FPC improves the energy consump-
tion due to its decrease in bandwidth consumption). We con-
clude that our LCP-based framework is a more energy-efficient
main memory compression framework than previously pro-
posed designs such as RMC-FPC [9].

7.4. Comparison to Stride Prefetching

Our LCP-based framework improves performance due to its
ability to transfer multiple compressed cache lines using a sin-

11



gle memory request. Because this benefit resembles that of
prefetching cache lines into the LLC, we compare our LCP-
based design to a system that employs a stride prefetcher im-
plemented as described in [13]. Figures 13 and 14 compare
the performance and bandwidth consumption of three systems:
(i) one that employs stride prefetching, (ii) one that employs
LCP-BDI, and (iii) one that employs LCP-BDI along with hints
from a prefetcher to avoid cache pollution due to bandwidth
compression (Section 5.1). Two conclusions are in order.

First, our LCP-based designs (second and third bars) are
competitive with the more general stride prefetcher for all but
a few applications (e.g., libquantum). The primary reason
for this is that a stride prefetcher can considerably increase
the memory bandwidth consumption of an application due to
inaccurate prefetch requests. On the other hand, LCP obtains
the benefits of prefetching without increasing (in fact, while
significantly reducing) memory bandwidth consumption.

Second, the effect of using prefetcher hints to avoid cache
pollution is not significant. The reason for this is that our
systems employ a large, highly-associative LLC (2MB 16-way)
which is less susceptible to cache pollution. Evicting the LRU
lines from such a cache has little effect on performance, but we
observe the benefits of this mechanism on multi-core systems
with shared caches (up to 5% performance improvement for
some two-core workload mixes).

0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30

ap
ac
he

as
ta
r

bz
ip
2

ca
ct
us
AD

M
ca
lc
ul
ix

de
al
II

ga
m
es
s

gc
c

G
em

sF
DT

D
go
bm

k
gr
om

ac
s

h2
64
re
f

hm
m
er

lb
m

le
sli
e3
d

lib
qu

an
tu
m

m
cf

m
ilc

na
m
d

om
ne

tp
p

pe
rlb

en
ch

po
vr
ay

sj
en

g
so
pl
ex

sp
hi
nx
3

tp
cc

tp
ch
17

tp
ch
2

tp
ch
6

w
rf

xa
la
nc
bm

k
ze
us
m
p

G
eo

M
ea
nN
or
m
al
ize

d 
IP
C

Stride Prefetching LCP‐BDI LCP‐BDI + Prefetching hints
1.57 1.54 1.43 1.681.91

Figure 13: Performance comparison with stride prefetch-
ing, and using prefetcher hints with the LCP-framework.

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

ap
ac
he

as
ta
r

bz
ip
2

ca
ct
us
AD

M
ca
lc
ul
ix

de
al
II

ga
m
es
s

gc
c

G
em

sF
DT

D
go
bm

k
gr
om

ac
s

h2
64
re
f

hm
m
er

lb
m

le
sli
e3
d

lib
qu

an
tu
m

m
cf

m
ilc

na
m
d

om
ne

tp
p

pe
rlb

en
ch

po
vr
ay

sj
en

g
so
pl
ex

sp
hi
nx
3

tp
cc

tp
ch
17

tp
ch
2

tp
ch
6

w
rf

xa
la
nc
bm

k
ze
us
m
p

Ge
oM

ea
n

N
or
m
al
iz
ed

 B
PK

I Stride Prefetching LCP‐BDI LCP‐BDI + Prefetching hints

Figure 14: Bandwidth comparison with stride prefetching.

8. Conclusion
Data compression is a promising technique to increase the ef-
fective main memory capacity without significantly increasing
cost and power consumption. As we described in this paper,
the primary challenge in incorporating compression in main
memory is to devise a mechanism that can efficiently compute
the main memory address of a cache line without significantly
adding complexity, cost, or latency. Prior approaches to address
this challenge are either relatively costly or energy inefficient.

In this work, we proposed a new main memory compression
framework to address this problem using an approach that we
call Linearly Compressed Pages (LCP). The key ideas of LCP
are to use a fixed size for compressed cache lines within a page
(which simplifies main memory address computation) and to

enable a page to be compressed even if some cache lines within
the page are incompressible (which enables high compression
ratios). We showed that any compression algorithm can be
adapted to fit the requirements of our LCP-based framework.

We evaluated the LCP-based framework using two state-of-
the-art compression algorithms (Frequent Pattern Compression
and Base-Delta-Immediate Compression) and showed that it
can significantly increase effective memory capacity (by 69%)
and reduce page fault rate (by 27%). We showed that storing
compressed data in main memory can also enable the mem-
ory controller to reduce memory bandwidth consumption (by
34%), leading to significant performance and energy improve-
ments on a wide variety of single-core and multi-core systems
with different cache sizes. Based on our results, we conclude
that the proposed LCP-based framework provides an effec-
tive approach for designing low-complexity and low-latency
compressed main memory.

References
[1] B. Abali et al., “Memory Expansion Technology (MXT): Software

Support and Performance,” IBM J. Res. Dev., 2001.
[2] A. R. Alameldeen and D. A. Wood, “Adaptive Cache Compression for

High-Performance Processors,” in ISCA-31, 2004.
[3] ——, “Frequent Pattern Compression: A Significance-Based Compres-

sion Scheme for L2 Caches,” Tech. Rep., 2004.
[4] E. D. Berger, “Memory management for high-performance applications,”

Ph.D. dissertation, 2002.
[5] X. Chen et al., “C-pack: A high-performance microprocessor cache

compression algorithm,” in VLSI Systems, IEEE Transactions on, 2010.
[6] R. S. de Castro, A. P. do Lago, and D. Da Silva, “Adaptive Compressed

Caching: Design and Implementation,” in SBAC-PAD, 2003.
[7] F. Douglis, “The Compression Cache: Using On-line Compression to

Extend Physical Memory,” in Winter USENIX Conference, 1993.
[8] J. Dusser et al., “Zero-Content Augmented Caches,” in ICS, 2009.
[9] M. Ekman and P. Stenstrom, “A Robust Main-Memory Compression

Scheme,” in ISCA-32, 2005.
[10] M. Farrens and A. Park, “Dynamic Base Register Caching: A Technique

for Reducing Address Bus Width,” in ISCA, 1991.
[11] E. G. Hallnor and S. K. Reinhardt, “A Unified Compressed Memory

Hierarchy,” in HPCA-11, 2005.
[12] D. Huffman, “A Method for the Construction of Minimum-Redundancy

Codes,” IRE, 1952.
[13] S. Iacobovici et al., “Effective stream-based and execution-based data

prefetching,” in ICS, 2004.
[14] Intel 64 and IA-32 Architectures Software Developer’s Manual, Intel

Corporation, 2013.
[15] JEDEC, “GDDR3 Specific SGRAM Functions, JESD21-C,” 2012.
[16] U. Kang et al., “8Gb 3D DDR3 DRAM Using Through-Silicon-Via

Technology,” in ISSCC, 2009.
[17] S. F. Kaplan, “Compressed caching and modern virtual memory simula-

tion,” Ph.D. dissertation, 1999.
[18] C. Lefurgy et al., “Energy management for commercial servers,” in

IEEE Computer, 2003.
[19] C. Li, C. Ding, and K. Shen, “Quantifying the Cost of Context Switch,”

in ExpCS, 2007.
[20] S. Li et al., “McPAT: An integrated power, area, and timing model-

ing framework for multicore and manycore architectures,” MICRO-42,
2009.

[21] P. S. Magnusson et al., “Simics: A Full System Simulation Platform,”
Computer, 2002.

[22] Micron, “2Gb: x4, x8, x16, DDR3 SDRAM,” 2012.
[23] H. Patil et al., “Pinpointing representative portions of large Intel Itanium

programs with dynamic instrumentation,” MICRO-37, 2004.
[24] G. Pekhimenko et al., “Base-Delta-Immediate Compression: A Practical

Data Compression Mechanism for On-Chip Caches,” in PACT, 2012.
[25] V. Sathish, M. J. Schulte, and N. S. Kim, “Lossless and Lossy Memory

I/O Link Compression for Improving Performance of GPGPU Work-
loads,” in PACT, 2012.

[26] A. Snavely and D. M. Tullsen, “Symbiotic Jobscheduling for a Simulta-
neous Multithreaded Processor,” ASPLOS-9, 2000.

[27] SPEC CPU2006 Benchmarks, “http://www.spec.org/.”

12



[28] S. Srinath et al., “Feedback Directed Prefetching: Improving the Perfor-
mance and Bandwidth-Efficiency of Hardware Prefetchers,” in HPCA-
13, 2007.

[29] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi, “CACTI
5.1,” HP Laboratories, Tech. Rep. HPL-2008-20, 2008.

[30] M. Thuresson et al., “Memory-Link Compression Schemes: A Value
Locality Perspective,” Trans. Comput., 2008.

[31] Transaction Processing Performance Council, “http://www.tpc.org/.”
[32] R. B. Tremaine et al., “Pinnacle: IBM MXT in a Memory Controller

Chip,” IEEE Micro, 2001.
[33] P. R. Wilson, S. F. Kaplan, and Y. Smaragdakis, “The Case for Com-

pressed Caching in Virtual Memory Systems,” in USENIX Annual Tech-
nical Conference, 1999.

[34] J. Yang, R. Gupta, and C. Zhang, “Frequent value encoding for low
power data buses,” ACM Trans. Des. Autom. Electron. Syst., 2004.

[35] J. Yang, Y. Zhang, and R. Gupta, “Frequent Value Compression in Data
Caches,” in MICRO-33, 2000.

[36] D. H. Yoon, M. K. Jeong, M. Sullivan, and M. Erez, “The Dynamic
Granularity Memory System,” in ISCA, 2012.

[37] Y. Zhang, J. Yang, and R. Gupta, “Frequent Value Locality and Value-
Centric Data Cache Design,” ASPLOS-9, 2000.

[38] J. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data
Compression,” IEEE Transactions on Information Theory, 1977.

13


	Introduction
	Shortcomings of Prior Approaches
	Our Approach: Linearly Compressed Pages (LCP)

	Background on Main Memory Compression
	Compressing In-Memory Data
	Challenges in Main Memory Compression
	Prior Work on Memory Compression

	Linearly Compressed Pages
	LCP: Basic Idea
	LCP Operation

	Detailed Design
	Page Table Entry Extension
	LCP Organization
	Compressed Data Region.
	Metadata Region.
	Exception Storage Region.

	Operating System Memory Management
	Changes to the Cache Tagging Logic
	Changes to the Memory Controller
	Metadata Cache.
	Compression/Decompression Hardware.

	Handling Page Overflows
	Avoiding Recursive Page Faults.

	Compression Algorithms
	Adapting a Compression Algorithm to Fit LCP.
	FPC and BDI Compression Algorithms.


	LCP Optimizations
	Enabling Memory Bandwidth Reduction
	Zero Pages and Zero Cache Lines

	Methodology
	Results
	Effect on DRAM Capacity
	Effect on Performance
	Single-Core Results.
	Multi-Core Results.
	Effect on the Number of Page Faults.

	Effect on Bus Bandwidth and Memory Subsystem Energy
	Comparison to Stride Prefetching

	Conclusion

