
Parallel Application Memory Scheduling

Eiman Ebrahimi† Rustam Miftakhutdinov† Chris Fallin§

Chang Joo Lee‡ José A. Joao† Onur Mutlu§ Yale N. Patt†

†Department of Electrical and Computer Engineering
The University of Texas at Austin

{ebrahimi, rustam, joao, patt}@ece.utexas.edu

§Carnegie Mellon University
{cfallin,onur}@cmu.edu

‡Intel Corporation
chang.joo.lee@intel.com

ABSTRACT

A primary use of chip-multiprocessor (CMP) systems is to
speed up a single application by exploiting thread-level par-
allelism. In such systems, threads may slow each other down
by issuing memory requests that interfere in the shared
memory subsystem. This inter-thread memory system in-
terference can significantly degrade parallel application per-
formance. Better memory request scheduling may mitigate
such performance degradation. However, previously pro-
posed memory scheduling algorithms for CMPs are designed
for multi-programmed workloads where each core runs an in-
dependent application, and thus do not take into account the
inter-dependent nature of threads in a parallel application.

In this paper, we propose a memory scheduling algo-
rithm designed specifically for parallel applications. Our ap-
proach has two main components, targeting two common
synchronization primitives that cause inter-dependence of
threads: locks and barriers. First, the runtime system esti-
mates threads holding the locks that cause the most serial-
ization as the set of limiter threads, which are prioritized by
the memory scheduler. Second, the memory scheduler shuf-
fles thread priorities to reduce the time threads take to reach
the barrier. We show that our memory scheduler speeds up a
set of memory-intensive parallel applications by 12.6% com-
pared to the best previous memory scheduling technique.

Categories and Subject Descriptors: C.1.0 [Processor
Architectures]: General; C.1.2 [Multiple Data Stream Archi-
tectures (Multiprocessors)]

General Terms: Design, Performance.

Keywords: Parallel Applications, Shared Resources, CMP,
Memory Controller, Multi-core, Memory Interference.

1. INTRODUCTION
Chip multiprocessors (CMPs) are commonly used to speed

up a single application using multiple threads that con-
currently execute on different cores. These parallel threads
share memory system resources beyond some level in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MICRO’11 December 3-7, 2011, Porto Alegre, Brazil
Copyright 2011 ACM 978-1-4503-1053-6/11/12 ...$10.00.

memory hierarchy (e.g., bandwidth to main memory and
a shared last level cache). Memory requests from concur-
rently executing threads can interfere with one another in
the shared memory subsystem, slowing the threads down
significantly. Most importantly, the critical path of execution
can also be significantly slowed down, resulting in increased
application execution time.

To illustrate the importance of DRAM-related inter-thread
interference to parallel application performance, Figure 1
shows the potential performance improvement that can be
obtained for six different parallel applications run on a 16-
core system.1 In this experiment, we ideally eliminate all
inter-thread DRAM-related interference. Thread i’s DRAM-
related interference cycles are those extra cycles that thread i
has to wait on memory due to bank or row-buffer conflicts
caused by concurrently executing threads (compared to if
thread i were accessing the same memory system alone).
In the ideal, unrealizable system we model for this experi-
ment: 1) thread i’s memory requests wait for DRAM banks
only if the banks are busy servicing requests from that same
thread i, and 2) no DRAM row-conflicts occur as a result
of some other thread j (i 6= j) closing a row that is ac-
cessed by thread i (i.e., we model each thread as having its
own row buffer in each bank). This figure shows that there
is significant potential performance to be obtained by bet-
ter management of memory-related inter-thread interference
in a parallel application: ideally eliminating inter-thread in-
terference reduces the average execution time of these six
applications by 45%.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o
rm

a
li

ze
d

 E
x
ec

u
ti

o
n

 T
im

e

hist_ph mg cg is bt ft gmean

Figure 1: Potential execution time reduction if all
inter-thread interference is ideally eliminated

1Our system configuration and benchmark selection are discussed
in Section 4.

1

Previous work on managing memory system related inter-
application interference [13, 15, 27, 14, 25, 23, 26, 6, 7, 16,
17, 9] addresses the problem of improving system perfor-
mance (system throughput or average job turnaround time)
and/or system fairness in the context of multi-programmed
workloads where different cores of the CMP execute inde-
pendent single-threaded applications.2 None of these works
directly address parallel multi-threaded applications as we
do in this paper where our goal of managing memory sys-
tem inter-thread interference is very different: reducing the
execution time of a single parallel application. Managing
the interference between threads of a parallel application
poses a different challenge than previous works: threads in
a parallel application are likely to be inter-dependent on
each other, whereas such inter-dependencies are assumed
to be non-existent between applications in these previous
works. Techniques for reducing inter-application memory in-
terference for improving system performance and fairness of
multi-programmed workloads may result in improved par-
allel application performance by reducing overall interfer-
ence. However, as we show in this paper, designing a tech-
nique that specifically aims to maximize parallel application
performance by taking into account the inter-dependence of
threads within an application can lead to significantly higher
performance improvements.

Basic Idea: We design a memory scheduler that reduces
parallel application execution time by managing inter-thread
DRAM interference. Our solution consists of two key parts:

First, we propose estimating the set of threads likely to
be on the critical path using limiter thread estimation (for
lock-based synchronization) and loop progress measurement
(for barrier-based synchronization). For lock-based synchro-
nization, we extend the runtime system (e.g., runtime li-
brary that implements locks) with a mechanism to estimate
a set of limiter threads which are likely critical (i.e., make up
the critical path of the application). This estimate is based
on lock contention, which we quantify as the time threads
spend waiting to acquire a lock. For barrier-based synchro-
nization used with parallel for loops, we add hardware itera-
tion counters to estimate the progress of each thread towards
the barrier at the end of the loop. We identify threads that
fall behind as more likely to be critical.

Second, we design our memory controller based on two
key principles: a) we prioritize threads that are likely to
be on the critical path (which are either limiter threads or
threads falling behind in parallel loops), and b) among a
group of limiter threads, non-limiter threads, or parallel-for-
loop threads that have made the same progress towards a
synchronizing barrier (i.e. threads that are equally critical),
we shuffle thread priorities in a way that reduces the time
all threads collectively make progress.

Summary of Evaluations: We evaluate our parallel ap-
plication memory scheduling (PAMS) technique on a 16-
core CMP system in comparison to the commonly used FR-
FCFS [31, 33] memory scheduler and a state-of-the-art mem-
ory scheduler, TCM [17], which is designed for high perfor-
mance and fairness on multi-programmed workloads. Exper-
imental results across six memory intensive parallel work-

2We refer to interference between independent applications run-
ning on different cores as inter-application interference, and to
interference between threads of a parallel application running on
different cores as inter-thread interference.

loads show that PAMS outperforms FR-FCFS and TCM by
16.7% and 12.6% respectively.

Contributions: To our knowledge, our proposal is the
first design that manages inter-thread memory system in-
terference at the memory controller to improve parallel ap-
plication performance. We make the following contributions:

1. We propose a runtime-system mechanism to periodi-
cally estimate a set of limiter threads, which is likely to in-
clude the thread on the critical path in lock-based synchro-
nization, for the purpose of memory request prioritization.

2. We propose a memory request prioritization mechanism
that reduces inter-thread interference among threads that
are equally critical, by periodically shuffling their priorities,
in order to reduce the time it takes the threads to collectively
reach their synchronization point.

3. We propose a memory scheduling algorithm that esti-
mates likely-critical threads based on lock contention infor-
mation and progress of threads in parallel for loops. Our
design makes memory scheduling decisions based on its pre-
diction of likely-critical threads and dynamically gathered
information about the memory intensity of concurrently-
executing threads. We show that by intelligently prioritizing
requests in a thread-aware manner, our memory controller
significantly improves the performance of parallel applica-
tions compared to three state-of-the-art memory controller
designs.

2. BACKGROUND
We briefly describe a state-of-the-art memory scheduling

technique, Thread Cluster Memory Scheduling (TCM) [17],
which we will extensively discuss and compare to in this
paper. Here we will explain ideas from this previous work
that are important to understand our mechanisms.

TCM is designed to address system throughput and fair-
ness with the goal of achieving the best of both for multi-
programmed workloads. Note that TCM is designed for
multi-programmed workloads (where different cores of a
CMP are executing independent single-threaded applica-
tions) and has only been evaluated on these workloads.
The algorithm detects and exploits differences in memory
access behavior across applications. TCM periodically (ev-
ery 10M cycles in [17]) groups applications into two clus-
ters: latency-sensitive and bandwidth-sensitive. This is based
on the applications’ memory intensity measured in last
level cache misses per thousand instructions (MPKI). The
least memory-intensive threads are placed in the latency-
sensitive cluster, and others in the bandwidth-sensitive clus-
ter. To improve system throughput, TCM always prioritizes
latency-sensitive applications over bandwidth-sensitive ones.
To improve fairness, the priorities of applications in the
bandwidth-sensitive cluster are periodically shuffled (every
800 cycles in [17]).

As we show in Section 5, TCM can improve the perfor-
mance of multi-threaded workloads compared to a standard
FR-FCFS (First Ready, First Come First Serve) memory
scheduling algorithm [31, 33] by mitigating some memory
related inter-thread interference. However, as we will demon-
strate later, a memory scheduling algorithm targeted at
managing DRAM interference specifically for multi-threaded
applications can significantly reduce application runtime
compared to such state-of-the-art techniques.

2

Runtime
System

Memory
ControllerHW Counters

Each Code−Segment’s:

Set of Limiter Threads

(c) Instruction Count

Each Thread’s:

(a) BW Consumption

(b) Mem Req Count

(a) Memory Intensity

(b) BW Consumption
Each Thread’s Loop Iteration Count

Figure 2: Overview of parallel application memory scheduling

3. MECHANISM
Our parallel application memory scheduler (PAMS):

1. Estimates likely-critical threads using limiter estima-
tion (Section 3.1.1) and loop progress measurement
(Section 3.1.2).

2. Prioritizes likely-critical threads (Section 3.2.2) and
shuffles priorities of non-likely-critical threads (Sec-
tion 3.2.3) to reduce inter-thread memory interference.

Figure 2 provides an overview of the interactions between
the major components of our design. The runtime system
(e.g., runtime library that implements locks) uses hardware
monitors to characterize memory behavior of code-segments
(parts of the parallel program, see Section 3.2.1 for details)
and passes this information to the memory controller. In
addition, the runtime system provides the memory controller
with a set of limiter threads (those likely to be on the critical
path). Finally, the memory controller has access to iteration
counts of parallel for loops. The following sections describe
each component in detail.

3.1 Runtime System Extensions
In parallel applications, the critical path of execution de-

termines the running time of the program. In each execution
cycle, the critical path lies on one of the concurrently exe-
cuting threads. Hence, to improve performance, the memory
scheduler should minimize memory-related interference suf-
fered by memory requests issued by the thread on the critical
path. Unfortunately, identifying exactly which thread is on
the critical path at runtime with low/acceptable overhead is
difficult. However, we find that even a coarse estimation of
the critical path can be very useful.

We propose to estimate the critical path via limiter thread
estimation and loop progress measurement. Limiter thread
estimation is a runtime system mechanism which identifies
a set of threads likely to contain the thread on the critical
path by analyzing lock contention. We call these threads lim-
iter threads, since one of them likely limits the application
running time. Loop progress measurement is a cooperative
compiler/hardware mechanism which estimates the progress
of each thread within a parallel for loop, for programs struc-
tured with such barrier-synchronized loops across threads.

The memory controller uses limiter thread and loop
progress information to manage inter-thread interference in
the DRAM system and improve application performance.

3.1.1 Estimating Limiter Threads

When multiple threads concurrently execute and access
shared data, correctness is guaranteed by the mutual exclu-
sion principle: multiple threads are not allowed to access
shared data concurrently. This mutual exclusion is achieved
by encapsulating accesses to shared data in code regions

guarded by synchronization primitives such as locks. Such
guarded code is referred to as critical section code.

Prior work [32] shows that accelerating critical sections
by executing them on high performance cores in a hetero-
geneous CMP can significantly reduce application running
time. This is because contended critical sections are often on
the critical path. We find that performance can be greatly
improved by exposing information about contended critical
sections to the memory controller, which uses this informa-
tion to make better memory scheduling decisions. The rest
of this subsection describes how this information is gathered
by the runtime system and passed to the memory controller.
We describe how the runtime system informs the memory
controller of the single most contended critical section for
ease of explanation; in general, however, the runtime system
can detect any number of most contended critical sections.

As more and more threads contend over the lock protect-
ing some shared data, it is more likely that threads exe-
cuting the critical section guarded by the contended lock
will be on the critical path of execution. As such, at a
high level, the runtime system periodically identifies the
most contended lock. The thread holding that lock is es-
timated to be a limiter thread. Limiter thread informa-
tion is passed to the memory controller hardware using the
LimiterThreadBitVector which has a bit per thread.3 The
runtime system identifies thread i as a limiter thread by
setting the corresponding bit i in this bit-vector. This in-
formation is used by the memory controller in the following
interval. The runtime system provides two main pieces of
information which our algorithm uses to estimate limiter
threads: the ID of the thread currently holding each lock,
and the time a thread starts waiting for a lock.

Algorithm 1 explains limiter thread estimation in detail.
The goal of the algorithm is to a) find the lock that causes
the most contention in a given interval, and b) record the
thread that owns this lock in LimiterThreadBitVector so
that the memory controller can prioritize that thread. To
implement the algorithm, the runtime system maintains one
counter per lock which accumulates the total cycles threads
wait in that lock’s queue, and keeps two variables to record
the currently most-contended lock and the thread that owns
it.

Every interval (i.e., every LimiterEstimationInterval

lock acquires), the runtime system finds the most-contended
lock. To do so, it compares the lock queue waiting times ac-
cumulated for all of the locks. The system identifies the lock
for which threads spent the most time waiting in the queue
during the previous interval and saves it as Locklongest. It
then determines which thread is holding that lock, and sets
the corresponding bit in the LimiterThreadBitVector .

3In this paper, we consider one thread of execution per core, but in
systems with simultaneous multithreading (SMT) support, each
thread context would have its own bit in LimiterThreadBitVector .

3

To keep track of each lock’s waiting time, every time a lock
is successfully acquired by some thread i, the runtime system
adds the time thread i spent waiting on the lock to the lock’s
waiting time counter (See Section 3.3 for implementation de-
tails). Finally, when a thread acquires the lock that had the
longest waiting time in the previous interval (Locklongest),
LimiterThreadBitVector is updated: the bit corresponding
to the previous owner of the lock is reset in the vector, the
bit for the thread acquiring the lock is set, and the new
owner is recorded as LastOwnerlongest. This updated bit-
vector is communicated to the memory controller in order
to prioritize the limiter thread.

Algorithm 1 Runtime Limiter Thread Estimation

Every LimiterEstimationInterval lock acquires

Find lock with longest total waiting time in previous interval
Set Locklongest to the lock with the longest waiting time
Set LastOwnerlongest to the thread that holds Locklongest

Set bit for LastOwnerlongest in LimiterThreadBitVector
Every successful lock acquire

Increment waitingTime counter of acquired lock by the num-
ber of cycles spent in the lock’s queue by the acquiring thread
if acquired lock is Locklongest then

Reset bit for LastOwnerlongest in LimiterThreadBitVector
Record new Locklongest owner in LastOwnerlongest

Set bit for LastOwnerlongest in LimiterThreadBitVector
end if

3.1.2 Measuring Loop Progress

Parallel for loops are a common parallel programming
construct which allows for critical path estimation in a dif-
ferent way. Each iteration of a parallel for loop identifies an
independent unit of work. These loops are usually statically
scheduled by dividing iterations equally among threads. Af-
ter the threads complete their assigned iterations, they typ-
ically synchronize on a barrier.

Given this common computation pattern, we can easily
measure the progress of each thread towards the barrier by
the number of loop iterations they have completed, as has
also been proposed by Cai et al. [2]. We employ the compiler
to identify this computation pattern and pass the address of
the loop branch to the PAMS hardware. For each thread,
we add a hardware loop iteration counter which tracks the
number of times the loop branch is executed (i.e., the num-
ber of loop iterations completed by the thread) The runtime
system resets these counters at every barrier.

The memory controller uses this loop progress informa-
tion to prioritize threads that have lower executed iteration
counts, as described in Section 3.2.3.

3.2 Memory Controller Design
At a high level, our memory controller enforces three pri-

orities in the following order (see Algorithm 2): First, we
prioritize row-buffer hit requests over all other requests be-
cause of the significant latency benefit of DRAM row-buffer
hits compared to row-buffer misses. Second, we prioritize
limiter threads over non-limiter threads, because our run-
time system mechanism deems limiter threads likely to be on
the critical path. We describe prioritization among limiter
threads in detail in Section 3.2.2. We prioritize remaining
non-limiter threads according to loop progress information
described in Section 3.1.2. Prioritization among non-limiter
threads is described in detail in Section 3.2.3. Algorithm 2
serves as a high level description and outline for the subsec-
tions that follow.

Algorithm 2 Request Prioritization for
Parallel Application Memory Scheduler (PAMS)

1. Row-hit first
2. Limiter threads (Details of the following are explained in
Section 3.2.2)
- Among limiter threads, latency-sensitive threads are priori-
tized over bandwidth-sensitive threads
- Among latency-sensitive group: lower-MPKI threads are
ranked higher
- Among bandwidth-sensitive group: periodically shuffle thread
ranks
3. Non-Limiter threads (Details of the following are ex-
plained in Section 3.2.3)
if loop progress towards a synchronizing barrier is known then

- Prioritize threads with lower loop-iteration counts first
- Among threads with same loop-iteration count: shuffle
thread ranks

else

- Periodically shuffle thread ranks of non-limiter threads
end if

3.2.1 Terminology

Throughout the subsections that follow, we will be us-
ing the term code-segment which we define as: a program
region between two consecutive synchronization operations
such as lock acquire, lock release, or barrier. Code-segments
starting at a lock acquire are also distinguished based on the
address of the acquired lock. Hence, a code-segment can be
identified with a 2-tuple:

<beginning IP, lock address (zero if code is not encapsu-
lated within a critical section)>

Code-segments are an important construct in classifying
threads as latency- vs. bandwidth-sensitive (as we describe
in the next subsection), and also in defining the intervals at
which classification and shuffling are performed.

3.2.2 Prioritization Among Limiter Threads

The goal for the limiter thread group is to achieve high
performance in servicing the requests of the group as the
runtime system has estimated the critical path to lie on one
of the threads of this group, while also ensuring some level
of fairness in progress between them as we do not know
exactly which one is on the critical path. To this end, we
propose classifying limiter threads into two groups: latency-
sensitive and bandwidth-sensitive. Latency-sensitive threads
(which are generally the less memory intensive threads) are
prioritized over bandwidth-sensitive ones. As Algorithm 2
shows, among latency-sensitive threads, threads with lower
MPKI are prioritized as they are less-memory intensive and
servicing them quickly will allow for better utilization of
the cores. Prioritization among bandwidth-sensitive threads
is done using a technique called rank shuffling [17]. This
technique is also used to prioritize non-limiter threads and,
in fact, is more important in that context; hence, we de-
fer discussion of rank shuffling to Section 3.2.3. The rest of
this subsection describes how the latency- vs. bandwidth-
sensitive classification is done.

Latency-sensitive vs. bandwidth-sensitive classifica-

tion of threads: As described in [17], a less memory inten-
sive thread has greater potential to make progress and keep
its core utilized than a more memory intensive one. Hence,
classifying it as latency-sensitive and prioritizing it in the
memory controller improves overall system throughput be-
cause it allows the thread to quickly return to its compute

4

Thread 0

Thread 1

Thread 2

Thread 3

Changes
Non−Critical Section Code−Segment

BarrierWaiting for Sync

Time

Critical Section

Barrier

Figure 3: Code-segment based classification

Thread 0

Thread 1

Thread 2

Thread 3

Time

Barrier

Time Quantum 1 Time Quantum 2Time Quantum 3

Figure 4: Time based classification

phase and utilize its core. To do this classification, the main
question is how to predict the future memory intensity of
the code a thread is about to execute.

We propose classifying threads as latency- or bandwidth-
sensitive based on the memory intensity of the code-segment
that thread is executing. The key idea is that we can es-
timate the memory intensity of the code-segment that the
thread is entering based on the memory intensity of that
code-segment last time it was executed. Figure 3 illustrates
this strategy. Classification of threads is performed at each
code-segment change (indicated by a vertical dotted line in
the figure). Algorithm 3 presents the details of the classi-
fication algorithm used by the memory controller. This al-
gorithm is a modified version of the original thread cluster-
ing algorithm by Kim et al. [17] adapted to be invoked at
every code-segment change.4 The algorithm requires infor-
mation about the memory intensity (number of misses per
thousand instructions) and bandwidth consumption of the
code-segment to be executed (number of cycles that at least
one memory bank is busy servicing the code-segment’s re-
quests). The runtime system predicts this future behavior
based on monitored behavior from when that code-segment
was executed last (as we will explain further shortly).

Algorithm 3 sets aside a threshold fraction (Clus-
terThreshold) of the total bandwidth per cycle for latency-
sensitive threads. It uses previous bandwidth consumption
of currently executing code-segments to predict their current
behavior. To do so, it sums up the previous bandwidth con-
sumption of the least memory intensive currently-executing
code-segments up to a ClusterThreshold fraction of total
bandwidth consumption. The threads that are included in
this sum are classified as latency-sensitive.

Note that in the original algorithm, Kim et al. [17] mea-
sure each cores’ memory intensity every 10M cycles in a
multi-core system where each core executes an independent
application. In other words, they classify threads on a time
interval basis rather than on the basis of a change in the
code-segment. We find that with parallel workloads there is
little information to be gained by looking back at a thread’s
memory behavior over a fixed time interval. Figure 4 shows
why. In the figure, thread 2 spends a long time waiting on a
lock in time quantum 2. However, its memory behavior mea-
sured during that time interval has nothing to do with its

4We refer the reader to Algorithm 1 in the original TCM [17]
paper for details on the original algorithm.

memory behavior in the following time interval (time quan-
tum 3), during which it happens to be not waiting. For this
reason, we perform classification not on a time interval basis
but on the basis of a code-segment change.

Algorithm 3 Latency-sensitive vs. Bandwidth-sensitive
classification for limiter threads

Per-thread parameters:

CodeSegMPKI i : MPKI of code-segment currently running on
thread i the last time it occurred
CodeSegBWConsumedPerCyclei : BW consumed per cycle by
code-segment currently running on thread i the last time it
occurred
BWConsumedi : Bandwidth consumed by thread i during pre-
vious interval
Classification: (every code-segment change)
TotalBWConsumedPerCycle = (Σi BWConsumedi) / Length
Of Previous Interval In Cycles
while Threads left to be classified do

Find thread with lowest MPKI (thread i)
SumBW += CodeSegBWConsumedPerCyclei

if SumBW ≤ ClusterThreshold × TotalBWConsumedPer-
Cycle then

thread i classified as LatencySensitive
else

thread i classified as BandwidthSensitive
end if

end while

Keeping track of code-segment memory behavior:

When a thread executes a code-segment, the memory con-
troller maintains a counter for the number of memory re-
quests generated by that code-segment. Another counter
maintains the number of instructions executed in the code-
segment. When the code-segment ends, the runtime system
takes control because a synchronization event has occurred.
The runtime system reads both counters and calculates the
memory intensity of that code-segment which it stores for
later use. It also keeps track of a bandwidth consumed per cy-
cle count for the completed code-segment. When that code-
segment is started on the same or another thread in the
future, the runtime system loads two registers in the mem-
ory controller with the memory intensity and bandwidth
consumed per cycle that were last observed for that code-
segment. The memory controller uses this information to (i)
classify threads into latency- vs. bandwidth-sensitive clus-
ters and (ii) prioritize latency-sensitive limiter threads with
lower memory intensity.

5

Saved
Cycles

Saved
Cycles

(a) No Shuffling

(b) Time−based Shuffling

(c) Code−segment based Shuffling

Thread 0

Thread 1

Thread 2

Thread 3

Time

Barrier

Thread 0

Thread 1

Thread 2

Thread 3

Time

Barrier

Thread 0

Thread 1

Thread 2

Time

Barrier

Thread 3

Barrier

Barrier

Barrier

Figure 5: Threads have similar memory behavior

4

2

3

1

(a) No Shuffling

(b) Time−based Shuffling

Saved
Cycles

Lost

Cycles

(c) Code−segment based Shuffling

Thread 0

Thread 1

Thread 2

Thread 3

Time

Barrier Barrier

Thread 0

Thread 1

Thread 2

Thread 3

Time

Barrier Barrier

Thread 0

Thread 1

Thread 2

Time

Barrier

Thread 3

4

3

2

4

3 4

Barrier

Figure 6: Threads have different memory behavior

3.2.3 Prioritization Among Non-limiter Threads

When the application is executing a parallel for loop,
the memory controller uses loop progress information (Sec-
tion 3.1.2) to ensure balanced thread execution. The mea-
sured loop progress information is used by the memory con-
troller to create priorities for different threads in order of
their loop progress: threads with lower iteration counts—
those falling behind—are prioritized over those with higher
iteration counts. This prioritization happens on an interval
by interval basis, where the priorities assigned based on loop
progress are maintained for a while to give threads that have
fallen behind a chance to fully exploit their higher priority in
the memory system (e.g., exploit row buffer locality). Subse-
quently, priorities are re-evaluated and assigned at the end
of the interval for the next interval.

Among a set of threads that have the same loop progress
or in the absence of such information, the memory controller
aims to service all bandwidth-sensitive threads in a manner
such that none become a new bottleneck as a result of being
deprioritized too much in the memory system. To achieve
this, we perform interval-based rank shuffling of the threads.

Shuffling of bandwidth-sensitive threads: At the be-
ginning of each interval, we assign a random rank to each of
the bandwidth-sensitive threads and prioritize their memory
requests based on that ranking in that interval. The main
question in the design of shuffling for parallel threads is:
when should an interval end and new rankings be assigned?

We find that a group of threads that have similar mem-

ory behavior should be treated differently than a group of
threads that do not.5 When threads have similar memory
behavior, we find that maintaining a given random ranking
until one of the threads finishes executing the code-segment
it is currently executing can significantly improve perfor-
mance. This is because when a code-segment ends (e.g.,
when the thread reaches a barrier), the inter-thread inter-
ference it was causing for the other threads is removed, and
the other threads can make faster progress in its absence.
We call this code-segment based shuffling: new thread ranks
are assigned when a code-segment change happens. On the
other hand, when a group of threads have very different
memory behavior, we find that changing the thread rank-
ing only on a code-segment change can sometimes lead to
performance loss. For example, if the thread that is going to
reach the barrier first is assigned the highest rank, keeping it
prioritized until it reaches the barrier delays the thread that
would be last to reach the barrier, lengthening the critical
path of the program. As such, for threads with very differ-
ent memory behavior, fixed-interval time-based shuffling of
thread ranking performs better. This allows each thread to
get quick service for its memory requests for a while and
make proportional progress toward the barrier. We call this
time-based shuffling.

5When the ratio between the largest memory intensity and the
smallest memory intensity of all threads within a group of threads
is small (less than 1.2 in our experiments), we refer to the group
as a group of threads with similar memory behavior.

6

Figures 5 and 6 illustrate how each of these two shuffling
policies performs when applied to two very different scenar-
ios for threads concurrently executing between two barriers.

When the set of threads have similar memory behavior as
shown in Figure 5 (a), code-segment based shuffling can be
significantly better than time-based shuffling. Behavior sim-
ilar to this exists in the applications ft and is. Time-based
shuffling (Figure 5 (b)) improves performance over no shuf-
fling by allowing different threads to be prioritized during
different time intervals and thus make proportional progress
toward the barrier. However, all threads continue to interfere
with one another in the memory system until they all reach
the barrier at a similar time. Code-segment based shuffling
reduces this interference between threads by ensuring some
threads reach the barrier earlier and once they reach the
barrier, they stop exerting pressure on the memory system.
As shown in Figure 5 (c) and described above, maintaining a
given random ranking until a code-segment change happens
(i.e., a thread reaches a barrier) allows the prioritized thread
to reach its barrier before the deprioritized one. After that,
the deprioritized thread can make much faster progress be-
cause previously-prioritized threads stop exerting memory
interference as they are waiting at the barrier. For this very
reason, code-segment based shuffling can significantly im-
prove performance over time-based shuffling, as shown in
the longer “Saved Cycles” of Figure 5 (c) compared to that
of Figure 5 (b).

When the set of threads have different memory behav-
ior as shown in Figure 6 (a), time-based shuffling can out-
perform code-segment based shuffling. Behavior similar to
this can be observed in the mg application. With time-based
shuffling (Figure 6 (b)), threads are assigned different ran-
dom rankings for each fixed-length interval, which allows
each thread to get quick service for its memory requests for
a while. This reduces the time it takes for all threads to
get to the barrier at the end of the interval. Figure 6(c)
shows how code-segment based shuffling can easily perform
poorly. The numbers shown above the threads in the differ-
ent intervals are an example of random ranks assigned to
the threads every time one of the threads’ code-segment fin-
ishes (i.e., every time a thread reaches the barrier, in this
example). Because the threads which would have anyway
reached the barrier earlier end up receiving a high rank over
the thread that would reach the barrier last (thread 3) af-
ter every code-segment change, code-segment based shuffling
delays the“critical thread”by causing more interference to it
and therefore results in performance loss compared to time-
based shuffling and even compared to no shuffling, as shown
in “Lost Cycles” in Figure 6(c).

Dynamic shuffling policy: Since neither of the two
policies always performs best, we propose a dynamic shuf-
fling policy that chooses either time-based shuffling or code-
segment based shuffling based on the similarity in the mem-
ory behavior of threads. Our dynamic shuffling policy oper-
ates on an interval-basis. An interval ends when each thread
executes a threshold number of instructions (we empirically
determined this interval as 5000 instructions). Our proposed
policy continuously monitors the memory intensity of the
threads to be shuffled. At the end of each interval, depend-
ing on the similarity in memory intensity of the threads in-
volved, the memory controller chooses a time-based or code-
segment-based shuffling policy for the following interval. As
we will show in Section 5, this policy performs better than

either time-based shuffling or code-segment based shuffling
employed for the length of the application.

3.3 Implementation Details
Table 1 breaks down the modest storage required for our

mechanisms, 1552 bits in a 16-core configuration. Addition-
ally, the structures we add or modify require little energy to
access and are not accessed very often. As such, significant
overhead is not introduced in terms of power consumption.

Closed form for N=16
PAMS N cores (bits) (bits)

Loop iteration counters 32 x N 512
Bandwidth consumption counters 16 x N 256

Number of
generated memory requests counters 16 x N 256

Past code-segment
information registers 2 x 16 x N 512

Limiter thread bit-vector N 16
Total storage required for PAMS 97 x N 1552

Table 1: Hardware storage cost of PAMS

Limiter Estimation: In Algorithm 1, to keep track of the
total time all threads spend waiting on lock l in an interval,
we modify the runtime system (i.e., the threading library) to
perform the following: When any thread attempts to acquire
lock l, a timestamp of this event is recorded locally. Once
lock l is successfully acquired by some thread i, the runtime
system adds the waiting time for that thread (obtained by
subtracting the recorded timestamp for thread i from the
current time) to the waiting time counter of lock l. Note
that the waiting time counter for lock l is protected by the
lock itself as it is only modified by a thread once that thread
has successfully acquired the lock.

The overhead of the runtime limiter estimation de-
scribed in Algorithm 1 is insignificant as it does not oc-
cur very often. In our evaluations we empirically determine
LimiterEstimationInterval to be equal to five. Among our
benchmarks, hist has the highest frequency of lock acquires,
averaging one lock acquire every 37k cycles. Assuming six-
teen locks are being tracked, the limiter estimation algo-
rithm incurs the latency of sorting sixteen waiting times
(each a 32-bit value) once every 185k cycles. A back-of-the-
envelope calculation shows that this latency adds an over-
head of less than 1% (even for the benchmark that has the
most frequent lock acquires).

Alternative Hardware-Based Limiter Estimation:

Even though the overhead of tracking total waiting time
for each lock in the runtime system is very small in our
implementation and evaluation, it could become more sig-
nificant in the context of a locking library that is highly-
optimized for fine-grain synchronization and when there is
high lock contention. An alternative implementation of our
proposal could track waiting time in hardware to further
reduce the overhead. Although we did not evaluate this al-
ternative, we outline its general idea here. In this implemen-
tation, two new instructions delimit the beginning and the
end of each thread’s wait for a lock: LOCK WAIT START
<lock address> and LOCK WAIT END <lock address>.
Each instruction takes a lock address, and updates a cen-
tralized lock table after commit, i.e. off the critical path.

This table contains one entry for each lock which con-
tains the current number of threads waiting on that lock
(num wait) and the associated cumulative waiting time
(wait time). LOCK WAIT START increments num wait

7

Benchmark Description
Input
Set

Length
(Instr.)

MPKI
Critical
Sections

Barriers
Barrier
Interval

hist Histogram (Phoenix) minis 50M 2.66 405 1 N/A
mg Multigrid solver (NPB) W 225M 4.07 0 300 201–501
cg Conjugate gradient solver (NPB) A 113M 22.26 256 60 31–91
is Integer sort (NPB) W 140M 17.32 112 25 1–26
bt Block tridiagonal solver (NPB) W 397M 6.45 0 310 171–481
ft Fast fourier transform (NPB) W 161M 5.41 16 5 21–26

Table 2: Benchmark summary

and LOCK WAIT END decrements num wait for the spec-
ified lock. Periodically, the hardware increments wait time
by num wait, and estimates the limiter by finding the lock
with the the highest wait time and storing its address in
a Locklongest register associated with the lock table. Since
LOCK WAIT END executes right before a thread starts
the critical section, the instruction also compares the lock
address with Locklongest and in case of a match, it reports
the thread ID to the memory controller as the current owner
of Locklongest, and the memory controller prioritizes re-
quests from this thread.

4. METHODOLOGY
Benchmarks: We use a selection of benchmarks from

NAS Parallel Benchmarks (NPB 2.3) [5] and the hist bench-
mark from Phoenix [30]. For each NPB benchmark, we man-
ually choose a representative execution interval delimited by
global barriers (Table 2 lists the barriers used). We do this in
order to simulate a tractable number of instructions with a
large enough input set that will produce a meaningful num-
ber of memory requests. However, this was not possible for
three of the NAS benchmarks ep, lu, and sp. This is because,
with a large enough input set to exert pressure on memory,
we were unable to pick a tractable execution interval. We
run the hist benchmark to completion.

All benchmarks are compiled using the Intel C Compiler
with the -O3 option. Table 2 summarizes the benchmarks.
The memory intensity values reported in this table are ob-
tained from simulations on the system described by Table 3.
The benchmarks we evaluate use Pthreads and OpenMP
threading libraries. We modify the threading library to in-
tercept library calls and detect locks. Also, we assume gang
scheduling [28, 10] of threads where all the threads of a par-
allel application are concurrently scheduled to execute. As a
result, thread preemption does not skew the threads’ mea-
sured waiting times.

Processor Model: We use an in-house cycle-accurate
x86 CMP simulator for our evaluation. We faithfully model
cache coherence, port contention, queuing effects, bank con-
flicts, and other major memory system constraints. Table 3
shows the baseline configuration of each core and the shared
resource configuration for the 16-core CMP system we use.
Table 4 shows the parameter values used in our evaluations.

5. RESULTS AND ANALYSIS
We first present performance results for each of the 6

benchmarks on a 16-core system normalized to their per-
formance on a system using an FR-FCFS memory sched-
uler. Figure 7 shows results for the following six configu-
rations from left to right for each benchmark, with each
succeeding configuration introducing only one new compo-

nent to the previous configuration: 1) thread cluster mem-
ory scheduling (TCM) [17], which uses time-based classifi-
cation of latency-sensitive vs. bandwidth-sensitive threads
with time-based shuffling, 2) code-segment based classifi-
cation of latency-sensitive vs. bandwidth-sensitive threads
(Section 3.2.2) with time-based shuffling, 3) code-segment
based classification of threads with code-segment based shuf-
fling (Section 3.2.3), 4) limiter information based thread pri-
oritization (Section 3.1.1) with code-segment based classifi-
cation and code-segment based shuffling, 5) limiter infor-
mation based thread prioritization with code-segment based
classification and dynamic shuffling policy, and 6) the com-
bination of all our proposed mechanisms (PAMS): limiter
information based thread prioritization, code-segment based
thread classification with dynamic shuffling policy, and loop
progress measurement based thread prioritization (note that
no configuration except for this last one takes into account
loop progress information in barrier based synchronization,
described in Section 3.1.2). We find that among all evaluated
mechanisms, PAMS provides the best performance, reduc-
ing execution time by 16.7% compared to a system with
FR-FCFS memory scheduling, and by 12.6% compared to
TCM, a state-of-the-art memory scheduling technique. Sev-
eral observations are in order:

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N
o

rm
a

li
ze

d
 E

x
ec

u
ti

o
n

 T
im

e

Thread cluster memory scheduling (TCM)

Code-seg classification + Time shuffling

Code-seg classification + Code-seg shuffling

Lim. Info + Code-seg classification + Code-seg shuffling

Lim. Info + Code-seg classification + Dyn. shuffling policy

PAMS

hist mg cg is bt ft gmean

Figure 7: Overall results

1. Applying TCM, which is a memory scheduling tech-
nique primarily designed for improving system performance
and fairness in multi-programmed workloads, to parallel ap-
plications improves average performance by 4.6%. This is
because even though this technique does not consider inter-
dependencies between threads, it still reduces inter-thread
memory system interference, providing quicker service to
threads (average memory latency reduces by 4.8%), thus en-
abling faster application progress.

2. Using code-segment based classification of latency-
sensitive vs. bandwidth-sensitive threads (second bar from
the left for each benchmark) as explained in Section 3.2.2 im-
proves performance significantly compared to the time-based

8

15-stage out of order processor, decode/retire up to 2 instructions
Execution core Issue/execute up to 4 micro-instructions; 64-entry reorder buffer

Front end Fetch up to 2 branches; 4K-entry BTB; 64K-entry hybrid branch predictor
L1 I-cache: 32KB, 4-way, 2-cycle, 64B line ; L1 D-cache: 32KB, 4-way, 2-cycle, 64B line

On-chip caches Shared unified L2: 4MB , 16-way, 16-bank, 20-cycle, 1 port, 64B line size
On-chip, FR-FCFS [31, 33] scheduling

DRAM controller 128-entry MSHR and memory request queue
667MHz bus cycle, DDR3 1333MHz [22]
8B-wide data bus, 8 DRAM banks, 16KB row buffer per bank

DRAM and bus Latency: 15-15-15ns (t
RP -tRCD-CL), corresponds to 100-100-100 processor cycles

Round-trip L2 miss latency: Row-buffer hit: 36ns, conflict: 51ns

Table 3: Baseline system configuration

LimiterEstimation TCM Time TCM Shuffling Time-based Period Instruction Sampling Period
Interval Quanta Period (also used within Dynamic Shuffling) in Dynamic Shuffling

5 2M cycles 100k cycles 100k cycles 5k insts

Table 4: Parameters used in evaluation

classification done by TCM on two of the shown bench-
marks (hist and ft). This is mainly because by using code-
segments as interval delimiters to classify threads as latency-
vs. bandwidth-sensitive (See Figure 3), we can make a more
accurate classification of the thread’s future memory behav-
ior using information from the last time the starting code-
segment executed.

3. When code-segment based shuffling is used instead of
time-based shuffling (third bar from left, compared to sec-
ond), performance improves significantly on three bench-
marks (hist, is, and ft). This is primarily due to behavior
shown in Figure 5. As explained in Section 3.2.3, when the
group of concurrently executing threads have similar mem-
ory behavior, using code-segment based intervals for shuf-
fling thread rankings outperforms time-based shuffling. On
the other hand, in benchmarks mg and cg, execution time
increases by as much as 6.8% (for mg) when code-segment
based shuffling is used. This is because the threads have
significantly different memory behavior, which can lead to
performance degradation with code-segment based shuffling,
as shown in Figure 6 (c). However, because of large improve-
ments on hist (11%), is (14%), and ft (10%), average perfor-
mance with code-segment based shuffling improves by 3.9%
compared to time-based shuffling.

4. When limiter information is used to prioritize threads
likely to be on the critical path (fourth bar from left), as
described in Section 3.1.1, further benefits can be gained on
applications that have contended locks. This can be seen in
benchmarks such as hist and is. In these applications (one
of which we will analyze in detail in a case study in Sec-
tion 5.1), memory requests from limiter threads estimated by
the runtime system are prioritized over non-limiter threads’
requests, resulting in further execution time reduction. Note
that when limiter information is used (in the three rightmost
bars of Figure 7), latency- vs. bandwidth-sensitive classifi-
cation of threads is performed only for limiter threads (as
described by Algorithm 3 in Section 3.2.2).

5. Using the dynamic shuffling policy described in Sec-
tion 3.2.3 (fifth bar for each benchmark) mitigates the per-
formance loss seen due to code-segment based shuffling on
benchmarks that have threads with different memory be-
havior, such as mg and cg. The dynamic shuffling policy
monitors the memory intensity of concurrently executing
threads and dynamically chooses code-segment based shuf-
fling (when threads have similar intensities) or time-based

shuffling (when threads have different intensities). With our
dynamic shuffling policy, time-based shuffling is used for 74%
and 52% of the time on mg and cg respectively.

6. mg and cg are also the benchmarks that benefit the
most from prioritization of lagging threads enabled by loop
progress measurement. This is expected since parallel for
loops dominate the execution time of both benchmarks. In
fact, mg and cg have very few critical sections, leaving loop
progress measurement as the only way to estimate the criti-
cal path. Hence, performance of both benchmarks improves
the most when loop progress measurement is enabled (4.5%
and 6.9% over FR-FCFS, respectively).

5.1 Case Study
To provide insight into the dynamics of our mechanisms,

we use the benchmark is, which has a combination of barriers
and critical sections, as a case study. This benchmark per-
forms a bucket sort, each iteration of which consists of two
phases: counting the integers belonging to each bucket and
partially computing the starting index of each integer in the
sorted integer array. The first phase is done in parallel; the
second, however, modifies a shared array of partial results
and hence requires a critical section. Figures 8(a)–(d) show
thread activity plots generated by running is on the following
configurations: a baseline system with an FR-FCFS mem-
ory controller, a system with TCM [17], a system that uses
code-segment based shuffling and code-segment based classi-
fication of latency-sensitive vs. bandwidth-sensitive threads,
and finally a system using our proposed PAMS.6

In each thread activity plot shown in Figure 8, each
thread’s execution is split into three different states (as in-
dicated by the legend on top of the figure): non-critical sec-
tion execution (normal line), critical section execution (bold
line), and waiting for a lock or barrier (dotted line). Vertical
lines represent barriers where all threads synchronize.

Several observations are in order: First, by using
TCM [17], overall inter-thread interference is reduced com-
pared to a baseline system with FR-FCFS, resulting in 3%
reduction in execution time. This is mainly due to the re-
duction in execution time when threads are executing the

6The total amount of work performed is the same across the dif-
ferent configurations. Due to space constraints, we only show the
first 7 of the total 14 barrier intervals that were executed. Ob-
serving the total execution of 14 barrier intervals yields the exact
same insights described in this section. For graphs with all 14
barriers, see our technical report [8].

9

non-critical section code that comes right after each barrier.
This happens due to TCM’s shuffling of priorities between
the threads on time-based intervals, which leads to relatively
similar improvement in the execution of all threads.

Second, performance can be significantly improved by us-
ing the code-segment based thread classification and shuf-
fling that we propose in Sections 3.2.2 and 3.2.3 respectively.
Figure 8(c) is a good real benchmark example of the behav-
ior shown in Figure 5. Comparing the intervals between each
pair of barriers across Figures 8(c) and (b) clearly shows
the benefits of code-segment based shuffling vs. time-based
shuffling in a benchmark where parallel threads executing
non-critical section code have similar memory behavior.

By keeping an assigned ranking constant until a code-
segment change happens (which triggers the end of an in-
terval and the assignment of a new ranking across threads)
three benefits occur: 1) when a prioritized thread reaches
the barrier, it starts waiting and stops interfering with other
threads enabling their faster progress (as explained in Sec-
tion 3.2.3), 2) with time-based shuffling all threads reach
the point where they attempt to acquire the lock at a simi-
lar time resulting in high contention and waiting for the lock.
Code-segment based shuffling reduces this lock contention:
with it, accesses to the critical section are spread over time
and the first thread to reach the lock acquire in each bar-
rier interval gets to that point earlier than with time-based
shuffling (as seen in Figure 8(c)), and 3) code-segment based
shuffling enables some threads to reach the critical section
earlier than others as opposed to all threads reaching it
at the same time (the latter happens in Figures 8(a) and
(b)). This leads to the overlapping of the critical section la-
tency with the execution of non-critical section code, and
ultimately a reduction in critical path of execution. As a re-
sult of these three major benefits, using code-segment based
shuffling reduces execution time by 15.6% and 12.8% com-
pared to the FR-FCFS baseline and TCM respectively.

Finally, adding limiter information detected by the run-
time system can significantly improve performance when
combined with code-segment based classification and shuf-
fling. Consider those critical sections that are part of the crit-
ical path in Figure 8(c). As this figure shows, some threads
enter their critical section early while other threads are still
executing non-critical section code. Hence, memory requests
from threads executing non-critical code can interfere with
memory requests of the critical thread. However, by priori-
tizing memory requests from the thread identified as critical
by the runtime system (Section 3.1), PAMS reduces the to-
tal time spent in the critical section by 29% compared to
code-segment based classification and shuffling without lim-
iter thread information (as shown by the improvement in
Figure 8(d) compared to (c)). Overall, PAMS improves ex-
ecution time by 28.4% and 26% compared to the FR-FCFS
baseline and TCM respectively.

5.2 Comparison to Memory Scheduling Using
Thread Criticality Predictors [1]

Bhattacharjee and Martonosi [1] propose thread critical-
ity predictors (TCP) to predict thread criticality based on
memory hierarchy statistics. Although they do not demon-
strate how their thread criticality predictor can be used for
reducing inter-thread interference in the memory system,
they do mention that it can be used in the design of memory
controllers. We implement a memory scheduling technique

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15

0 20M 40M 60M 80M 100M 120M 140M

T
h
re

a
d
 N

u
m

b
e
r

Cycles

Non-Critical Section
Critical Section

Waiting for Sync
Barrier (vertical)

(a) FR-FCFS

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15

0 20M 40M 60M 80M 100M 120M 140M

T
h
re

a
d
 N

u
m

b
e
r

Cycles

(b) TCM

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15

0 20M 40M 60M 80M 100M 120M 140M

T
h
re

a
d
 N

u
m

b
e
r

Cycles

(c) Code-segment based classification and shuffling

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15

0 20M 40M 60M 80M 100M 120M 140M

T
h
re

a
d
 N

u
m

b
e
r

Cycles

(d) PAMS

Figure 8: Execution of is benchmark with different
memory scheduling techniques

10

based on the information TCP provides as a comparison
point to PAMS. TCP uses L1 and L2 cache miss counts and
the penalty incurred by such misses to determine a criticality
count for a thread, defined in [1] as:

N(Crit.Count.) = N(L1miss) +
LLCpenalty . N(LLCmiss)

L1penalty

In the TCP-based memory scheduling technique we de-
veloped, the criticality of each thread is obtained once every
100k cycles, and a set of rankings is assigned to threads
based on their criticality. Threads with higher estimated
criticality are given higher priority for that interval. At the
end of each interval, thread criticalities are re-evaluated and
a new set of priorities are assigned for the next interval. As
Table 5 shows, we find that our technique, PAMS, outper-
forms this TCP-based memory scheduler by 6.6% on aver-
age. PAMS outperforms TCP significantly on three of the
benchmarks. This improvement is mainly due to the fol-
lowing which TCP does not address: 1) PAMS uses infor-
mation about the multi-threaded application such as lock
contention and loop progress to estimate thread criticality,
and 2) PAMS also addresses how to schedule requests of
non-critical threads (e.g., shuffling of non-limiter bandwidth-
sensitive threads). As such, the TCP idea is orthogonal to
some of our proposals and could be used within our PAMS
proposal as part of the basis for predicting critical/limiter
threads, which we leave to future work.

Benchmark name hist mg cg is bt ft gmean
∆ Execution time -9.9%-15%-9.8%-1.3%0.2%-2.5% -6.6%

Table 5: Reduction in execution time of PAMS com-
pared to TCP-based [1] memory scheduling

5.3 Sensitivity to System Parameters
Table 6 shows how PAMS performs compared to FR-

FCFS and TCM on systems with 8MB/16MB shared last
level caches or two/four independent memory channels.
Even though using a larger cache or multiple memory chan-
nels reduces interference in main memory, PAMS still pro-
vides significantly higher performance than both previous
schedulers. We conclude that our mechanism provides per-
formance benefits even on more costly systems with higher
memory bandwidth or larger caches.

Channels LLC ∆ wrt FR-FCFS ∆ wrt TCM

Single 4MB -16.7% -12.6%
Single 8MB -15.9% -13.4%
Single 16MB -10.5% -5.0%
Dual 4MB -11.6% -10.0%
Quad 4MB -10.4% -8.9%

Table 6: Sensitivity of PAMS performance benefits
to memory system parameters

6. RELATED WORK
To our knowledge, this paper is the first to design a mem-

ory controller that manages inter-thread memory system in-
terference to improve parallel application performance. Our
major contribution is a new memory scheduling technique
that takes into account inter-dependencies introduced by
common parallel program constructs (locks and barriers) to
make memory request scheduling decisions that reduce the
length of the critical path of the application.

We have already provided extensive quantitative and qual-
itative comparisons to a state-of-the-art memory scheduling
technique, TCM [17], which is designed for high system per-
formance and fairness on multi-programmed workloads. We
have also discussed how a state-of-the-art critical thread pre-
diction mechanism [1] can be used in designing a memory
controller and compared our proposal to it quantitatively
and qualitatively in Section 5.2. Here, we briefly discuss
other related work in memory controllers, shared resource
management for parallel applications, and critical path pre-
diction of parallel applications.

6.1 Memory Controllers
Many prior works have focused on management and re-

duction of inter-application memory system interference by
better scheduling of memory requests at the memory con-
troller [27, 25, 26, 23, 24, 29, 16, 17, 9]. However, like TCM,
all of these techniques focus on multi-programmed work-
loads and do not consider the inter-dependencies between
threads in their prioritization decisions. Ipek et al. [12] pro-
pose a memory controller that uses reinforcement learning to
dynamically optimize its scheduling policy, which improves
performance of parallel applications. Their technique ob-
serves the system state and estimates long-term performance
impact of different actions, but does not explicitly take into
account thread criticality or loop progress. In contrast to our
PAMS design, this technique requires relatively more com-
plex black box implementation of reinforcement learning in
hardware. Lin et al. propose hierarchical memory scheduling
for multimedia MPSoCs [19]. This design reduces interfer-
ence between requests coming from different IP blocks of
the SoC working on the same application by applying the
parallelism-aware batch scheduling mechanism of Mutlu and
Moscibroda [26]. As such, it does not take into account the
inter-dependencies of parallel applications that PAMS takes
into account to shorten the critical path and only attempts
to fairly service different request streams from different IP
blocks.

Thread-unaware memory scheduling policies (e.g., [33, 31,
21, 11]) are designed to improve DRAM throughput, but do
not take into account inter-thread interference or thread crit-
icality, leading to relatively low performance as we showed
in comparison to FR-FCFS.

6.2 Shared Resource Management
for Parallel Applications

Cheng et al. [4] propose throttling memory requests gener-
ated by threads in streaming parallel applications to reduce
memory system interference. Their mechanism is a software-
based approach that allows only an analytically determined
number of threads to send out requests to memory at any
given time to limit memory interference. Contrary to PAMS,
which is not restricted to a particular programming model,
their solution requires applications to be written in a gather-
compute-scatter style of stream programming. Chen et al. [3]
address inter-thread interference in shared caches as opposed
to managing interference at the memory controller and pro-
pose a thread scheduling mechanism that aims to increase
constructive cache sharing among threads of a parallel appli-
cation. These two mechanisms are complementary to PAMS
and can be combined with it to further improve parallel ap-
plication performance.

11

6.3 Critical Thread Prediction
Cai et al. [2] propose a mechanism for dynamically de-

tecting which threads in a parallel region are the slowest to
reach a barrier (i.e., critical) by keeping track of the exe-
cuted iteration counts of each thread. They use this loop
progress measurement to delay non-critical threads to save
energy, and to give higher priority to critical threads in the
issue queue of an SMT core. We use a variant of their tech-
nique to identify and prioritize critical threads in barrier
based programs as a component of our overall PAMS design
as described in Section 3.1.2. Our evaluation in Section 5
shows that of the 16.7% performance gain of PAMS over
the baseline, 2.3% is due to this optimization enabled by
loop progress measurement (comparing the last two bars of
Figure 7). As such, most of our proposals are orthogonal to
this prior work. Other prior techniques exploit the idleness
of threads that arrive early at a barrier to save power [18,
20], which Cai et al. [2] improve over.

7. CONCLUSION
We introduced the Parallel Application Memory Sched-

uler (PAMS), a new memory controller design that man-
ages inter-thread memory interference in parallel applica-
tions to reduce the overall execution time. To achieve this,
PAMS employs a hardware/software cooperative approach
that consists of two new components. First, the runtime sys-
tem estimates likely-critical threads due to lock-based and
barrier-based synchronization using different mechanisms
and conveys this information to the memory scheduler. Sec-
ond, the memory scheduler 1) prioritizes the likely-critical
threads’ requests since they are the performance bottleneck,
2) periodically shuffles the priorities of non-likely-critical
threads to reduce memory interference between them and
enable their fast progress. To our knowledge, PAMS is the
first memory controller design that explicitly aims to reduce
inter-thread interference between inter-dependent threads of
a parallel application.

Our experimental evaluations show that PAMS signifi-
cantly improves parallel application performance, outper-
forming the best previous memory scheduler designed for
multi-programmed workloads and a memory scheduler we
devised that uses a previously-proposed thread criticality
prediction mechanism to estimate and prioritize critical
threads. We conclude that the principles used in the de-
sign of PAMS can be beneficial in designing memory con-
trollers that enhance parallel application performance and
hope our design inspires new approaches in managing inter-
thread memory system interference in parallel applications.

ACKNOWLEDGMENTS

Many thanks to Veynu Narasiman, other HPS members,
Carlos Villavieja, and the anonymous reviewers for their
comments and suggestions. We also thank Aater Suleman
for his help and insights in the early stages of this work. We
gratefully acknowledge the support of the Cockrell Foun-
dation, Intel, and Samsung. This research was partially
supported by grants from the Gigascale Systems Research
Center, the National Science Foundation (CAREER Award
CCF-0953246), and the Intel Corporation ARO Memory Hi-
erarchy Program. José A. Joao was supported by an In-
tel PhD Fellowship. Chris Fallin was supported by an NSF
Graduate Research Fellowship.

REFERENCES
[1] A. Bhattacharjee and M. Martonosi. Thread criticality

predictors for dynamic performance, power, and resource
management in chip multiprocessors. In ISCA, 2009.

[2] Q. Cai et al. Meeting points: Using thread criticality to
adapt multicore hardware to parallel regions. In PACT,
2008.

[3] S. Chen et al. Scheduling threads for constructive cache
sharing on CMPs. In SPAA, 2007.

[4] H.-Y. Cheng et al. Memory latency reduction via thread
throttling. In MICRO, 2010.

[5] D. H. Bailey et al. NAS parallel benchmarks. Technical
report, NASA Ames Research Center, 1994.

[6] E. Ebrahimi et al. Coordinated control of multiple
prefetchers in multi-core systems. In MICRO, 2009.

[7] E. Ebrahimi et al. Fairness via source throttling: A
configrable and high-performance fairness substrate for
multi-core memory systems. In ASPLOS, 2010.

[8] E. Ebrahimi et al. Parallel application memory scheduling.
Technical Report TR-HPS-2011-001, UT-Austin, Oct. 2011.

[9] E. Ebrahimi et al. Prefetch-aware shared resource
management for multi-core systems. In ISCA, 2011.

[10] D. G. Feitelson and L. Rudolph. Gang scheduling
performance benefits for fine-grain synchronization. JPDC,
16(4):306–318, 1992.

[11] I. Hur and C. Lin. Adaptive history-based memory
scheduler. In MICRO, 2004.

[12] E. Ipek et al. Self-optimizing memory controllers: A
reinforcement learning approach. In MICRO, 2008.

[13] R. Iyer. CQoS: a framework for enabling QoS in shared
caches of CMP platforms. In ICS, 2004.

[14] R. Iyer et al. QoS policies and architecture for
cache/memory in CMP platforms. In SIGMETRICS, 2007.

[15] S. Kim et al. Fair cache sharing and partitioning in a chip
multiprocessor architecture. In PACT, 2004.

[16] Y. Kim et al. ATLAS: A scalable and high-performance
scheduling algorithm for multiple memory controllers. In
HPCA, 2010.

[17] Y. Kim et al. Thread cluster memory scheduling: Exploiting
differences in memory access behavior. In MICRO, 2010.

[18] J. Li et al. The thrifty barrier: energy-aware
synchronization in shared memory multiprocessors. 2004.

[19] Y.-J. Lin et al. Hierarchical memory scheduling for
multimedia MPSoCs. In ICCAD, 2010.

[20] C. Liu et al. Exploiting barriers to optimize power
consumption of CMPs. In IPDPS, 2005.

[21] S. A. McKee et al. Dynamic access ordering for streamed
computations. IEEE TC, 49:1255–1271, Nov. 2000.

[22] Micron. Datasheet: 2Gb DDR3 SDRAM, MT41J512M4 -
64 Meg x 4 x 8 banks,
http://download.micron.com/pdf/datasheets/dram/ddr3.

[23] T. Moscibroda and O. Mutlu. Memory performance
attacks: Denial of memory service in multi-core systems. In
USENIX Security, 2007.

[24] T. Moscibroda and O. Mutlu. Distributed order scheduling
and its application to multi-core DRAM controllers. In
PODC, 2008.

[25] O. Mutlu and T. Moscibroda. Stall-time fair memory access
scheduling for chip multiprocessors. In MICRO, 2007.

[26] O. Mutlu and T. Moscibroda. Parallelism-aware batch
scheduling: Enhancing both performance and fairness of
shared DRAM systems. In ISCA, 2008.

[27] K. J. Nesbit et al. Fair queuing memory systems. In
MICRO, 2006.

[28] J. K. Ousterhout. Scheduling techniques for concurrent
systems. In IEEE Distributed Computer Systems, 1982.

[29] N. Rafique et al. Effective management of DRAM
bandwidth in multicore processors,.

[30] C. Ranger et al. Evaluating mapreduce for multi-core and
multiprocessor systems. In HPCA, 2007.

[31] S. Rixner et al. Memory access scheduling. In ISCA, 2000.
[32] M. A. Suleman et al. Accelerating critical section execution

with asymmetric multi-core architectures. In ASPLOS,
2009.

[33] W. Zuravleff and T. Robinbson. Controller for a
synchronous DRAM that maximizes throughput by
allowing memory requests and commands to be issued out
of order. U.S. Patent Number 5,630,096, 1997.

12

