Speculative Versioning Cache

Sridhar Gopal, T. N. Vijaykumar, James E. Smith and Gurindar S. Sohi
gsri,vijay@s.w sc. edu, jes@ce.w sc. edu, sohi @s.w sc. edu
University of Wisconsin-Madison, USA

July 14 1997

Abstract

During the execution of a sequential program, dependemsedving loads and stores are ambiguous until their addgess

are known. Ambiguous memory dependences impede the égtraaft instruction level parallelism. Memory dependence
speculation is a hardware technique to overcome ambiguamany dependences. This technique enables processors to
execute loads and stores before the addresses of preceddwydnd stores are known. When a store address is knowatéfra |
load to the same address is found, a misspeculation is poEtednisspeculation is handled similar to a branch misptixti.
Store values are buffered and committed in program ordeiftie uncommitted stores to a memory location create rpldti
versions of the location. Program order among the versistisacked to maintain sequential semantics, i.e., theaessire
committed in the correct order and loads are supplied withect versions. The problem of maintaining sequential sgins
in the presence of multiple speculative versions of memaegtions is called speculative versioning of memory.

Most modern microprocessors dispatch instructions fromgle dynamic instruction stream and maintain a time-ardgr
of the versions using load-store queues. The queues suamimple form of speculative versioning. Several recent pro
posed processors including the Multiscalar processor amgleschip multiprocessors, however, partition the sindy@amic
instruction stream into multiple fragments and dispataséhfragments to multiple processing units (PUs). Suclattbi-
cal processor designs naturally lead to hierarchical mgroayanizations. But load-store queues are not designedpioost
speculative versioning in hierarchical organizationse Rudress Resolution Buffer (ARB) has been proposed to geothis
support. The ARB uses a single shared buffer connected theaPUs and hence, every memory access incurs the latency of
the interconnection network. The shared buffer is a paabtindwidth bottleneck.

Our proposal, called the Speculative Versioning Cache (S¥@htains a private cache with each PU organized similar to
cache coherent Symmetric Multiprocessor. The SVC conedlgtunifies cache coherence and memory dependence specula-
tion. The SVC eliminates the latency and bandwidth problefrise ARB. A preliminary experimental evaluation of SPEC95
benchmarks shows that (i) hit latency is an important faeftecting performance (even for a latency tolerant proocebke
the multiscalar) and, (ii) private cache solutions traffeait rate for hit latency to achieve performance. The expents show
that the SVC performs up to 8% better than an ARB without amklmntention.

Keywords: Dependence Speculation, Memory Disambiguation, Multiscalar, Memoryoviang, Multiple Reader Multi-
ple Writer protocol.

1 Introduction

Modern microprocessors extract instruction level parallelism (ILPinfequential programs by issuing instructions from
an active instruction window. Data dependences among instructions, atftenariginal program order, determine when an
instruction may be issued from the window. Dependences involvirigtezglata are detected easily because register designators
are completely specified within instructions. However, dependences ingatvemory data (e.g. between a load and a store or
two stores) are ambiguous until the memory addresses are computed.

A straightforward solution to the problem of ambiguous memory ddpenes is to execute memory instructions in program
order, as soon as their addresses can be determined. Store instructibribéwiaddresses) are then held in buffers. Buffered
store instructions may have to wait for their data to become availalddpamplement precise interrupts, store instructions are

not allowed to complete and commit their results to memory until all precgidistructions are known to be free of exceptions.

For performance reasons, however, loads are allowed to pass buffered atolasg as they are to different addresses. If a
load is to the same address as a buffered store, it can use data bypasséw fstoret, when the data becomes available. A key
element of this straightforward approach is that a load instructiontisaoed until the addresses of all the preceding stores are
determined. This approach may diminish ILP unnecessarily, especially @otheon case where the load is not dependent on
preceding stores.

More aggressive uniprocessor implementations [8, 6, 2] issue Isadiations as soon as their addresses are known, even
though the addresses of all previous stores may not be known. Bydssioad in this manner, these implementations speculate
that it does not depend on previous stores; this form of speculattatiéex memory dependence speculation. Furthermore, one
can envision issuing and computing store addresses out of order. Me@pendence speculation can enable higher levels of
ILP, but it means there must be more advanced mechanisms to suppagpeitusegion and to recover from the misspeculations
that inevitably occur. And it means that a significant amount of storerdat be buffered and committed in correct program
order.

Prior to being committed, each store to a memory location creates a new specwdasionof that memory location.
Multiple speculative stores to a memory location create multiple spégeilarsions of the location. Program order between
the multiple versions of a location has to be tracked to (i) commit gassin program order, and (ii) supply (bypass) the correct
version as per program order to loads. We call this probdpeculative versioningWe illustrate the issues in speculative

versioning with an example program containing two loads and two stor® same memory locatiod,

loadR,, A
store2, A
loadR», A
store3, A

Sequential program semantics dictate that

¢ the load toR; shouldnotread the valu@ created by the store even if it is executed after the store. This requireb¢hat

store must not overwrite memory locatighuntil the load has executed and hence must be buffered.

¢ the load toR, shouldeventuallyread the valu@ created by the store. This requires that the load must be squashed and

re-executed if it executes before the store and incorrectly reads the vstsied in memory.

e memory location4d shouldeventuallyhave the valu@ stored independent of the order of execution of the stores. This

requires that multiple stores to the same location have to be buffefedetthey are committed.

e program order between the loads and stores has to be tracked to guarantee¢thi@sosemantics.

Most modern microprocessors dispatch instructions from a singteuiction stream, and issue load and store instructions
from a common set of hardware buffers (e.g. reservation stations). allbigs the hardware to maintain a time-ordering of
loads and stores via simple queue mechanisms, coupled with address comgic. The presence of store queues provides
a simple form of speculative versioning. However, proposed nexrgéion processor designs use replicated processing units

that dispatch and/or issue instructions in a distributed manner. eTiuésre approaches partition the instruction stream into

tasks [15] or traces [18] and use higher level instruction controbkunidistribute them to the processing units for execution.
These approaches are aimed at higher levels of ILP and use replicated processimgth hierarchical control for a number
of practical engineering reasons [12]. Proposed next generation multispozedd1, 17] that provide hardware support for
dependence speculation use such hierarchical orchestration of the mutipésging units.

These highly parallel, hierarchical designs naturally lead to memory addreasis with a similar hierarchical structure.
In particular, each individual task or trace generates its own address stredch, a@n be properly ordered (disambiguated)
within the processing unit that generates it, and at the higher levemthigple address streams produced by the processing
units must also be properly ordered. Consequently, there is a negoftulative versioning mechanisms that operate within
this hierarchical organization.

The Address Resolution Buffer [4] (ARB) provides speculative verisig for such hierarchical organization of instructions.
The ARB uses a shared buffer with each entry comprising multiple vessibthe same memory location. However, there are

two important problems with the ARB:

1. the ARB uses a single shared buffer connected to the multiple progassits (PUs) and hence, every load and store

incurs the latency of the interconnection network. Also, the ARB hasdwide sufficient bandwidth for all the PUs.

2. when each processing unit commits instructions, the ARB copies speeldtte (versions created by stores) into the
architected storage (main memory); this generates bursty traffic to mem@gaarincrease the time to commit, which

lowers the overall performance.

We propose a new solution for speculative versioning, the Speeailérsioning Cache (SVC), for processors that have
hierarchical organizations. The SVC comprises a private cache for each prgoastjrand the system is organized similar to
a snooping-bus based cache coherent Symmetric Multiprocessor (SMP) rivierfevences that hit in the private cache do not
use the bus as in an SMP. The speculative memory state is committeddtookeycle and is written back to main memory in
a distributed manner using a lazy algorithm.

Section 2 introduces the hierarchical execution model in more detail andsdessihe issues in providing support for
speculative versioning for such execution models. Section 3 presenBp#uwlative Versioning Cache as a progression of
designs to ease understanding. Section 4 gives a preliminary performaatgation of the SVC to underline the importance

of a private cache solution to speculative versioning for hierarchical ée@amodels. Finally, section 5 concludes.

2 Problem

We first describe the execution model used by processors, that hierargluighize the instructions in the active window,
called the hierarchical execution model. Then, we discuss the issuesadviohproviding speculative versioning for such

processors.

2.1 Hierarchical Execution Model

In processor designs with hierarchical organizations, resources likeethigter file, instruction issue queue and functional

units are distributed among multiple processing units (PUs) fargety engineering reasons, and a higher level unit controls

the multiple PUs. The dynamic instruction stream is partitioned fragments calledasks These tasks form asequence
corresponding to their order in the dynamic instruction stream. Tigkeh level control unifpredictsthe next task in the
sequence and assigns it for execution to a free PU. Instructions in eachdasteauted by its PU, and its speculative state is
buffered. Thus the predicted tasks are executed speculatively by thelmBltis in parallel.

When a misprediction of a task in the sequence is detected, the bufferedfsafitthe tasks starting from the incorrectly
predicted task and beyond are invalidateshd the PUs are freed. The correct tasks in the sequence are then assigned for
execution. This is called task squash When the prediction of a task is known to be correcgcdmmitsby copying the
speculative buffered state to the architected storage. Tasks commit oneshiy tive order of the sequence. Once a task

commits, the PU is free to execute a new task.

® O~ ~
OO RS IR ORO IO
o () </ O o ()

Figure 1: Hierarchical Systems: Task commits and squashes

In figure 1, we illustrate task squashes and task commits with an exafim@esystem consists four PU§;, X, Y andZ,
shown using circles. The task sequenag,is. 4. Initially, tasks0, 1, 99 and3 are predicted and executed in parallel as shown
in part (a). When the misprediction of tagt is detected, task¥) and3 are squashed and their buffered states are invalidated.
Now, new task® and3 are executed by the PUs as shown in part (b). If one of the tasks compdeigtiex, the corresponding
PU is freed and taskis assigned for execution as shown in part (c). The sequence of the tagkedss the PUs enforces an

implicit total order among the PUs; the solid arrowheads show this order ameii

2.2 Speculative Versioning for Hierarchical Execution Models

Now, we discuss how loads and stores are handled in hierarchical procesguargitie speculative versioning. A task executes
a load as soon as its address is available, predicting that stores fromysréasks in the sequence do not write to the same
address. A store to a memory location creates a new version of that locBfielsequence of tasks imposes an order among the
versions of a location from multiple tasks. This order among themesof a location is key to provide support for speculative

versioning.

2.2.1 Loads

The value to be supplied for a load is the closest previous versibeisequence starting from the task that executed the load. If

a task loads from an address before storing to that address, this isgd¢omietect potential violations of memory dependence

1An alternative model for recovery invalidates only the degent chains of instructions by maintaining informationadiner granularity. This paper
assumes the simpler model

| Operation| Actions |

Load Record use before definition by the task;
supply the closest previous version.
Store Communicate store to later tasks; later

tasks look for memory dependence violations.
Commit | Writeback buffered versions created
by the task to main memory.
Squash Invalidate buffered versions created
by the task.

Table 1: Operations and Actions in Speculative Versioning

— if a store from a task with a previous sequence number writes taaiie $ocation at a later time, the load was supplied with

an incorrect version.

2.2.2 Stores

When a task stores to a memory location, it is communicated to all later dyressetcuting tasks in the sequefcé task that
receives a store from a previous task in the sequence squashes if a usedeéifttion is recorded for the task — a memory
dependence violation is detected. All tasks in the sequence starting feomcibrrect one and beyond are squashed as on a
task misprediction. However, a more aggressive squash model coalslsqnly the computation dependent on the incorrectly

executed load.

2.2.3 Task Commits and Squashes

When a task becomes the oldest executing task in the sequence, it becomesauatisp and can commit its speculative
memory state (versions created by stores from this task) to main memomm@ting a version involves copying the stores
from the speculative buffers to the architected storage. Since the taaklsguodel we assume is simple, the speculative

buffered state associated with a task is invalidated when it is squashed.

2.3 Coherence and Speculative Versioning

The above operations are summarized in Table 1. The functionalitysmethie requires the hardware to track the PUs that have
performed load/store to each address and the order among the different\eengiess of each address. Similar functionality
is required of a cache coherent Symmetric Multiprocessor (SMP), which ttaeksaches that have a copy of every address.
SMPs, however, need not track the order among these copies since all theacepiéa single version.

SMPs typically use snooping-bus based cache coherence [5] to implementigld/Réader Single Writer (MRSW) pro-
tocol that tracks copies of a single version of each memory location. ThiS\MRRrotocol uses a coherence directory that
is a collection of sets, each of which tracks the sharers of a line. In a siTpbps based SMP, the directory is typically
implemented in a distributed fashion comprising state bits associatie@ach cache line. On the other hand, the Speculative

Versioning Cache (SVC) implements a Multiple Reader Multiple WritdRMW) protocof that tracks copies of multiple

21n reallity, the store has to be communicated only until tls& that has created the next version, if any, of the location.
3MRMW protocols have been implemented in software by diatet shared memory systems like the Midway [3] and the Treak|14].

speculative versions of each memory location. This MRMW protocol usessiowedirectory that maintainsrderedsets
for each line, each of which tracks the program order among the multiple spewersions of a line. This ordered set or
list, called the Version Ordering List (VOL), can be implemented usixglieit pointers (for example, as a linked list like in
SCI [1]). The following sections elaborate on a design that usesgusiint each cache line to maintain the VOL.

The private cache organization of the SVC makes it a feasible memory system for propesedeneration single chip
multiprocessors that execute sequential programs on tightly coupled$tits automatic parallelization [11, 17]. Previously,
ambiguous memory dependences limited the range of programs chosen foetatparallelization. The SVC provides hard-
ware support to overcome ambiguous memory dependences and enables moshagresmatic parallelization of sequential

programs.

3 SVC Design

In this section, we present the Speculative Versioning Cache (SVC) ameepsion of designs to ease understanding. Each
design improves the performance over the previous one by trackinginformation. We begin with a brief review of snooping-
bus based cache coherence and then give a base SVC design that providesfsugpedulative versioning with minimal
modifications to the cache coherence scheme. We then highlight the perforprabtems in the base design and introduce

optimizations one by one in the rest of the subsections.

3.1 Snooping-bus based Cache Coherence

$ $ $ $
Shooping Bus [| Next level Tag| V| S| Data
of memory |
Bus Arbiter V: Valid S: Store or dirty

Figure 2: Snooping-bus based Cache Coherence in an SMP

Figure 2 shows a 4-processor SMP with private L1 caches that uses arsmpdoig to keep them consistent. The structure
of a cache line is shown in Figure 2. Each line comprises an address tag tisa&d to identify the data that has been cached,
the data that is cached, and two bits (valid and store) representing thefdta#dine. The valid () bit represents the validity
of the data in the line. The stor&) or dirty bit is set if the processing unit stores to any word in ta&adortion of the line.

Each L1 cache has a controller that determines whether a request from a PU (lé@icphigs or misses by consulting a
tag directory which comprises the tag portions of all lines. Each cacheslinene of three states: Invalid, Clean and Dirty and
the controller implements a finite state machine that determines the iopsrperformed on a PU request (Figure 3). Loads
to a clean/dirty line and stores to a dirty line result in cache hits. Chikelo not generate bus requests. A load(store) to

an invalid line results in a miss andBusRea(BusWrit§ request is issued. A request on the bus is snooped by the L1 caches

Invalid: V Clean: VS Dirty: VS

Replace/- Replace/BusWback
Load/BusRead

BusWrite/Invalidate BusWrite/Invalidate

Store/BusWrite

» @ BusRead/Flush

(a) PU REQUEST (b) BUS REQUEST

Figure 3: An Invalidation-based Cache Coherence Protocol

and the next level memory, and the requested line, if present, is accessedlidf @opy is present, an appropriate response is
generated as shown in Figure 3(b).BAsWriterequest is generated on a store miss to a clean line to invalidate copies of th
line in the other caches, if any. The finite state machine in these twafdguplements an invalidation-based MRSW protocol
that invalidates all but the requestor’s copy of a line @uaWriterequest. The protocol thus ensures that at most one copy of a
line is dirty. A dirty line is flushed on the bus orBaisReadequest; 8usWbackequest is generated to cast out a dirty line on
a replacement. This simple protocol can be extended by adding an excliigivéhe state of each line to cut down coherence
traffic on the shared bus. If a cache line has the exclusive bit set, thes the only valid copy of the line and can perform a

store to that line locally. The SVC designs we discuss in the fatigwections also use an invalidation-based protocol.

State ' Data Address = A

VS 0 V.0
X BusRead/Flush X
L Jw y[7] ——= [Jw Y[]
z z Store 1, A
[+] V10
Load R, A
BusWrite/Invalidate
[] []
X BusWhback/Flush X
T w Y[] =— [T w v
a a Replace
[]

Figure 4: Snooping-bus based Cache Coherence: Example

Figure 4 shows four snapshots of the cache lines corresponding tesaddin a 4-PU SMP. The four PUs are designated
asX,Y, ZandW. Aninvalid line for address! is shown as an empty box, while a valid line for addrdsshows the state
bits that are set. The first snapshot is taken beforeZPékecutes a load to addreds The cache miss results inBusRead

request and cach¥ supplies the line on the bus. The second snapshot shows the firab&the lines; they are clean. PU

Y issues aBusWriterequest to perform a store to address The clean copies in cachés and Z are invalidated and the
third snapshot shows the final state. Now, if cathehooses to replace the line, it casts out the line to memory by issuing a

BusWhbackequest; the final state is shown in the fourth snapshot; only meowortains a valid copy of the line.

3.2 Base SVC Design

@ @ @ @ States of snooped lines from each cache

SV$ Sv$ SV$ SV$ l l
Task assignment) .
information | Version Control Logic
Shooping Bus [Next level
of memory . . .

Bus Arbiter/
Version Control Logic

VCL responses to each cache

Figure 5: Speculative Versioning Cache: Organization and Version Qdutgic

Tag| V. S: L. Pointer| Data

V: Valid L: Load
S: Store

Figure 6: Base SVC Design: Structure of a line

A base SVC design is shown in Figure 5; it minimally modifies the mgnsystem of the snooping-bus based cache
coherent SMP to support speculative versioning for hierarchical sysiémassume that loads and stores toghmeaddress
from the samePU are executed in program ordefThis design also assumes that the cache line size is one word; later, we
relax this assumption. We first introduce the modifications, and tisemisks how the individual operations listed in Table 1 are

performed. The modifications are:

1. Each cache line maintains an extra state bit called the Ibabi{, as shown in Figure 6. The bit is set when a task
loads from a line before storing to it — a potential violation of meyndependence in case a previous task stores to the

same line.

2. Each cache line maintains a pointer that identifies the PU (or L1 cache) thdtehaext copy/version, if any, in the
Version Ordering List (VOL) for that line. It is important to notkat the pointer identifies a PU rather than a task

because identifying a dynamic task would require infinite number &f tag

3. The base design uses combinational logic called the Version Cordgit (VCL) to provide speculative versioning.
When a PU request hits in the L1 cache, it is satisfied locally without gengratius request as in an SMP; the VCL

is also not used. When a PU request misses in the cache, the cache controlleegenbuatrequest and is snooped by

4This can be performed by a conventional load-store queue.

the L1 caches and the next level of memory. The states of the requesten ¢éiaehi L1 cache are supplied to the VCL.
The VOL for this line is given by the pointers in the lines. The VGes the bus request, the program order among the
tasks, and the VOL to generate appropriate responses for each cache. The caciiiersantike state transitions based
on the initial state of the line, the bus request and the VCL responsehématic of the Version Control Logic is shown

in Figure 5. For the base design, the VCL responses are similar toftkia disambiguation logic in the ARB [4]; the

disambiguation logic searches for previous/succeeding stages in a Baégfy a PU access.

The program order among the tasks assigned to the PUs enforgaplanit total order among the PUs and hence the L1
caches. In addition to the VOL, this implicit order is required by the M@ generate cache responses for a bus request. There
is no such total order among the PUs/caches in a multiprocesEbis order is illustrated in our examples by the presence of

arrows between the caches.

3.2.1 Examples

___y» Program Order

Task 0 Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

store 1, store 3, > - load R,
store 0,

store 5, # —

load R, 4 —

Figure 7: SVC: Example Program with Loads and Stores

We present the SVC designs by discussing the operations performexds) Istores, task commits and task squashes,
and illustrate them with example executions of a program. Each exainplessa time line of snapshots of the cache lines
corresponding to addres$ in a 4-PU system. The state and data in each line are shown in a box whergadéntiees are
shown in the VOL beside the snapshot. The pointers in the VOL ansrshising hollow arrowheads. The absence of the line in
a cache is represented by an empty box; if the line is present, the stateabigse set (except thé bit) are shown in the box.
The cache line corresponding to the head (non-speculative) task is skowralbold box. The line in a cache being squashed
is shown using a double box.

The four PUs in the hierarchical system are designatdd’as(, Y and Z; the pointer in a cache line uses one of these
designators to point to the next copy/version of the line. Tasks cati®eated to the PUs in an arbitrary fashion. Hence, we
number tasks (beginning frof) to show the program order among them; smaller numbers indicate oldtsr tise hardware
doesnotassign numbers to tasks; they are shown in the example figureauigraltion purposes only. The PUs and the tasks
they execute are shown alongside each box. The total order among thedPidwisusing solid arrowheads between the boxes.
Loads and stores to addredsin the example program and its tasks are shown in Figure 7. In allxamples, we use a

convention that the version of addre$sreated by task has a valué. Figure 8 shows an example time line.

3.2.2 Loads

Loads are handled in the same way as in an SMP except thdt tiiteis set if the line was initially invalid. On 8usRead

request, the VCL locates the requestor in the VOL and searches the VOL iaviise order beginning from the requestor.

5Memory ordering may impose a total order among the individaemory accesses but not among the caches.

The first version that is encountered is the required one. If no versifmurgd, then the data is supplied by the next level of
memory. The implicit order among the PUs is used to determine thegositthe requestor in the VOL. The VCL can search

the VOL in reverse order because it has the entire list available andrigénl of the list is small.

—1

State | Data Address = A Head l Time w Order
\ 5] \
X/0

ws zn S ws zu

Load R, A

X
X \
\ Y Z
Ygq 7 \ /
w
Version ordering list Version ordering list

Figure 8: Base SVC Design: Example Load

We illustrate the load executed by tagkn the example program. Figure 8 shows two snapshots: one béieread
executes and one after the load completes.IPléxecuting task issues a load to cach& which issues 8usReadequest.
The VCL searches the VOL in the reverse order beginning from cHclamd finds the correct version to supply, the version in

cacheZ (that was created by tadh.

3.2.3 Stores

The SVC performs more operations on a store miss than are requireddiyvantional SMP to provide coherence. When a
BusWriterequest is issued on a store miss, the VCL sends invalidation resptmthe caches beginning from the requestor’s
immediate successor (in task assignment order) to the cache that has thersmit (inclusive, if it has thé bit set). This
invalidation response allows for multiple versions of the same tm exist and also serves to detect memory dependence
violations. A cache sends a task squash signal to its PU when it receives adatiwalresponse from the VCL and thiebit
is set in the line.

We illustrate the stores executed by tdsknd3 in the example program. Figure 9 shows four snapshots. Therfmgshiot
is taken before PO executing task issues a store to cachig resulting in aBusWriterequest. Since taskis the most recent
in program order, the store by ta8kdoes not result in any invalidations. Note that a store to a line doesvalidate the line

in the other caches (unlike an SMP memory system) to allow for multiptsions of the same line. The second snapshot is

10

—
Address = A Head Squash \LTime

™
X/0 X/0

Store 3, A
Dj ve oz]

W/2
m

Order

<

(0]
o

2]
<
~
w
N
~
=

s
ol N

Store 1, A

(0]
o

L

=R

7] ZI1[ST 1] - S

X
S

3

<
~
w
N
~
=

=
ollN

L]

Figure 9: Base SVC Design: Example Stores

taken after the store completes.

The first snapshot is taken before Plexecuting tasK issues a store to caclig resulting in aBusWriterequest. Based
on task assignment information, the VCL sends an invalidation resgoreach cache from the one after caghentil the one
before cachd&”, which has the next version of the line (cadtigs not included since it does not have theit set) — VCL
sends an invalidation response to cathieBut, the load executed by tagkwhich follows the store by taskin program order,
has already executed. Cachédetects a memory dependence violation sincelthd is set when it receives an invalidation
response from the VCL. Tasksand3 are squashed and restarted (the squash model we assume squashes allitdlsks unt

tail). The final snapshot is taken after the store by abks completed.

3.2.4 Task Commits and Squashes

The base SVC design handles task commits and squashes in a simple mamerea AU commits a task, all dirty lines in its
L1 cache aréemmediatelywritten back to the next level memory and all other lines are invalidatedvriteback all the dirty
lines of a task immediately, a list of the stores executed by the task iqaiad by the PU. When a task is squashed, all the

lines in the corresponding cache are invalidated.

3.2.5 Finite State Machine

Support for the SVC is similar to an SMP cache; a cache line is in one eé thtates: Invalid, Clean and Dirty. The state
encodings and the finite state machine are shown in Figure 10 Tieis not shown in the figure. The finite state machine
used by the L1 cache controllers in the base SVC design includes the V@anses and a few modifications to those used
by an SMP. ABusWriterequest is generated on a store to a clean or invalid line. Caches that recdivestigateresponse

from the VCL invalidate their cache line and send a squash signal to thétR& L bit is set in their line. The VCL allows

11

Invalid: V Clean: VSL Dirty: VSL, VSL

Replace[Head]/- Replace[Head]/BusWback
Commit/- Commit/BusWback
Squash/- Load/BusRead Store/BusWrite Squash/-

BusWrite/Invalidate BusWrite/Invalidate

@ BusRead/Flush »

(b) BUS REQUEST

Store/BusWrite

(a) PU REQUEST

Figure 10: Base SVC Design: Finite State Machine used by the L1 Cadafteolers

multiple speculative versions to exist by not invalidating all limsssan MRSW protocol would. Another difference between the
state machines in Figures 3 and 10 is that a dirty line that supplies da@BusReadequest remains dirty since the next level
memory can not store the speculative data yet.

A valid line can be replaced by the head task’s cache. Other caches cannot replace aesbbgddiuse it contains informa-
tion necessary to guarantee correct execution. Hence, either a different replacatieniswchosen or the PU request stalls
until the task becomes non-speculative (i.e., the head task). On task tmlirélean lines are invalidated and dirty lines are

written back to the next level memory by issuiBgsWbackequests. All lines are invalidated on task squashes.

3.2.6 Performance Problems

The base design has two significant performance problems:

1. Writebacks performed during task commits lead to bursty traffic oftiseand increased task commit time that could

make task commits a serial bottleneck.

2. Invalidating all lines after task commits and squashes impliegtleaytask begins execution withald cache; read-only

data is also invalidated on task commits and squashes.

3.3 Road map

In the following sections, we discuss advanced SVC designs that retiegetformance problems with the base design,

especially the ones due to task commits and squashes.

1. ECS desigrprovides efficient task commits and squashes. To ease the understandiig) adédign, we describe an
intermediate design, the EC design, that provides efficient task comnditsssumes tasks are not squashed. Then, we
present the ECS design that adds efficient task squashes to the EC desiffC T ldesign makes task commits efficient
by distributing the writebacks of dirty lines over time with a lazy@ithm. Also, it retains read-only data in the caches
across task commits. Even though the ECS design does more book-kdegkgquashes are as simple as the base

design but are more efficient as they retain non-speculative data in the caabestask squashes.

12

2. HR desigrboosts the hit-rate of the ECS design by allowing requests to $maktfus to account for reference spreading.

3. RL desigmrmakes the above designs more realistic by allowing the size of a cactie bieemore than one word.

3.4 Implementing Efficient Task Commits (EC)

The EC design avoids the expensive cache flush on task commits by mizigtan extra state bit, called the commit bit, in each
cache line. Task commits are made lightweight and writebacks are distriovgeedime with a lazy algorithm. The EC design
eliminates the writeback bursts on the bus during task commits. Alsdvardware is necessary to maintain a list of stores

performed by each task. Further, the EC design keeps the L1 caches warm acmghéassky improving their utilization.

Tag| V! S. L. C: T Pointer| Data

V: Valid L: Load C: Commit
S: Store T: STaIe

Figure 11: EC Design: Structure of a line

The structure of a cache line in the EC design is shown in Figure hé.EIC design sets the commit’) bit in all lines
in the L1 cache associated with a task when it commits. This operation islgrdtical to that cache and does not involve the
bus. A dirty committed line is written back, if necessary, when it is acce$seddxt time (either on a PU request or on a bus
request). Since the same PUs and caches are reallocated for new tasks, comnsitved vemain in the caches across tasks.
The order among committed and uncommitted versions is still maintaipedebexplicit pointers in the line. The stal@’y
bit is used by the EC design to retain read-only data across tasks. vidrstiscuss how loads and stores are handled when
caches have both committed and uncommitted versions and then discusdeliit sThe EC design is an intermediate design;

it assumes that tasks are not squashed. The ECS design adds suppfidiént édisk squashes to the EC design.

3.4.1 Loads

Loads to committed lines are treated like misses and generate a bus requaBusReadequest, the VCL searches the VOL
in the reverse order beginning from the task that issued the bugsefpr an uncommitted version. The first uncommitted
version that is encountered is the version to be supplied to the requésto uncommitted version is found, then the most
recent committed version is the required version. The most receninittedversion is the first committed version encountered
while searching the VOL in the reverse order beginning from thetmeaent version. All other committed versions need not
be written back and hence are invalidated.

We illustrate the load executed by ta&kn the example program. Tasksand1 have committed and th@ bit is set in the
lines in cachesX andZ. Figure 12 shows two snapshots: one before the load executes andesribeafoad completes. P/
executing task issues a load to cach& which issues 8usReadequest. The VCL determines that the task on caghis the
head task from the task assignment information and, from the VOL, érahées that cachg& has the most recent committed
version. Cach& supplies its version (versiol) to cachell and the data is also written back to memory. Other committed

versions (versiof) are invalidated and are never written back to memory. The VCL also inbertssv copy of versiot into

13

State ! Data Address=A [] Head \L Time WOrder

Y Ca Y

s 3] vy3 xs[csi0o] —> S

3
K Wi2 Load R, A K W/2

Z
/ \ Y
Y X \
w
Version ordering list Version ordering list

Figure 12: EC Design: Example Load

the VOL by modifying the pointers in the lines accordingly — the rified VOL is shown alongside the second snapshot.

3.4.2 Stores

State ' Data Address=A [] Head \L Time WOrder

SO

(s 73] v’ Xxs[CS 0] — Y3 X5[S 5]
k W2 Store 5, A k
VA
/ \ Y — =X
Y X
Version ordering list Version ordering list

Figure 13: EC Design: Example Store

Similarly on a store miss, committed versions are purged as the egamifidure 13 illustrates. The first snapshot is taken
before the store executes. Versidnandl have been committed. The VOL corresponding to this snapshot is shelaw the
shapshot. Note that the tasks neatbe assigned in a circular fashion to the PUs. Now,Pléxecuting task issues a store
to cacheX which issues 8usWriterequest even though the line has a committed version. The VCL purgesraithitted
versions of this line — it determines that versibrnas to be written back to the next level memory and the other versions

(version0) can be invalidated. Purging the committed versions also makes space fewvihersion (versio). The modified

14

VOL contains only the two uncommitted versions.

3.4.3 Stale Copies

The base design invalidates all non-dirty lines and hence read-only daaewdr a task commits. This has serious implications
on the bandwidth requirement of the snooping-bus since every taslkaticesses a read-only data issu@usReadequest.
The EC design eliminates this problem by exploiting an opportupitgtain read-only data in a cache across multiple tasks.

We highlight this opportunity using the example in Figure 14.

—1
Address = A Head i/ Time w Order
mw

X/0

Ej Y3 z/A[S 1] —_— Ej Y7 X/5 [CSi 0]
W/2 wi/6
m m

Load R, A
ﬁ m W m ™
[s13] Y/3 X/5 [CS o] ------- > [CS 3| Y/7 X/5 [CSi0]
W/2 W/6
Load R, A

Figure 14: EC Design: Distinguishing between Correct and Stale Copies

The figure shows two time lines both of which start with the firgpsshot. The first time line (shown using a regular arrow)
corresponds to a modified version of our example program —3ask-igure 7 does not have a store. The second time line
(shown using dashed arrows) corresponds to our example progranmsetbad snapshot in this time line is taken after task
3 has executed its store and only taskand1 have committed. The final snapshot in both time lines are taken when4asks
to 7 are executing and before taslexecutes its load. In the first time line, this load can safely reuse theérdegehell’ by
just resetting the” bit since no versions were created after versiomn the second time line, the load cantreuse the data
since cachdV has a copy of a version that has become stale since the creation of v@rditathelW’ can not distinguish
between these two situations and hence has to consult the VOL to obtaig afd¢bp correct version. However, the VOL can
be obtained only on a bus request and we would like to avoid the assboatrhead.

The EC design uses the sTalg) (it to distinguish between these two situations and to avoid teedmuest whenever a
copy is not stale. This is performed by maintaining the followingiant: the most recent version of an address and its copies
have thel" bit reset and the other copies and versions havétii set. This invariant is guaranteed by resetting thbit
when the most recent version or a copy thereof is created and/or settitigiibhe the copies of previous versions, if any. The

T bits are updated on tHRusWriterequest issued to create a version @wsReadequest issued to copy a version and hence

15

does not generate any extra bus traffic. Since stores in different tasks eardged out of program order, a cache issuing a

BusWriterequest may reset/set tiiebit depending on whether it is correct or already stale.

—

m Address = A Head \L Time
CST 0 w

X/0 Zl4

Order

<

i3 zn — = [T] xs[CST 0]

A e
Y

KI‘/ KIJ

Load R, A

CST: 1
Z/4

Y3 X/5[CST 0] ------- > [CS 13| Y7 XI5[CST 0
K W2 A\ W6
T 1
Load R, A

Figure 15: EC Design: Stale bit

Figure 15 shows snapshots of the two time lines discussed earlketheitstatus of th&' bit. In the first time line (regular
arrow), theT bit is reset in cach&’ since it has a copy of the most recent version. The load executed b taskthen safely
reuse the copy of the line by just resetting theit. In the second time line (dashed arrows), Theits are set in cachdd
andZ when task3 executes its store. This state is shown in the second snapshot imtaikrte. The final snapshot is taken
before tasl6 executes its load. When the load executes, ciicheas thel” bit set indicating a stale copy, and hence it issues a
BusReadequest.

The EC design eliminates the serial bottleneck in flushing the L1 cachelocdasnits by using the commig) bit. Also,
it retains read-only copies after task commits as long as they are not stale geleerally, read-only data used by a program is
fetchedonly onceinto the L1 caches and never invalidated unless chosen as a replacement victivar thase operations are
done by just setting th€' bit in all lines when a task commits and processing the individual lineslazy manner. Next, we

discuss the ECS design, which completes the EC design by suppeskgdguashes.

3.5 Implementing Efficient Task Squashes (ECS)

The ECS design provides simple task squashes for the EC designgiithidkeeps track of more information than the base
design. Also, the ECS design makes the task squashes efficient by reteonisgeculative data in the caches across squashes
using the Architectural{) bit. The structure of a line in the ECS design is shown in Fidifre

When a task squashes, all uncommitted lines (lines witltCtbé reset) are invalidated. The invalidation makes the pointers

in these lines and their VOLs inexact. The inconsistencies in the VOlhar@tngling) pointer in the last valid (or unsquashed)

16

Tag| Vi S/ L .C:T.:A . Pointer| Data

V: Valid L: Load T: sTale
S: Store C: Commit A: Architectural

Figure 16: ECS Design: Structure of a line

version/copy of the line and the status of fhit in each line. The ECS design fi¥ethe VOL of such a line when the line
is accessed later either on a PU request or on a bus request. Fixifigoihes not necessary because it is only a hint to avoid
a bus request and a squash would not incorrectly reset a stale versiocdodet. However, the ECS design fixes thdit
anyway by consulting the repaired VOL.

Figure 17 illustrates VOL repair with an example time line showimgé snapshots. The first snapshot is taken just before
the task squash occurs. Taskand4 are squashed; only the uncommitted version (ver8jois invalidated. The VOL with
incorrectT' bits and the dangling pointer are shown in the second snapshdit’ Riecuting task issues a load to cach&
which issues 8usReadequest. The VCL resets the dangling pointer in caZtand resets thé' bit in this version. The VCL
determines the version to supply the load after fixing the VOLArimits. Also, the most recent committed version (vergipn

is written back to the next level memory. The third snapshot is taken #i¢ load has completed.

— [
Address = A Head Squash i/ Time \YOrder
f]
X/- X/4

v wET —> T v a[ETE —> w2 57T

kzj‘/ — T

Load R, A
X X

o N -

Version ordering list Version ordering list Version ordering list

Figure 17: ECS Design: Repairing Version Ordering List after a Squash

3.5.1 Squash Invalidations

The base design invalidates non-dirty lines in the L1 cache on task spiddhis includes both speculative data from previous
tasks and architectural data from the main memory (or the committed td$ieshase design invalidates these lines because it
is not known whether the creator of a speculative version has committeghasised. This leads to higher miss rates for tasks

that are squashed and restarted multiple times.

61t is possible to repair the VOL since the squash model weidenin this paper always results in the tail portion of thelMD be invalidated.

17

To distinguish between copies of speculative and architectural versioresjavihe architecturald) bit to each cache line
as shown in Figure 16. Thé bit is set in a copy if either main memory or the head task supply data oBubReadequest
issued to obtain the copy; else tHait is reset. The VCL response omBaisReadequest specifies whether tAebit should be
set or reset. Copies of architectural versions are not invalidated on tea&iseg) i.e., the ECS design only invalidates lines that
have both thed andC bits reset. Further, a copy of a speculative version used by a task becomesitactural copy when
the task commits. When this copy is reused by a later task('thi¢ is reset and thel bit is set to remember that the version is

architectural.

3.6 Hit Rate Optimizations (HR)

This design fixes a specific performance problem in the previous SV@rigsiiz., reference spreading. When a uniprocessor
program is executed on multiple PUs with private L1 caches, successive acoesmesame line that hit after a single miss in
a shared L1 cache could result in a series of misses. This phenomenon isedbsexn for parallel programs where misses for
read-only shared data is higher with private caches than a shared one. We tharri@chnique proposed by [$narfing to
mitigate this problem. Our SVC implementation snarfs data on théflbis corresponding cache set has a free line available.
However, an L1 cache in an SVC can sharf only the version of data that a taskiegeouthe corresponding PU can use unlike
the caches that implement a MRSW protocol. The VCL is able to determindereecache can copy a particular version or

not and hence can inform the caches of an opportunity to snarf on a dat@trdashg a bus transaction.

3.7 Realistic Line size (RL)

The RL design allows the line size of the L1 caches to be more realistesizes greater than a word are allowed, unlike the
previous designs. With line sizes greater than a word, false shariegi®tire observed [13]. In addition to causing higher bus
traffic, false sharing leads to more squashes when a store from a task altaese line with a load (to a different address)

from a later task and they are executed out-of-order. We mitigate thesffefaise sharing by using a technique similar to the
sector cache [10]. Each line is divided into sub-blocks andtlaad.S bits are maintained for each sub-block. The sub-block
or versioning block size is less than the address block size (storagemnwhich an address tag is maintained). AlBosWrite

requests are issued with mask bits that indicate the versioning bloatigied by the store that caused the bus request.

3.8 Final SVC design

The final Speculative Versioning Cache (SVC) design is shown in Figuaed the structure of each SVC line is shown in
Figure 16. In addition, the final design uses a hybrid update—iratelidoherence protocol that dynamically selects either
write-update or write-invalidation for each bus request. The writeatgdrotocol helps to reduce the inter-task communication
latency through memory, i.e., the latency between a store from a task depeadent load from one of the later tasks, that
executes concurrently. On the other hand, the write-invalidate protocdd reduce the bus bandwidth requirement.

Our solution for speculative versioning for hierarchical execution e@desolves complexity by decoupling the directory
from the disambiguation logic. The directory is distributed as in BfPS&nd the disambiguation logic is the Version Control

Logic. We summarize the final SVC design by first describing the fitdti=snachine used by the cache controllers and then the

18

VCL. The finite state machine has been intentionally made simple tegirthje important features of the design; specifically,

it builds on an invalidation-based coherence protocol.

3.8.1 Finite State Machine

Invalid: V Clean: VSL Dirty: VSL, VSL

Passive: C Active: C

)

Commit[Stale]/-
Squash[Speculative]/- Load/BusRead Store/BusWrite Squash/-

Store/BusWrite . .
Active Dirty

Active Clean

Commit[Not Stale]/- Load/BusRead Commit/-

Squash[Architectural])/- Load/- Store/BusWrite

Store/BusWrite
v

Passive Clean Passive Dirty

(a) PU REQUEST

BusWrite/Invalidate BusWrite/Invalidate

BusRead/Flush

Active Dirty

Active Clean

BusRead/Flush=Y,N
BusWrite/Invalidate BusWrite/Flush=Y,N

BusWback/Flush=Y,N

Passive Dirty

(b) BUS REQUEST

Figure 18: Finite State Machine for the Final SVC Design L1 Cache GCterts

The finite state machine used by the L1 cache controllers of the final Sst@vgn in Figure 18. Each line in this SVCisiin
one of five states: Invalid, Active Clean, Active Dirty, Passive CleanReaskive Dirty. The two active states correspond to the
two valid states in Figure 10 — lines in these two states have been accessedtaskt that is executing on the corresponding
PU. Adding theC bit to the base SVC adds the two passive states; committed versiorfse@incbipies are in the passive states.
The bits set/reset in each state are shown in the figure. To simplifyxipasiion, thel., T, A and X bits are not discussed
unless of significance. Also, replacements and cache to cache transfers of reddtardye not shown. Lines in the clean

states can be replaced without a bus request. Dirty lines geneBats\Vlbackequest on a replacement. Similar to the base

19

design, active lines can be replaced only by the head task.

On a task commit, an active dirty line becomes passive and hence its writslhiaastponed until later. However, an active
clean line is either invalidated or retained on a task commit depending onevliigthstale or not; again this is postponed until
later by just setting th€’ bit. On a task squash, an active dirty line is invalidated resultingi@mgporary inconsistency in the
line’s VOL which is fixed by the VCL later. An active clean line is either indated or retained on a task squash depending on
whether it is a copy of a speculative version or the architectural version.

Load/store requests to invalid and active lines are handled similar toatbedesign. A load to a line in the passive clean
state does not result in a bus request unlike the base design whicth gengrate 8usReadequest for the load (as the line
would be invalid). On 8usReadequest, the data could be supplied either by a line that is in the aatiysihte or the passive
dirty state. On a bus request, a line in passive dirty state is iratalilwhether it is flushed or not. Similar to the base design,
the VCL determines the copies/versions to be invalidated BonsAWriterequest. However, an invalidate response received by
a line in one of the passive states will not generate a squash unlikeia bne of the active states. The most recent committed
version is written back to the next level memory.

A further optimization is to retain lines in the passive dirty statg tre flushed on bus requests. These lines can be retained
until they are cast out by the cache. This could reduce the writeback traffieetoext level of memory by delaying the
writebacks long enough for versions to become stale. Also, average emattycould improve since cache to cache transfers
incur less latency than transfers from the next level memory. Thewoilp section summarizes the actions of the Version

Control Logic.

3.8.2 Version Control Logic
The version control logic or the VCL uses the information in theclathe lines on a bus request to
e provide cache coherence among the multiple copies of a version.

¢ track the order among the multiple versions of a line based on the \éptesented explicitly by the pointers in these

lines.
e supply the correct version for a load by using the VOL and the PU allacatider.
¢ write back committed versions in order.
e repair the VOL after task squashes.
¢ maintain the stal€l() bit.
¢ maintain the architectural4) bit.

¢ inform a cache when it can snarf data to be transferred during a bus tramsactio

Generating appropriate responses for each cache on a bus request is easy ok ithevdilable. This is obtained in
a straightforward manner from the explicit pointers in each line. Seagdhi@ VOL isnot difficult since the entire VOL is

available and the maximum length of the list is small — combinatiorgatloan be used to perform searches.

20

4 Performance Evaluation

We report preliminary performance results of the SVC design usin@BteC95 benchmarks. The goal of our implementation
and evaluation is to prove the SVC design more than analyzing its peafare, as the SVC is tliiest attempt at a private cache
solution for speculative versioning for hierarchical execution mod#ts.underline the importance of a private cache solution
by first showing how performance degrades rapidly as the hit latencg &trared cache solution is increased; the Address
Resolution Buffer (ARB) is the shared cache solution we use for tlakiation. We assume unlimited bandwidth to the ARB
to isolate the effects of pure hit latency from other performance beitlken Also, we mitigate the commit time bottlenecks by

using an extra stage, that contains architectural data.

4.1 Methodology

All the results in this paper were collected on a simulator that faithfulbdels a multiscalar processor using a hierarchical
execution model. The simulator accepts annotated big endian MIPS instraetibinaries produced by the multiscalar com-
piler, a modified version of gcc. To provide results that reflect reality as atalyras possible, the simulator performs all the
operations of a multiscalar processor and executes all the program code, spstept calls, on a cycle-by-cycle basis. System

calls are handled by trapping to the operating system of the simulatisin h

4.2 Configuration

The multiscalar processor used in the experiments has 4 processingR#s each of which can issue 2 instructions out-
of-order. Each PU has 2 simple integer functional units (FUs), 1 compteger FU, 1 floating point FU, 1 branch FU and
1 address calculation unit. All the FUs are assumed to be completely mgelinter-PU register communication latency is 1
cycle and each PU can send as many as two registers to its neighbor in every @alteP&E has its own instruction cache:
32KB, 2-way set associative storage. Instruction cache hits return imliheycle and misses to the next level memory cause a
penalty of 10 cycles. Loads and stores from each PU are executed in programyousardpa load/store queue.

The higher level control unit that dispatches tasks to the individualflintains a 1024 entry 2-way set associative cache
of task descriptors. The control flow predictor of this control usiésia dynamic path-based scheme that selects from up to 4
task targets per prediction and tracks 7 path histories XOR-folded infelat path register [7]. The predictor storage consists
of both a task target table and a task address table, each with 32K entriesdigethe path register. Each target table entry is
a 2-bit counter and a 2-bit target. Each address table entry has a 2-biécaundta 32-bit address. The control flow predictor
includes a 64 entry return address stack.

The PUs are connected to the ARB and the data cache by a crossbar. The ARBsesmafitilly-associative cache with
256 rows and five stages; a shared data cache of 32KB or 64KB direct-mapegtstnl 6-byte lines backs up the ARB. Both
loads and stores are non-blocking with 32 MSHRs [16] and a 32-enitghack buffer each in the ARB and the data cache.
An MSHR can combine up to 8 accesses to the same line. The data cache has a 82iefiagk buffer. The MSHRs and
the writeback buffer are equally divided among 4 banks of storage. Disaiaing is performed at the byte-level. Hit time is
varied from 1 to 4 cycles in the experiments, with an additional penaltyadycles for a miss supplied by the next level of the

data memory (plus any bus contention). Contention in the crossbaebéetite PUs and the ARB/data cache is not modeled.

21

| Benchmark]| ARB —32KB | SVC — 4x8KB |

compress 0.031 0.075
gcc 0.021 0.036
vortex 0.019 0.025
perl 0.026 0.024
ijpeg 0.015 0.027
mgrid 0.081 0.093
apsi 0.023 0.034

Table 2: Miss Ratios for ARB and SVC

The private caches that comprise the SVC are connected together and withxtHeveé memory by a 4-word split-
transaction snooping-bus where a typical transaction requires 3 proaysses. Each PU has its own private L1 cache
with 8KB or 16KB of 4-way set-associative storage in 16 byte lineK@»?r 64KB total). Both loads and stores are non-
blocking with 8 MSHRs and a 8-entry writeback buffers per cache. An MSHR cabioemp to 4 accesses to the same line.
Disambiguation is performed at the byte-level. Hit time is assumee tb ¢tycle, with an additional penalty of 10 cycles for a

miss supplied by the next level of the data memory (plus any contentio

4.3 Benchmarks

We used the following programs from the SPEC95 benchmark suiteimygtits given in parentheses: compress (train/test.in),
gcc (ref/jump.i), vortex (train/vortex.in), perl (train/scrablpl), ijpeg (test/specmun.ppm), mgrid (test/mgrid.in) and apsi
(train/apsi.in). The programs were stopped after executing 200omiifistructions, if they ran that long. From past expe-

rience we know that for these programs performance change is not sighifEgond 200 million instructions.

4.4 Experiments

6.0
Il ARB (4 cycle hit) [] svc (1 cycle hit)
ARB (3 cycle hit I
5o M (3 cycle hit) i
ARB (2 cycle hit)
ARB (1 cycle hit)
4.0
O
a
3.0 M
) i _—‘ | '
1.0 T ‘:l_ﬂ ‘ —‘ i:‘_ﬂ T T T
compress gcc vortex perl ijpeg mgrid apsi

Figure 19: SPEC95 IPCs for ARB and SVC — 32 KB total data storage

"Bus arbitration occurs only once for cache to cache datafeas An extra cycle is used to flush a committed versionémtixt level memory.

22

6.0

I ARB (4 cycle hit) [] svc (1 cycle hit)
ARB (3 cycle hit 1
5o M (3 cycle hit) |
ARB (2 cycle hit)
ARB (1 cycle hit)
4.0
O
a
3.0 5
) i | | '
1.0 T ‘TI_H i: —‘ i:H_‘ T T T
compress gcc vortex perl ijpeg mgrid apsi

Figure 20: SPEC95 IPCs for ARB and SVC — 64KB total data storage

| Benchmark]| 4x8KB | 4x16KB |

compress || 0.348 0.341
gcc 0.219 | 0.203
vortex 0.360 0.354
perl 0.313 0.291
ijpeg 0.241 | 0.226
mgrid 0.747 0.632
apsi 0.276 0.255

Table 3: Snooping Bus Utilization for SVC

Figures 19 and 20 present the instructions per cycle (IPC) for a roaillisprocessor configured with an ARB and an SVC.
The configurations keep total data storage of the SVC and ARB/cache storagidy the same, since the amount of ARB
storage is rather modest compared to its data cache. The miss rates for thendiRiile SVC for a total storage of 32KB are
shown in Table 2. For the SVC, an access is counted as a miss if data iseduppthe next level memory; data transfers
between the L1 caches are not counted as misses. Table 3 presents the busnfiiztite SVC.

From these preliminary experiments, we make three observationge(hit latency of data memory significantly affects
ARB performance, (ii) the SVC trades-off hit rate for hit latency and AiRB trades-off hit latency for hit rate to achieve
performance, and (iii) for the same total data storage, the SVC perfattes than a contention-free ARB having a hit latency
of 3 or more cycles. The graphs in these figures show that even for a 84kBcache, performance improves in the range of
8% to 35% when decreasing the hit latency from 4 cycles to 1 cycle. Thioweprent indicates that techniques that use private
caches to improve hit latency are an important factor in increasing overatirpgahce, even for latency tolerant processors
like a multiscalar processor.

Comparing the same total amounts of storage, the distributioEg for the SVC produces higher miss rates than for the
ARB (perl is an exception). We attribute the increase in miss rateséd8¥C to two factors. Firstly, distributing the available
storage results in reference spreading [9] and replication of data reducksbkevatorage. Secondly, the fine-grain sharing of
data between multiscalar tasks causes the latest version of a line to cgnstavdl from one L1 cache to another (migratory

data). Such fine-grain communication may increase the number of total missedi.aSuch communication is evident from

23

the fairly high bus utilization of the SVC ranging from 22% to 36¥he high bus utilization for mgrid are mostly due to misses
to the next level memory.

From Figures 19 and 20, we find that the IPCs for SVC are better than tha&R#® with a hit time of 2 or more cycles for
gcc, apsi and mgrid. Both schemes perform nearly as well for compress, vpetdxand ijpeg. However, the ARB has been
modeled without any bank contention and assumes a high bandwidth coatmifrpm any stage to the architectural stage.

With these in mind, we see that for a total storage of 64KB, the SMfearsforms the ARB by as much as 8% for mgrid.

5 Conclusion

Speculative versioning is important for overcoming limits on lastion Level Parallelism (ILP) due to ambiguous memory
dependences in a sequential program. A solution to speculative versionistgirack the program order between loads and
stores to the same address to (i) commit the stores in program ordier dochitected memory and, (ii) supply the correct value
for loads. Conventional solutions like load—store queues are wigdidsfor modern superscalar microprocessors that dispatch
instructions from a single stream. Proposed next generation prosasserreplicated processing units (PUs) that dispatch
and/or issue instructions in a distributed manner. These futureagpipes use a hierarchical execution model and generate
memory address streams with a hierarchical structure.

The Address Resolution Buffer (ARB), the previous solution peclative versioning for such hierarchical processor
designs, uses a shared L1 cache. Hence, every load/store access incurs thefighenoyesconnection network between the
PUs and the cache. Further, the ARB can lead to serial bottlenecks if the timgyttheospeculative state of a task to the next
level memory is large.

We proposed the Speculative Versioning Cache (SVC) that comprisestedril cache with each PU making the processor
organization similar to a Symmetric Multiprocessor (SMP). Memory mfees that hit in the private cache do not use the bus
and committing the speculative state of a task is done in one clock cyble sgeculative state is written back to next level
memory in a distributed manner using a lazy algorithm. Based on preimimerformance evaluation, we find that the SVC
performs up to 8% better than the ARB (with 2 cycle hit latency) for SBERenchmarks. Also, the private cache organization
of the SVC makes it a feasible memory system for proposed next genematitiprocessors that execute sequential programs
on tightly coupled PUs using aggressive automatic parallelization. VRe®Bovides hardware support to overcome ambiguous
memory dependences and hence the parallelizing software can be less consenvatigaantial programs. Further, the SVC

organization facilitates execution of parallel and multi-threaded prograntiseosame hardware.

Acknowledgements

This work was supported in part by NSF Grants CCR-9303030 and MIB&53, ONR Grant N00014-93-1-0465, and by
U.S. Army Intelligence Center and Fort Huachuca under Contract DABT6B-9427 and ARPA order no. D346 and a
donation from Intel Corp. The views and conclusions contained hereithase of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, eithessggror implied, of the U. S. Army Intelligence

Center and Fort Huachuca, or the U.S. Government.

24

References

[1] IEEE Standard for Scalable Coherent Interface (SCI) 1596-1992¢ [E¥93.
[2] PowerPC 620 RISC microprocessor technical summary. IBM order numbe6IPFSU-01, October 1994,

[3] B.N.Bershad, M.J.Zekauskas, and W.A.Sawdon. The Midway diged shared memory system.@ompcon 93pages
528-537. CS Press, 1993.

[4] Manoj Franklin and Gurindar S. Sohi. ARB: A hardware mechanism yoiaghic reordering of memory referencéSEE
Transactions on Computerd5(5):552-571, May 1996.

[5] James R. Goodman. Using cache memory to reduce processor-memory tiaffRroceedings of the 10th Annual
International Symposium on Computer Architectyrages 124-131, 1983.

[6] Doug Hunt. Advanced performance features of the 64-bit PA-800Compcon 95 Digest of Papersages 123-128. CS
Press, March 1995.

[7]1 Quinn Jacobson, Steve Bennett, Nikhil Sharma, and James E. SnaitttitoCflow speculation in multiscalar processors.
In Proceedings of the Third International Symposium on High-Perdmee Computer Architecturé997.

[8] Jim Keller. The 21264: A superscalar Alpha processor with outrder execution. Presentation at the 9th Annual
Microprocessor Forum, San Jose, California, October 1996.

[9] D. Lilja, D. Marcovitz, and P.-C. Yew. Memory reference behavior and caarformance in a shared memory multipro-
cessor. Technical Report 836, CSRD, University of lllinois, Urbanas@aign, December 1988.

[10] J. S. Liptay. Structural aspects of the system/360 model 85 pdithél cachelBM Systems Journaf(1):15-21, 1968.

[11] Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, ana-Xung Chang. The case for a single-chip
multiprocessor. IProceedings of the 7th International Conference on ArchitecturapSuor Programming Languages
and Operating Systemgages 2—11, October 1-5, 1996.

[12] Subbarao Palacharla, Norman P. Jouppi, and James E. Smith. Capeléctive superscalar processorsPioceedings
of the 24th Annual International Symposium on Computer Architegbages 206—218, June 2—4, 1997.

[13] David A. Patterson and John L. HennesSgmputer Architecture A Quantitative Approadiorgan Kaufmann Publish-
ers, 1996.

[14] P.Keleher et al. Treadmarks: Distributed shared memory on standakdtations and operating systems.Proceedings
of Usenix Winter Conferencpages 115-132, Berkeley, California, 1994. Usenix Association.

[15] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscplacessors. IfProceedings of the 22nd Annual
International Symposium on Computer Architectyrages 414-425, June 22—-24, 1995.

[16] Gurindar S. Sohi and Manoj Franklin. High-bandwidth data mensgstems for superscalar processorsPtaceedings
of the Fourth International Conference on Architectural SupportProgramming Languages and Operating Systems
pages 53—-62, April 8-11, 1991.

[17] J. Gregory Steffan and Todd C. Mowry. The potential for threadkl data speculation in tightly-coupled multiprocessors.
Technical Report CSRI-TR-350, Computer Systems Research Institutersity of Toronto, February 1997.

[18] Sriram Vajapeyam and Tulika Mitra. Improving superscalar instomctiispatch and issue by exploiting dynamic code
sequences. IRroceedings of the 24th Annual International Symposium on Canputhitecture pages 1-12, June 2—4,
1997.

25

