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Abstract—We present the introduction of transactional memory
into the next generation IBM System z CPU. We first describe
the instruction-set architecture features, including requirements for
enterprise-class software RAS. We then describe the implementation in
the IBM zEnterprise EC12 (zEC12) microprocessor generation, focus-
ing on how transactional memory can be embedded into the existing
cache design and multiprocessor shared-memory infrastructure. We
explain practical reasons behind our choices. The zEC12 system is
available since September 2012.

I. INTRODUCTION AND RELATED WORK

Over the last years, the number of CPU cores on a chip and the

number of CPU cores connected to a shared memory have grown

significantly to support growing workload capacity demand. For

example, the IBM zEC121 enterprise server [1][2] supports operat-

ing system images with up to 101 CPUs. The increasing number of

CPUs cooperating to process the same workloads puts significant

burden on software scalability; for example, shared queues or data-

structures protected by traditional semaphores become hot spots

and lead to sub-linear n-way scaling curves. Traditionally this has

been countered by implementing finer-grained locking in software,

and with lower latency/higher bandwidth interconnects in hardware.

Implementing fine-grained locking to improve software scalability

can be very complicated and error-prone, and at today’s CPU’s

frequency, the latency of hardware interconnects is limited by the

physical dimension of the chips and systems, and by the speed of

light.

In [3], Herlihy et al. introduced transactional memory: a group

of instructions called a transaction is operating atomically and

in isolation (called serializability in [3]) on a data structure in

memory; the transaction executes optimistically without obtaining

a lock, but may need to abort and retry if the operation conflicts

with other operations on the same memory locations. The authors

propose one implementation with a special transaction cache to

hold pending transactional stores.

Various alternative hardware transactional memory designs have

been proposed since [3]. In the Transactional Memory Coherence

and Consistency (TCC) model [4], all stores performed during

a transaction are buffered, and a request to store them out to

memory is put on the bus at the end of the transaction. The

bus arbitrates between multiple CPUs, and while one CPU is

storing its stores, other CPUs are snooping the stores for conflicts

and abort their transaction if necessary. A different approach is

chosen in LogTM [5]: the transaction speculatively updates the

memory but keeps the original value in a log and can restore the

1IBM, System z, z/OS, z/Architecture, zEnterprise, Blue Gene are
trademarks of the International Business Machines Corporation.

original memory content from the log in case of an abort. LogTM

allows faster commit than TCC, and the less frequent aborts take

longer than in TCC. LogTM uses a directory based eager conflict

detection mechanism, where on a local cache miss other CPUs are

informed of the transactional access so that they can detect potential

conflicts and abort. Recent commercial implementations include

Sun Microsystems’ Rock [6] and IBM’s BlueGene/Q processors

[7]; Intel has announced transactional memory for their Haswell

CPUs expected in 2013 [8]. A major difference of our architecture

is that it supports constrained transaction which are guaranteed to

eventually succeed.

In [9], architectural semantics for transactional memory have

been studied. The authors propose to combine transactional hard-

ware with a software layer that provides 2-phase commit, software

handlers for transaction commit/abort, and closed and open nested

transactions. In [10], the same group discusses virtualization of

transactions to address overflows, interrupts, and other condi-

tions with the help of the operating system. We have chosen

to implement a pure hardware transactional system with closed

nesting. In our design, each non-constrained transaction needs a

fallback path, which then can also be invoked in circumstances

where the transaction cannot complete, e.g. due to interrupts or

transaction size overflows. Therefore the additional complexity of

a software assist layer was not warranted for our implementation.

Not relying on a software layer furthermore enables all components

of the software stack including firmware, hypervisor, and operating

system to exploit transactional memory.

There is a significant body of work on software-based and

hybrid hardware/software transactional memory; since this is only

remotely related to our work we refer to a transactional memory

overview that discusses some of them [11].

The three use cases we considered during the definition of

transactional memory are lock elision, lock-free data structures,

and general code optimization. In lock elision [12], a data structure

that is typically guarded by a lock is accessed with transactional

memory operations without first obtaining the lock. If the trans-

action aborts due to conflicts with other CPUs, the program can

obtain the lock as a fallback path (see figure 1). Every transaction

must check that the lock is free to prevent concurrent operation of

a transactional CPU and a CPU currently in the fallback path. This

method also works with programs that have only been partially

changed to use transactional memory, which is important for

realistic introduction of transactional memory into large software

products. In [12], lock elision is defined with special instructions;

we embed the idea into the general transactional memory context.

Lock free data structures have been studied extensively (see e.g.

[13]). Transaction semantics provide a more powerful and easy-
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LHI R0,0 *initialize retry count=0
loop TBEGIN *begin transaction

JNZ abort *go to abort code if CC!=0
LT R1,lock *load&test the fallback lock
JNZ lckbzy *branch if lock busy
...perform operation...
TEND *end transaction
...

lckbzy TABORT *abort if lock busy; this resumes after TBEGIN

abort JO fallback *no retry if CC=3
AHI R0,1 *increment retry count
CIJNL R0,6,fallback *give up after 6 attempts
PPA R0,TX *random delay based on retry count
... potentially wait for lock to become free
J loop *jump back to retry

fallback
OBTAIN lock *using Compare&Swap
...perform operation...
RELEASE lock
...

Figure 1: Example Transaction

to-use foundation than for example a simple compare-and-swap

instruction. Lastly, transactions provide a mechanism for code

optimization, for example re-ordering code more aggressively,

relying on the atomicity and isolation of memory accesses and

the provided register-rollback for correctness [14].

During the definition of the transactional memory facility, it

became clear very early that special care had to be taken for soft-

ware testability and debug. Transactional memory poses interesting

challenges [15]: for example, the non-transactional fallback path is

rarely exercised which may lead to test coverage problems; when a

program fails for example with an access exception inside a transac-

tion, the memory and register state is rolled back due to transaction

abort, which makes post-mortem analysis more difficult; and lastly,

in our implementation interactive debugging is restricted by the

fact that interrupts cause transactions to abort, and so for example,

setting break-points inside a transaction would be impractical. We

discussed many alternative solutions with IBM software teams in

order to minimize hardware cost and complexity while meeting the

requirements for efficient software development. In section 2, we

describe the instruction set architecture for transactional memory,

including features for software test and debug.

The design of a high-speed, scalable, and reliable multi-

processor shared memory protocol is very complex and time-

consuming and represents a significant investment. The micropro-

cessor design also evolves from generation to generation without a

complete redesign. It was therefore clear from the beginning that

transactional memory support must fit into a mostly unchanged

SMP protocol, and that changes to the microprocessor core design

should be minimized. At the same time the design must provide

robust transactional memory performance to compete with the

performance of obtaining idle locks; otherwise a compiler could not

know at compile time whether to replace a lock with a transaction.

We describe our implementation in section 3. In section 4 we eval-

uate the performance of the transactional memory implementation

under a set of micro-benchmarks. The results show good scalability

even for very high numbers of CPUs under realistic contention

scenarios. We also provide some early results on real-world code.

Section 5 summarizes the paper.

II. INSTRUCTION SET ARCHITECTURE

A. New Instructions and General TX Operation

The Transactional Execution (TX) Facility provides 6 new in-

structions to the z/Architecture [16], as well as a few new control

bits. This section gives an overview of the central features of the

facility, further details can be found in [16].

Transactions are formed by pairs of Transaction Begin and

Transaction End instructions (TBEGIN and TEND, respectively).

Except as described below, either all or none of the instructions in-

side a transaction are executed (atomicity), and all operand accesses

to memory are performed isolated (sometimes called serializable,

block-concurrent, or also atomic), that is, other CPUs and the I/O

subsystem cannot observe changes made by the transaction before

it successfully ends, and the transaction cannot observe changes

made by other CPUs or the I/O subsystem during the transaction.

Transactions may abort. There are various reasons for transac-

tions to abort, including interrupts (e.g., page faults, divide by

zero, or asynchronous interrupts like timer and I/O), exceeding

the maximum nesting depth, overflow of the CPU’s capability

to track transactional accesses to memory (footprint overflow),

or conflicts on accessed memory locations with other CPUs or

the I/O subsystem that would cause an isolation violation if the

transactional execution would continue. Privileged instructions that

modify the control state of the CPU and some other complex

instructions are not allowed inside a transaction and always lead

to a transaction abort.

The architecture requires that the partial execution of the trans-

action before an abort was detected is isolated with respect to

other CPUs and I/O (this is referred to as opacity in [17]). This
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Storage location of TDB (if B1!=0)

TBEGIN D1(B1),I2

D1‘E560’ B1 GRSM //// AFPIFC

Storage location of TDB (if B1!=0)

TBEGIN D1(B1),I2

D1‘E560’ B1 GRSM //// AFPIFC

Figure 2: TBEGIN instruction text

was an important request from our software community since it

prevents execution based on inconsistent data. For example, one

transaction might pop the last element from a stack by updating

the count of elements to 0 and by setting the stack pointer to

NULL. If another transaction would first read the old non-zero

element count, and then would proceed to access the stack pointer

without NULL-checking, a page fault would result. Such situations

are prevented by requiring that the entire execution is isolated even

if the transaction aborts. Herlihy [3] proposed a validate instruction

to prevent such zombie transactions [18]. We choose the stronger

isolation since it is easier to use for software developers and does

not require additional path length for the intermediate validations.

The architecture also requires isolation of transactions against

non-transactional accesses done by other CPUs and I/O (strong
atomicity in [19]). Again this was an important requirement from

our software community to be able to mix transactional and tradi-

tional locking-based code in order to ease stepwise introduction of

TM technology into existing programs.

Execution of TBEGIN sets the Condition Code (CC) to 0. If a

transaction aborts, the Instruction Address in the Program Status
Word (PSW) is restored to the instruction immediately after the

TBEGIN, and a condition code is set to a non-zero value. A

typical program will test the condition code after TBEGIN to

either start the actual transaction processing (CC=0) or branch

to the abort handler (CC!=0). The abort handler may return to

retry the transaction, or it may perform the same functionality non-

transactionally on a fallback path. An example is shown in figure

1.

Depending on whether the CPU considers the abort reason

transient (e.g. another CPU conflicting) or permanent (e.g. a

restricted instruction), the condition code is either set to 2 or 3.

This allows the program a quick check on whether it should retry

the transaction (with a threshold count) or immediately branch to a

non-transactional fallback path. Depending on the program, certain

clean-up is necessary before repeating the transaction, like restoring

certain registers (see below).

Before repeating a transaction after a transient abort, it often

makes sense to introduce a random delay that increases with

the number of aborts, in order to prevent harmonic, repetitive,

aborts due to conflicts between two CPUs (for example using

random exponential back-off). The optimal delay distribution may

depend on the particular abort reason, specifics of the design

of the CPU generation, and details of the SMP configuration.

In order to avoid changing the program to adjust the delays to

these design parameters, the new Perform Processor TX-Abort
Assist (PPA with function code TX) instruction is introduced. The

program passes the current abort count to the instruction, which

then performs a random delay optimal for the current configuration;

that way software does not have to be adjusted for future machine

generations or different configurations.

If the CPU is already in transactional execution mode when

a TBEGIN is executed, a nested inner transaction is started, and

the CPU increments the transaction nesting depth. The maximum

supported nesting depth is 16. The TEND instruction closes a

transaction by decrementing the current nesting depth; if the current

nesting depth is 1, execution of TEND commits the transaction and

the CPU leaves transactional execution mode. If a transaction abort

happens on a nested transaction, the entire nest of transactions

is aborted (flattened nesting), the nesting depth is set to 0, and

execution continues at the instruction after the outermost TBEGIN.

The Extract Transaction Nesting Depth (ETND) instruction can

be used to load the current nesting depth into a General Register

(GR).

The support of nested transactions is important to software in

certain cases. Compilers may produce code that calls sub-routines

from within transactions, and if those sub-routines were themselves

compiled to use transactions, nesting occurs. Sometimes it is

important for a sub-routine to know whether it is being called

transactionally, which can be done quickly with ETND by checking

whether the depth is 0.

While the CPU is in transactional mode, stores performed by

the CPU are not made visible to other CPUs or the I/O subsystem

until the outermost TEND completes. If the transaction aborts, all

stores done during the transaction are discarded. The exception

are stores performed by the Non-transactional Store (NTSTG)

instruction; these 8-byte stores are also isolated, that is, not visible

to other CPUs and I/O while the transaction executes, but unlike

normal stores they are committed to memory even in the case of

transaction abort. The main use case for NTSTG is transactional

debugging: a programmer/compiler can store intermediate results

into memory and analyze the data even in the abort case to

see which program path and data was observed prior to the

abort (breadcrumb debugging). The architecture requires that the

memory locations stored to by NTSTG do not overlap with other

stores from the transaction.

The Transaction Abort (TABORT) instruction causes an imme-

diate abort. The operand provides an abort reason code which is

placed into the optional Transaction Diagnostic Block (see below).

The least significant bit of the abort code determines whether the

condition code is set to 2 or 3 to indicate transient versus permanent

abort to the abort handler.

B. TBEGIN Control Fields

The TBEGIN instruction has a set of operand fields (see figure

2). The General Register Save Mask (GRSM) is an 8 bit field,

each bit corresponding to an even/odd pair of the 16 General

Registers (GRs). At the execution of the outermost TBEGIN, the

pairs indicated with a ’1’ in the mask are saved, and are restored to

their pre-TBEGIN content in the case of transaction abort. GR-pairs

not indicated in the mask keep their current value in case of abort

(this is an exception to the ”all or nothing” atomicity rule, since

modified state survives the abort). Saving only a subset of GRs

during TBEGIN speeds up execution, and not restoring all GRs

during abort provides information for debugging and analysis.

The IBM z/Architecture supports additional register sets, namely

Access Registers (ARs) and Floating-Point Registers (FPRs), for

which no save/restore mechanism is provided - it is up to software
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to save necessary registers before entering a transaction, and to

restore those registers in the abort handler.

Some software may expect ARs or FPRs to not be modified

and thus does not provide save/restore in the abort handler. But

when calling a sub-routine — potentially in a linked library — the

sub-routine might inadvertently change one of those registers. Even

worse, a sub-routine might for example use an AR as scratch space

and later restore it. This is not observable if the transaction does

not abort, but in the (rare) case of an abort while the register is

modified, unpredictable results may occur due to modified register

content after the abort. Such failures may be rare and extremely

difficult to debug. To protect against such situations, the TBEGIN

instruction provides AR and FPR modification control bits. Any

instruction attempting to modify an AR or FPR, respectively, leads

to a restricted-instruction abort if the respective control bit is ’0’.

For nested transactions, the effective control is the ’AND’ of all

control bits in the nest.

C. Interruption Filtering

When a program-exception condition is detected during normal

program execution, an interruption into the operating system oc-

curs. The PSW at which the exception is detected is stored as

program-old PSW, and a program-new PSW pointing to the OS

interrupt handler is loaded. The OS can then service the interrupt

(e.g. page in memory from disk) and then return to program

execution by loading the saved program-old PSW into the PSW.

(The same concept is used for other interruptions like I/O, but we

omit the details here.)

The transactional memory architecture provides control over

whether certain exceptions detected during a transaction actually

lead to a program interruption into the OS, or whether the interrup-

tion is filtered. In both cases the transaction is first aborted. If an

interruption into the OS occurs, the program-old PSW will point to

the instruction after the TBEGIN with a non-zero condition code.

That way, when the OS returns control to the program, the program

knows to execute the abort handler before potentially retrying the

transaction. In the case of a filtered interruption, the condition code

is also non-zero, and the program continues execution after the

outermost TBEGIN without first trapping into the OS.

Exceptions are categorized into 4 groups. First, some exceptions

can never occur during transactional execution, for example since

they are related to specific instructions that are restricted in trans-

actions. Second is a group of exceptions that is always considered

a programming error and thus is always causing interruption into

the OS; examples include undefined instruction op-codes in the in-

struction stream. Third is a group of exceptions related to accessing

of memory, for example page fault exceptions. Fourth is a group

of exceptions related to arithmetic and data, e.g. divide-by-zero or

overflow exceptions. The third and fourth group of exceptions can

be filtered under the control of the Program Interruption Filtering
Control (PIFC) field of the TBEGIN instruction. Values 0 to 2 in

this field correspond to no filtering, filtering of group 4 only, and

filtering of groups 3 and 4, respectively. In a nested transaction,

the effective PIFC is the highest value of all TBEGINs in the nest.

Interruption filtering is useful in many speculative program

optimizations, e.g. by not performing null-pointer checks before

accessing data, or not performing NaN or zero checks before per-

forming computations. Instead these (depending on the program)

TBEGINC *begin constrained transaction
...perform operation...
TEND *end transaction
...

Figure 3: Constrained transaction example

rare conditions can be treated in the transaction abort handler,

improving performance for the normal case and penalizing the

rare case only. Of course null-pointer or NaN checking are only

examples; once the infrastructure is available, the compiler can

perform general if-then-else speculation and other optimization

using the same concepts [14].

It is important for the program to adhere to certain rules when

using interruption filtering. For example, a filtered page fault

encountered during a transaction is not reported to the OS; if the

abort handler does not access the same memory locations non-

transactionally, the program may never trap the page fault into the

OS, the page fault will never be resolved, and thus the transaction

continues to fail every time it is executed. Exceptions related to

instruction fetching are never filtered. The program-old PSW will

indicate a transient abort condition code of 2, so that the program

usually repeats the transaction immediately after the OS handled

the interrupt. If instruction fetching exceptions were filtered, a page

fault on an instruction page that is only used during transactional

execution would never be resolved by the OS and always cause

that transaction code to abort.

D. Constrained Transactions

Transactions started with TBEGIN are not assured to ever

successfully complete with TEND, since they can experience

an aborting condition at every attempted execution, e.g. due to

repeating conflicts with other CPUs. This requires that the program

supports a fallback path to perform the same operation non-

transactionally, e.g. by using traditional locking schemes. This puts

significant burden on the programming and software verification

teams, especially where the fallback path is not automatically

generated by a reliable compiler.

Many transactions operating on shared data structures are ex-

pected to be short, touch only few distinct memory locations, and

use simple instructions only. For those transactions, the concept

of constrained transactions is available; under normal conditions,

the CPU assures that constrained transactions eventually end suc-

cessfully, albeit without giving a strict limit on the number of

necessary retries. A constrained transaction starts with a TBEGINC

instruction and ends with a regular TEND. Implementing a task

as constrained or non-constrained transaction typically results in

very comparable performance, but constrained transactions simplify

software development by removing the need for a fallback path.

A transaction initiated with TBEGINC must follow a list of

programming constraints; otherwise the program takes a non-

filterable constraint-violation interruption. The constraints include:

the transaction can execute a maximum of 32 instructions, all

instruction text must be within 256 consecutive bytes of memory;

the transaction contains only forward-pointing relative branches

(hence no loops or sub-routine calls); the transaction can access

a maximum of 4 aligned octowords (32 bytes) of memory; and

restriction of the instruction-set to exclude complex instructions
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like decimal or floating-point operations. The constraints are

chosen such that many common operations like double-linked

list-insert/delete operations can be performed, including the very

powerful concept of atomic compare-and-swap targeting up to 4

aligned octowords. At the same time the constraints were chosen

conservatively such that future CPU implementations can assure

transaction success without needing to adjust the constraints, since

that would otherwise lead to software incompatibility.

TBEGINC mostly behaves like TBEGIN, except that the FPR

control and the program interruption filtering fields do not exist

and the controls are considered to be zero. On a transaction abort,

the instruction address is set back directly to the TBEGINC instead

to the instruction after, reflecting the immediate retry and absence

of an abort path for constrained transactions.

Nested transactions are not allowed within constrained transac-

tions, but if a TBEGINC occurs within a non-constrained transac-

tion it is treated as opening a new non-constrained nesting level

just like TBEGIN would. This can occur e.g. if a non-constrained

transaction calls a sub-routine that uses a constrained transaction

internally.

Since interruption filtering is implicitly off, all exceptions during

a constrained transaction lead to an interruption into the OS.

Eventual successful finishing of the transaction of course relies on

the capability of the OS to page-in the at most 4 pages touched by

any constrained transaction. The OS must also ensure time-slices

long enough to allow the transaction to complete.

Figure 3 shows the constrained-transactional implementation of

the code in figure 1, assuming that the constrained transactions

does not interact with other locking-based code. No lock testing

is shown therefore, but could, of course, be added if constrained

transactions and lock-based code were mixed.

E. Debugging Features

Reliable software is essential for enterprise class computing,

and transactional memory poses interesting challenges to how

software debugging and testing is performed during the software

development cycle and during field failure analysis. Significant

effort was spent on the development of architectural features to

support debugging and testing.

1) Transaction Diagnostic Block: The TBEGIN instruction has

an optional address operand called the Transaction Diagnostic
Block (TDB) Address. The TDB is not used during normal trans-

action processing, but if a transaction aborts and a TDB Address

is specified on the outermost TBEGIN, detailed information about

the abort is stored in the TDB. The TDB is 256 bytes in length,

and its fields include: (i) Transaction Abort Code, indicating the

detailed reason for the abort; (ii) Conflict Token, providing the

address that caused a conflict with another CPU; this field cannot

always be provided and there is a bit indicating the validity;

(iii) Aborted-Transaction Instruction Address, indicating the IA

at which the abort was detected; (iv) Exception information like

Program Interruption Code and Translation Exception Address; (v)

the content of all GRs at the time of abort; and (vi) CPU spe-

cific information not formally architected. The last item provides

detailed CPU-generation dependent information on the details of

why the transaction aborted, and which path the program took from

the outermost TBEGIN to the abort IA.

It is expected that extracting the information and storing the

TDB on transaction abort takes a number of CPU cycles, and

thus only code in debug/test or with extremely low abort rates

will enable TDBs on performance-sensitive transactions. During

initial hardware validation of the transactional facility, the infor-

mation in the TDB was invaluable for debugging test program

and hardware/firmware problems. We expect similar usefulness for

debugging application code.

A second copy of the TDB is stored into the processor prefix

area (a memory area containing reserved locations specific for each

CPU in the system) on every abort due to a program interruption;

this is valuable for post-mortem failure analysis after a program

ended abnormally, e.g. on an access exception.

2) PER: In z/Architecture, traditionally Program Event Record-

ing provides a hardware mechanism to trigger a program interrup-

tion for certain events. The supported events include stores into a

specified memory range, execution of instructions from a specified

memory range, and branching into a specified memory range. This

mechanism is used extensively for software debugging, for example

in z/OS SLIP traps, or in GDB under Linux for setting break- or

watch-points.

Detection of a PER event inside a transaction causes a transaction

abort and a non-filterable interruption into the OS. Two new

features are added to PER for transactional memory: (i) PER
Event Suppression suppresses any PER event while running in

transactional mode, and (ii) the new PER TEND event triggers

on successful execution of an outermost TEND instruction.

For example, if a debugger is running in single instruction

mode, a PER instruction-fetch event is enabled for the entire

address range. PER event suppression can be used to avoid aborting

every single transaction on the first instruction after the TBEGIN.

This effectively makes entire transactions look like single ”big

instructions” in the single-step mode.

Another use case of PER is monitoring for stores into a specific

memory range for implementing watch-points. Without event sup-

pression, a transaction modifying memory in the monitored range

always aborts and eventually takes the fallback path. To enable

debugging of the transactional code itself, event suppression can

be enabled alongside the new PER TEND-event, which triggers at

the ending of every transaction. The debugger can then check all

active watch-points for whether the memory content changed and

enter the interactive debugging mode in that case.

For constrained transactions, it is up to the OS to enable event

suppression after a PER event caused a transaction abort, in order

to enable the transaction to complete on the next retry. The OS

can use PER TEND to disable event suppression after successful

transaction completion.

3) Transaction Diagnostic Control: Most transactions will abort

only infrequently, and the point of abort inside the transaction

may be non-uniformly distributed. For example, certain instructions

cause conflicts with other CPUs more frequently than other instruc-

tions. This creates unique debugging and testing challenges. The

abort path and fallback path might be sparsely exercised leading to

poor testing coverage. Also, the random distribution of the abort

point may lead to unusual corner cases after the abort if residual

state survives the abort (for example non-restored registers). This

may lead to program failures that are very hard to reproduce and

to debug.
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In order to enhance the testing coverage of the abort path and to

protect against untested corner cases, the Transaction Diagnostic

Control is provided to force random aborts. At one setting, the

CPU is instructed to often, randomly abort transactions at a random

point. At a more aggressive setting, the CPU is instructed to

abort every transaction at a random point but at latest before the

outermost TEND instruction. The latter setting can be used to stress

the reaching of the retry-threshold and force the non-transactional

fallback path to be used. This more aggressive setting is treated

like the less aggressive setting for constrained transactions. The

Transaction Diagnostic Control can be enabled by the OS for

testing specific programs.

III. IMPLEMENTATION

The main implementation components of the transactional mem-

ory facility are a transaction-backup register file for holding pre-

transaction GR content, a cache directory to track the cache

lines accessed during the transaction, a store cache to buffer

stores until the transaction ends, and firmware routines to perform

various complex functions. In this section we describe the detailed

implementation.

A. System Background

The transactional execution facility is first implemented in the

IBM zEC12 processor [1], the successor of the z196 processor

described in [20]. The processor can decode 3 instructions per clock

cycle; simple instructions are dispatched as single micro-ops, and

more complex instructions are cracked into multiple micro-ops.

The micro-ops are written into a unified issue queue, from where

they can be issued out-of-order. Up to two fixed-point, one floating-

point, two load/store, and two branch instructions can execute every

cycle. A Global Completion Table (GCT) holds every micro-op.

The GCT is written in-order at decode time, tracks the execution

status of each micro-op, and completes instructions when all micro-

ops of the oldest instruction group have successfully executed.

The L1 data cache is a 96KB 6-way associative cache with 256

byte cache-lines and 4 cycle use-latency, coupled to a private 1MB

8-way associative 2nd-level data cache with 7 cycles use-latency

penalty for L1 misses. Both L1 and L2 caches are store-through.

Six cores on each CP chip share a 48MB 3rd-level store-in cache,

and six CP chips are connected to an off-chip 384MB 4th-level

cache, packaged together on a glass-ceramic multi-chip module

(MCM). Up to 4 MCMs can be connected to a coherent SMP

system with up to 144 cores (not all cores are available to run

customer workload).

Coherency is managed with a variant of the MESI protocol.

Cache-lines can be owned read-only (shared) or exclusive; the L1

and L2 are store-through and thus do not contain dirty lines. The

L3 and L4 caches are store-in and track dirty states. Each cache is

inclusive of all its connected lower level caches.

Coherency requests are called cross interrogates (XI) and are

sent hierarchically from higher-level to lower-level caches, and

between the L4s. When one core misses the L1 and L2 and requests

the cache line from its local L3, the L3 checks whether it owns the

line, and if necessary sends an XI to the currently owning L2/L1

under that L3 to ensure coherency, before it returns the cache line

to the requestor. If the request also misses the L3, the L3 sends a

request to the L4 which enforces coherency by sending XIs to all

necessary L3s under that L4, and to the neighboring L4s. Then the

L4 responds to the requesting L3 which forwards the response to

the L2/L1.

Note that due to the inclusivity rule of the cache hierarchy,

sometimes cache lines are XI’ed from lower-level caches due to

evictions on higher-level caches caused by associativity overflows

from requests to other cache lines. We call those XIs LRU XIs.

Demote-XIs transition cache-ownership from exclusive into

read-only state, and Exclusive-XIs transition cache-ownership from

exclusive into invalid state. Demote- and Exclusive-XIs need a

response back to the XI sender. The target cache can accept the XI,

or send a reject response if it first needs to evict dirty data before

accepting the XI. The L1/L2 are store through, but may reject

demote- and exclusive XIs if they have stores in their store queues

that need to be sent to L3 before downgrading the exclusive state.

A rejected XI will be repeated by the sender. Read-only-XIs are

sent to caches that own the line read-only; no response is needed

for such XIs since they cannot be rejected. The details of the SMP

protocol are very similar to those described for the IBM z10 in

[21].

B. Transactional Instruction Execution

The instruction decode unit (IDU) keeps track of the current

transaction nesting depth (TND, see figure 4). When the IDU

receives a TBEGIN instruction, the nesting depth is incremented,

and conversely decremented on TEND instructions. The nesting

depth is written into the GCT for every dispatched instruction.

When a TBEGIN or TEND is decoded on a speculative path that

later gets flushed, the IDU’s nesting depth is refreshed from the

youngest GCT entry that is not flushed. The transactional state is

also written into the issue queue for consumption by the execution

units, mostly by the Load/Store Unit (LSU).

Similar to the nesting depth, the IDU/GCT collaboratively track

the AR/FPR-modification masks through the transaction nest; the

IDU can place an abort-request into the GCT when an AR/FPR-

modifying instruction is decoded and the modification mask blocks

that. When the instruction becomes next-to-complete, completion

is blocked and the transaction aborts. Other restricted instructions

are handled similarly, including TBEGIN if decoded while in a

constrained transaction, or exceeding the maximum nesting depth.

An outermost TBEGIN is cracked into multiple micro-ops de-

pending on the GR-Save-Mask; each micro-op will be executed

by one of the two FXUs to save a pair of GRs into a special

transaction-backup register file, that is used to later restore the GR

content is case of a transaction abort. Also the TBEGIN spawns

micro-ops to perform an accessibility-test for the TDB if one is

specified; the address is saved in a special purpose register for

later usage in the abort case. At the decoding of an outermost

TBEGIN, the instruction address and the instruction text of the

TBEGIN are also saved in special purpose registers for a potential

abort processing later on.

TEND and NTSTG are single micro-op instructions; NTSTG

is handled like a normal store except that it is marked as non-

transactional in the issue queue so that the LSU can treat it

appropriately. TEND is a no-op at execution time, the ending of

the transaction is performed when TEND completes.

As mentioned, instructions that are within a transaction are

marked as such in the issue queue, but otherwise execute mostly
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unchanged; the LSU performs isolation tracking as described in

the next section.

Since decoding is in-order, and since the IDU keeps track of the

current transactional state and writes it into the issue queue along

with every instruction from the transaction, execution of TBEGIN,

TEND, and instructions before, within, and after the transaction can

be performed out-of-order. It is even possible (though unlikely) that

TEND is executed first, then the entire transaction, and lastly the

TBEGIN executes. Of course program order is restored through the

GCT at completion time. The length of transactions is not limited

by the size of the GCT, since GRs can be restored from the backup

register file.

During execution, the PER events are filtered based on the Event

Suppression Control, and a PER TEND event is detected if enabled.

Similarly, while in transactional mode, a pseudo-random generator

may be causing the random aborts as enabled by the Transaction

Diagnostics Control.

C. Tracking for Transactional Isolation

The Load/Store Unit tracks cache lines that were accessed during

transactional execution, and triggers an abort if an XI from another

CPU (or an LRU-XI) conflicts with the footprint. If the conflicting

XI is an exclusive or demote XI, the LSU rejects the XI back to the

L3 in the hope of finishing the transaction before the L3 repeats

the XI. This stiff-arming is very efficient in highly contended

transactions. In order to prevent hangs when two CPUs stiff-arm

each other, a XI-reject counter is implemented, which triggers a

transaction abort when a threshold is met.

The L1 cache directory is traditionally implemented with

SRAMs. For the transactional memory implementation, the valid

bits (64 rows x 6 ways) of the directory have been moved into

normal logic latches, and are supplemented with two more bits per

cache line: the tx-read and tx-dirty bits.

The tx-read bits are reset when a new outermost TBEGIN

is decoded (which is interlocked against a prior still pending

transaction). The tx-read bit is set at execution time by every load

instruction that is marked transactional in the issue queue. Note that

this can lead to over-marking if speculative loads are executed, for

example on a mispredicted branch path. The alternative of setting

the tx-read bit at load completion time was too expensive for silicon

area, since multiple loads can complete at the same time, requiring

many read-ports on the load-queue.
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Stores execute the same way as in non-transactional mode, but

a transaction mark is placed in the store queue (STQ) entry of the

store instruction. At writeback time, when the data from the STQ

is written into the L1, the tx-dirty bit in the L1-directory is set

for the written cache line. Store writeback into the L1 occurs only

after the store instruction has completed, and at most one store is

written back per cycle. Before completion and writeback, loads can

access the data from the STQ by means of store-forwarding; after

write-back, the CPU can access the speculatively updated data in

the L1. If the transaction ends successfully, the tx-dirty bits of all

cache-lines are cleared, and also the tx-marks of not yet written

stores are cleared in the STQ, effectively turning the pending stores

into normal stores.

On a transaction abort, all pending transactional stores are

invalidated from the STQ, even those already completed. All cache

lines that were modified by the transaction in the L1, that is,

have the tx-dirty bit on, have their valid bits turned off, effectively

removing them from the L1 cache instantaneously.

As described in Section 2, the architecture requires that before

completing a new instruction we ensure that isolation of the trans-

action read- and write-set is maintained. This is ensured by stalling

instruction completion at appropriate times when XIs are pending;

we allow speculative out-of-order execution, optimistically assum-

ing that the pending XIs are to different addresses and not actually

cause a transaction conflict. This design fits very naturally with the

XI-vs-completion interlocks that are implemented on prior systems

to ensure the strong memory ordering that the architecture requires

[22].

When the L1 receives an XI, it accesses the directory to check

validity of the XI’ed address in the L1, and if the tx-read bit

is active on the XI’ed line and the XI is not rejected, the LSU

triggers an abort. When a cache line with active tx-read bit is

LRU’ed from the L1, a special LRU-extension vector remembers

for each of the 64 rows of the L1 that a tx-read line existed on

that row. Since no precise address tracking exists for the LRU

extensions, any non-rejected XI that hits a valid extension row the

LSU triggers an abort. Providing the LRU-extension effectively

increases the read footprint capability from the L1-size to the

L2-size and associativity, provided no conflicts with other CPUs

against the non-precise LRU-extension tracking causes aborts;

section 4 contains statistical analysis of the effectiveness of the

LRU extension.

The store footprint is limited by the store cache size (next

section) and thus implicitly by the L2 size and associativity. No

LRU-extension action needs to be performed when a tx-dirty cache

line is LRU’ed from the L1.

D. Store Cache

In prior systems, since the L1 and L2 are store-through caches,

every store instruction causes an L3 store access; with now 6

cores per L3 and further improved performance of each core, the

store rate for the L3 (and to a lesser extent for the L2) becomes

problematic for certain workloads. In order to avoid store queuing

delays a gathering store cache had to be added, that combines stores

to neighboring addresses before sending them to the L3.

For transactional memory performance, it is acceptable to kill

every tx-dirty cache line from the L1 on transaction aborts, because

the L2 cache is very close (7 cycles L1 miss penalty) to bring back

the clean lines. It would however be unacceptable for performance

(and silicon area for tracking) to have transactional stores write the

L2 before the transaction ends and then kill all dirty L2 cache lines

on abort (or even worse on the shared L3).

The two problems of store bandwidth and transactional memory

store handling can both be addressed with the gathering store cache.

The cache is a circular queue of 64 entries, each entry holding

128 bytes of data with byte-precise valid bits. In non-transactional

operation, when a store is received from the LSU, the store cache

checks whether an entry exists for the same address, and if so

gathers the new store into the existing entry. If no entry exists,

a new entry is written into the queue, and if the number of free

entries falls under a threshold, the oldest entries are written back

to the L2 and L3 caches.

When a new outermost transaction begins, all existing entries

in the store cache are marked closed so that no new stores can

be gathered into them, and eviction of those entries to L2 and

L3 is started. From that point on, the transactional stores coming

out of the LSU STQ allocate new entries, or gather into existing

transactional entries. The writeback of those stores into L2 and L3

is blocked, until the transaction ends successfully; at that point

subsequent (post-transaction) stores can continue to gather into

existing entries, until the next transaction closes those entries again.

The store cache is queried on every exclusive or demote XI,

and causes an XI reject if the XI compares to any active entry. If

the core is not completing further instructions while continuously

rejecting XIs, the transaction is aborted at a certain threshold to

avoid hangs.

The LSU requests a transaction abort when the store cache

overflows. The LSU detects this condition when it tries to send

a new store that cannot merge into an existing entry, and the entire

store cache is filled with stores from the current transaction. The

store cache is managed as a subset of the L2: while transactionally

dirty lines can be evicted from the L1, they have to stay resident

in the L2 throughout the transaction. The maximum store footprint

is thus limited to the store cache size of 64 x 128 bytes, and it is

also limited by the associativity of the L2. Since the L2 is 8-way

associative and has 512 rows, it is typically large enough to not

cause transaction aborts.

If a transaction aborts, the store cache is notified and all entries

holding transactional data are invalidated. The store cache also has

a mark per doubleword (8 bytes) whether the entry was written

by a NTSTG instruction - those doublewords stay valid across

transaction aborts.

E. Millicode-implemented functions

Traditionally, IBM mainframe server processors contain a layer

of firmware called millicode which performs complex functions

like certain CISC instructions, interruption handling, system syn-

chronization, and RAS. Firmware resides in a restricted area

of main memory that customer programs cannot access. When

hardware detects a situation that needs to invoke millicode, the

instruction fetching unit switches into millicode mode and starts

fetching at the appropriate location in the millicode memory area.

For transactional memory, millicode is involved in various

complex situations. Every transaction abort invokes a dedicated

millicode sub-routine to perform the necessary abort steps. The
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transaction-abort millicode starts by reading special-purpose regis-

ters (SPRs) holding the hardware-internal abort reason, potential

exception reasons, and the aborted instruction address, which

millicode then uses to store a TDB if one is specified. The TBEGIN

instruction text is loaded from an SPR to obtain the GR-save-mask,

which is needed for millicode to know which GRs to restore. The

CPU supports a special millicode-only instruction to read out the

backup-GRs and copy them into the main GRs. The TBEGIN

instruction address is also loaded from an SPR to set the new

instruction address in the PSW to continue execution after the

TBEGIN once the millicode abort sub-routine finishes. That PSW

may later be saved as program-old PSW in case the abort is caused

by a non-filtered program interruption.

The TABORT instruction is millicode implemented; when the

IDU decodes TABORT, it instructs the instruction fetch unit to

branch into TABORT’s millicode, from which millicode branches

into the common abort sub-routine.

The Extract Transaction Nesting Depth (ETND) instruction is

also millicoded, since it is not performance critical; millicode loads

the current nesting depth out of a special hardware register and

places it into a GR.

The PPA instruction is millicoded; it performs the optimal delay

based on the current abort count provided by software as an

operand to PPA, and also based on other hardware internal state.

For constrained transactions, millicode keeps track of the number

of aborts. The counter is reset to 0 on successful TEND completion,

or if an interruption into the OS occurs (since it is not known if or

when the OS will return to the program). Depending on the current

abort count, millicode can invoke certain mechanisms to improve

the chance of success for the subsequent transaction retry. The

mechanisms involve, for example, successively increasing random

delays between retries, and reducing the amount of speculative

execution to avoid encountering aborts caused by speculative

accesses to data that the transaction is not actually using. As a last

resort, millicode can broadcast to other CPUs to stop all conflicting

work, retry the local transaction, before releasing the other CPUs to

continue normal processing. Multiple CPUs must be coordinated

to not cause deadlocks, so some serialization between millicode

instances on different CPUs is required.

IV. PERFORMANCE EVALUATION

We conducted a set of experiments to measure the performance

of transactional memory in comparison to lock-based concurrency,

over a range of realistic and artificial conditions. We used micro-

benchmarks for these experiments since application-level transac-

tional memory exploitation is still in development. The benchmarks

use different pools of shared variables ranging from a single

variable to 10k variables, each on a separate cache line. Each CPU

repeatedly picks either 1 or 4 random variables from the pool and

increments the chosen variable(s). If the pool consists of only 1

variable, we use 4 consecutive cache lines for the tests that update

4 variables.

We use both coarse and fine grained locking for comparison with

transactional memory. For coarse-grained locking, we use a single

lock for the entire pool. For fine-grained locking, we define a lock

for each variable, each lock sitting on a separate cache line. In both

cases we use a simple mutex algorithm, which first tests the lock

to be empty and spins if necessary, then uses compare-and-swap

to set the lock, which starts over if not successful; the unlock uses

a simple store to unset the lock.

For non-constrained transactions, we use the code from figure 1;

for the fallback lock we use the single coarse-grained lock in all

experiments. The constrained transaction code from figure 3 does

not need fallback locks.

Each CPU independently picks random variables and performs

the incrementing on the shared variables. We use the Store Clock
Fast instruction to measure the time between each lock/tbegin and

unlock/tend, but exclude the overhead such as random number

generation from the results. The overhead is significant for small

numbers of CPUs since the path length for lock/update/unlock is

very short compared to computing four random variables. From the

measured times we compute the system throughput as the quotient

of the number of CPUs divided by the average time per update.

All results are normalized to a throughput of 100 for 2 CPUs

concurrently updating a single variable from a pool of 1 variable.

Contention for most objects is relatively low in typical com-

mercial applications, and if an object is accessed once it likely

will be accessed again by the same CPU. As a result, many lock

obtain/release operations are performed with L1-cache hits and thus

are very fast. It was important in the design of transactional mem-

ory that starting and ending a transaction has similar overhead as

locking and releasing a lock that is in the L1-cache; otherwise any

performance gain from better behavior on contended locks could

have been eroded by non-contended locks. Our experiments cover

this case by having only a single CPU participate, and by setting

the pool size to a single cache line. In that experiment, transactions

outperform locks by 30%. This is mostly due to the longer path

length of the lock and release code. The results also show that the

overhead of testing the lock in the non-constrained transaction (see

figure 1) is insignificant since the branch is perfectly predictable

in this case; the performance difference between constrained and

non-constrained transactions is 0.4%.

One major drawback of lock-based methods is the complexity

involved with fine-grained locking. For example, in the case of

updating 4 random variables, the programmer would have to ensure

that locks are acquired in a certain order to prevent deadlocks,

which in practice can be very hard, e.g. when the objects involved

in an operation are not all known a priori. Thus one major use

case of transactions is to allow fine grained concurrency in cases

where fine-grained locking is hard to achieve. Figure 5(a) shows

the performance of updating 4 random variables from a large pool

(1k and 10k entries), using transactions versus using a coarse lock.

For small numbers of CPUs, the performance grows slightly as

CPUs are added since the entire pool does not fit into a single

CPU’s cache, and some cache miss penalty can be hidden under the

lock-waiting. But as expected, coarse grain locking leads to very

poor throughput when the number of CPUs grows further (note

the step-functions as the number of CPUs crosses the chip and

MCM boundaries). In contrast, transactions scale very well. Even

at 100 CPUs, the performance is not limited by the concurrency, but

by the cache miss penalty that almost every iteration incurs when

accessing a cache line that was previously accessed by another

CPU: at 100 CPUs, the throughput with TBEGINC is 99.8% of

the throughput without any locking scheme.

While not particularly interesting for real-world commercial

applications, we also studied the performance of transactions versus
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Figure 5: Performance Results

locks for very high contention cases. As can be seen in figure 5(a),

when using a pool of 1000 lines, the throughput using TBEGIN

drops steeply after the number of CPUs reaches a threshold,

but still exceeds the locking performance. Figure 5(b) shows the

performance of updating a single variable from a very small pool

of only 10 variables. As expected, coarse grain locks yield very

poor throughput. The throughput is better with fine grained locks,

although it does not grow much with the number of CPUs and

declines with more than 10 CPUs. In contrast, with transactions,

the throughput grows up to 24 CPUs (the size of the MCM node

in the tested system) and holds steady beyond, and transactions

out-perform locks across the entire CPU range. Figure 5(c) shows

updating of 4 variables from a pool of 10. With up to 6 CPUs,

transactions behave slightly better than a coarse grained lock. But

as the number of CPUs and such the contention grows further, locks

perform better, not dropping as steeply as transactions. The reason

for the difference between single-variable and four-variable updates

is that for the latter case a CPU must receive all 4 lines into the

L1 cache before it can commit the transaction; after the first line

is received, the increment instruction for that variable can execute

out-of-order. The transaction then becomes subject to conflicts on

that cache line while the CPU is waiting for the other cache lines.

This leads to a high abort rate, which means that many cache line

transfers in the system are wasted. In contrast, as soon as a CPU

obtains a lock, that CPU is guaranteed to finish the update on all

4 lines and thus less cache bandwidth is wasted.

It is interesting to note that under extreme contention, con-

strained transactions behave better than non-constrained transac-

tions. This is because the CPU turns off speculative fetching

after a certain number of aborts for constrained transactions,

preserving some cache bandwidth which helps throughput. We did

not implement this feature for performance reasons, but in order

to guarantee eventual success for constrained transactions.

The above test cases all update shared variables. Another impor-
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tant case is reading of shared variables. Traditionally a read-write

lock is used if updates are relatively rare. This allows shared access

to the variables by multiple CPUs while no updates are in progress.

Typical implementations of read-write locks require updating of the

lock-word every time a reader enters or leaves its critical section, in

order to keep track of how many readers are in-flight. The update

of the read-count causes the lock-word to be transferred between

CPUs, which limits the throughput significantly (see figure 5(d)).

Transactions avoid this problem since they only need to check the

write-count to be 0, without updating the read-count. If a writer

enters during the transaction, the writer’s update of the write-count

causes all reader transactions to abort, but as long as no writers

appear, all CPUs can share the read/write count cache line. This

leads to almost linear performance improvement with the number

of CPUs.

Figure 5(e) shows the performance of a more real-world ex-

ample. The IBM Java team has prototyped an optimization in

the IBM Testarossa JIT to automatically elide locks used for

Java synchronized sections. This optimization has been shown to

transparently improve the scalability of widely used standard data

structures such as java/util/hashtable. Multiple software

threads run under z/OS, accessing the hash table for reading and

writing. As can be seen in figure 5(e), the performance using locks

is flat, whereas the performance grows almost linearly with the

number of threads using transactions.

In another experiment (not shown in figure 5), the Java team has

implemented the ConcurrentLinkedQueue using constrained

transactions. The throughput using transactions exceeds locks by a

factor of 2. In [23], the IBM XL C/C++ team compares a subset

of the STAMP benchmarks using pthread locks and transactions.

Depending on the benchmark application, transactional execution

improves performance by factors between 1.2 and 7.

As described in section 3.3, the L1 cache employs a LRU-

extension scheme to enhance the supported fetch footprint beyond

the L1 cache size. Figure 5(f) shows the statistical abort rate (%)

from associativity conflicts with n=1. . . 800 accesses to random

congruence classes. As can be seen, the abort rate for large transac-

tions is significantly reduced when the footprint limitation is moved

from the L1 cache to the L2 cache, as is done by the L1 cache LRU

extension scheme. Of course, very large and long transactions may

suffer from other abort reasons like conflicts with other CPUs, LRU

evictions from higher level caches, or asynchronous interrupts.

These effects limit the practical transaction size. Learning over time

will show exactly how to best tailor transactions, but we feel that

with the LRU extension, the read footprint will not be a limitation.

V. SUMMARY

We have described the instruction-set architecture and implemen-

tation of the transactional memory feature of the latest mainframe

server processor in the IBM zEC12 system. Special focus was

put on software test and debug, as well as the introduction of

transactional memory support into an existing SMP and micropro-

cessor design. The transactional memory feature is defined so that

integration into existing large-scale software products can be done

without a complete software redesign. For example we have shown

how transactions and locks can co-exist by eliding locks using

transactions. The introduction of constrained transactions eases the

explitation of transactional memory be removing the need for a

lock-based fallback path.

We have evaluated the performance on a set of micro-

benchmarks, and under realistic contention, the performance of the

transactional memory system meets our expectations and clearly

exceeds the performance of traditional lock based methods, in

some cases significantly. Preliminary performance experiments

with examples like a parallel hash table are very promising and

show almost linear n-way scalability.

The IBM compiler development teams are involved in ongoing

development for support of transactional memory in various pro-

gramming languages. In [24], the support of transactional memory

in IBM’s XL C/C++ compiler is described. The operating systems

and middleware development groups are aggressively identifying

opportunities to improve the scaling of hot-spots. Transactional

memory is a very promising new tool for improving parallel

software scalability, that is driving innovation in both hardware

and software design now and in the future.
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