
1

Multi-core and System

Coherence Design Challenges

2

Agenda

 Cortex A15

 AXI Coherency Extensions (ACE)

 Cache Coherent Interconnect (CCI-400)

 big.LITTLE

 Q & A

3

Cortex-A15: Next Generation Leadership

Target Markets

 High-end wireless and

smartphone platforms

 tablet, large-screen mobile

and beyond

 Consumer electronics and

auto-infotainment

 Hand-held and console

gaming

 Networking, server,

enterprise applications

Cortex-A class multi-processor

 40bit physical addressing (1TB)

 Full hardware virtualization

 AMBA 4 system coherency

 ECC and parity protection for all SRAMs

Advanced power management

 Fine-grain pipeline shutdown

 Aggressive L2 power reduction capability

 Fast state save and restore

Significant performance advancement

 Improved single-thread and MP performance

Targets 1.5 GHz in 32/28 nm LP process

Targets 2.5 GHz in 32/28 nm G/HP process

4

Quad Cortex-A15 MPCore

Cortex-A15 Multiprocessing

 ARM introduced up to quad MP in 2004 with ARM11 MPCore

 Multiple MP solutions: Cortex-A9, Cortex-A5, Cortex-A15

 Cortex-A15 includes

 Integrated L2 cache with SCU functionality

 128-bit AMBA 4 interface with coherency extensions

Cortex-A15 Cortex-A15 Cortex-A15 Cortex-A15

Processor Coherency (SCU)

Up to 4MB L2 cache

128-bit AMBA 4 interface

ACP

5

Scaling Beyond Four Cores

Introducing AMBA 4 coherency extensions

 Coherency, Barriers and Memory management

Software implications

 Hardware managed coherency simplifies software

 Processor spends less time managing caches

Coherency types

 I/O coherency

 Devices snoop into processor caches (but processors do not

snoop into the device)

 Full cache coherency

 Cache snooping in both directions

6

Cortex-A15 System Scalability
Introducing CCI-400 Cache Coherent Interconnect

 Processor to Processor Coherency and I/O coherency

 Memory and synchronization barriers

 TLB and cache maintenance

128-bit AMBA 4

Quad Cortex-A15 MPCore

A15

Processor Coherency (SCU)

Up to 4MB L2 cache

A15 A15 A15

CoreLink CCI-400 Cache Coherent Interconnect

128-bit AMBA 4 IO
 c

o
h
e
re

n
t

d
e
v
ic

e
s

MMU-400

Quad Cortex-A15 MPCore

A15

Processor Coherency (SCU)

Up to 4MB L2 cache

A15 A15 A15

System MMU

7

Memory Error Detection/Correction

Error Correction Control on all software writable memories

 Single error correct, 2 error detect

 Multi-bit errors rare

 Protects 32 bits for L1, 64 bits for L2

 Error logging at each level of memory

 Leveraging out-of-order mechanisms for no performance impact

 Icache and TLB RAMs protected with precise parity (no fault required)

Primarily motivated by enterprise markets

 Soft errors predominantly caused by electrical disturbances

 Memory errors proportional to RAM and duration of operation

 Servers: MBs of cache, GBs of RAM, 24/7 operation

 Highly probability of error eventually happening

 If not corrected, eventually causes computer to crash and affect network

8

0

1

2

3

4

5

6

7

8

General
Purpose
Integer

Floating Point Media Memory
Streaming

Gaming
Workloads

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n

c
e

Cortex-A8 (45nm)

Cortex-A8 (32/28nm)

Cortex-A15 (32/28nm)

High-end Single Thread Performance

 Both processors using 32K L1 and 1MB L2 Caches, common memory system

 Cortex-A8 and Cortex-A15 using 128-bit AXI bus master

Note: Benchmarks are averaged across multiple sets of benchmarks with a common real memory system attached

 Cortex-A8 and Cortex-A15 estimated on 32/28nm.

Single-core

9

Performance and Energy Comparison

Lower power on
sustained workload

* Dual-core operation only required for high-end timing critical tasks. Single-core for sustained operation

Energy consumed

(lower is better)

Execution Time for critical task

(lower is better)

Time

 I
n

s
ta

n
ta

n
e
o

u
s
 P

o
w

e
r

A15 dual-core power at peak Much faster execution time for performance critical task

(Compute over and above sustained workload)

Performance at tighter
thermal constraints

10

Where We Started: Early Goals

Large performance boost over A9 in general purpose code

 From combination frequency + IPC

 Performance is more than just integer

 Memory system performance critical in larger applications

 Floating point/NEON for multimedia

 MP for high performance scalability

Straightforward design flow

 Supports fully synthesized design flow with compiled RAM instances

 Further optimization possible through advanced implementation

 Power/area savings

Minimize power/area cost for achieving performance target

11

Where to Find Performance: Frequency
Give RAMs as much time as possible

 Majority of cycle dedicated to RAM for access

 Make positive edge based to ease implementation

Balance timing of critical “loops” that dictate maximum frequency

 Microarchitecture loop:

 Key function designed to complete in a cycle (or a set of cycles)

 cannot be further pipelined (with high performance)

 Some example loops:

 Register Rename allocation and table update

 Result data and tag forwarding (ALU->ALU, Load->ALU)

 Instruction Issue decision

 Branch prediction determination

Feasibility work showed critical loops balancing at about 15-16 gates/clk

12

Where to Find Performance: IPC

 Wider pipelines for higher instruction throughput

 Larger instruction window for out-of-order execution

 More instruction types can execute out-of-order

 Improved memory system performance

13

Cortex-A15 Pipeline Overview

Fetch

Decode

Rename

Dispatch

Simple 0 & 1

Branch

NEON/FPU

Multiply

Load/Store

5 stages 7 stages

3-12 stage

out-of-order pipeline

12 stage

in-order pipeline

 12 stage in-order fetch and decode

 3-12 stage out-of-order execute

Is
s
u

e

W
ri

te
b

a
c
k

14

Improving Branch Prediction
Similar predictor style to Cortex-A8 and Cortex-A9:

 Large target buffer for fast turn around on address

 Global history buffer for taken/not taken decision

Global history buffer enhancements

 3 arrays: Taken array, Not taken array, and Selector

Indirect predictor

 256 entry BTB indexed by XOR of history and address

 Multiple Target addresses allowed per address

Out-of-order branch resolution:

 Reduces the mispredict penalty

 Requires special handling in return stack

15

Fetch Bandwidth: More Details

Increased fetch from 64-bit to 128-bit

 Full support for unaligned fetch address

 Enables more efficient use of memory bandwidth

 Only critical words of cache line allocated

Addition of microBTB

 Reduces bubble on taken branches

 64 entry target buffer for fast turn around prediction

 Fully associative structure

 Caches taken branches only

 Overruled by main predictor when they disagree

16

Out-of-Order Execution Basics

Out-of-Order instruction execution is done to increase

available instruction parallelism

The programmer’s view of in-order execution must be

maintained

 Mechanisms for proper handling of data and control hazards

 WAR and WAW hazards removed by register renaming

 Commit queue used to ensure state is retired non-speculatively

 Early and late stages of pipeline are still executed in-order

 Execution clusters operate out-of-order

 Instructions issue when all required source operands are available

17

Register Renaming

Two main components to register renaming

 Register rename tables

 Provides current mapping from architected registers to result queue entries

 Two tables: one each for ARM and Extended (NEON) registers

 Result queue

 Queue of renamed register results pending update to the register file

 Shared for both ARM and Extended register results

18

Execution Clusters

 Simple cluster
 Single cycle integer operations

 2 ALUs, 2 shifters (in parallel, includes v6-SIMD)

 Complex cluster
 All NEON and Floating Point data processing operations

 Pipelines are of varying length and asymmetric functions

 Capable of quad-FMAC operation

 Branch cluster
 All operations that have the PC as a destination

 Multiply and Divide cluster
 All ARM multiply and Integer divide operations

 Load/Store cluster
 All Load/Store, data transfers and cache maintenance operations

 Partially out-of-order, 1 Load and 1 Store executed per cycle

 Load cannot bypass a Store, Store cannot bypass a Store

19

Increasing Out-of-Order Execution

Out-of-order execution improves performance by

executing past hazards

 Effectiveness limited by how far you look ahead

 Window size of 40+ operations required for Cortex-A15 performance targets

 Issue queue size often frequency limited to 8 entries

Solution: multiple smaller issue queues

 Execution broken down to multiple clusters defined by instruction type

 Instructions dispatched 3 per cycle to the appropriate issue queue

 Issue queues each scanned in parallel

20

Cortex-A15 Execution Clusters

2

1

2

1

2

Instruction

Issue capability

 Each cluster can have multiple pipelines

 Clusters have separate/independent issuing capability

 Simple 0 & 1

 Branch

NEON/FPU

 Multiply

 Load/Store

3-12 stage

out-of-order pipeline

Is
s
u

e

W
ri

te
b

a
c
k
 1

1

2-10

4

4

Pipeline stages

(Total: 8)

21

Floating Point and NEON Performance

Dual issue queues of 8 entries each

 Can execute two operations per cycle

 Includes support for quad FMAC per cycle

Fully integrated into main Cortex-A15 pipeline

 Decoding done upfront with other instruction types

 Shared pipeline mechanisms

 Reduces area consumed and improves interworking

Specific challenges for Out-of-order VFP/Neon

 Variable length execution pipelines

 Late accumulator source operand for MAC operations

22

Load/Store Cluster

16 entry issue queue for loads and stores

 Common queue for ARM and NEON/memory operations

 Loads issue out-of-order but cannot bypass stores

 Stores issue in order, but only require address sources to issue

4 stage load pipeline

 1st: Combined AGU/TLB structure lookup

 2nd: Address setup to Tag and data arrays

 3rd: Data/Tag access cycle

 4th: Data selection, formatting, and forwarding

Store operations are AGU/TLB look up only on first pass

 Update store buffer after PA is obtained

 Arbitrate for Tag RAM access

 Update merge buffer when non-speculative

 Arbitrate for Data RAM access from merge buffer

Load/Store Cluster (1-LD plus 1-ST only)

Dual

Issue

16-entry

Issue

Queue

Tag

Data

RAM
FMT

ARB

MUX

LD

AGU

TLB

ST

AGU

TLB

ARB

MUX

ST

BUF

23

The Level 2 Memory System
Cache characteristics
 16 way cache with sequential TAG and Data RAM access

 Supports sizes of 512kB to 4MB

 Programmable RAM latencies

MP support
 4 independent Tag banks handle multiple requests in parallel

 Integrated Snoop Control Unit into L2 pipeline

 Direct data transfer line migration supported from cpu to cpu

External bus interfaces
 Full AMBA4 system coherency support on 128-bit master interface

 64/128 bit AXI3 slave interface for ACP

Other key features
 Full ECC capability

 Automatic data prefetching into L2 cache for load streaming

24

Other Key Cortex-A15 Design Features
Supporting fast state save for power down

 Fast cache maintenance operations

 Fast SPR writes: all register state local

Dedicated TLB and table walk machine per cpu

 4-way 512 entry per cpu

 Includes full table walk machine and cache walking structures

Active power management

 32 entry loop buffer

 Completely disables Fetch and part of the Decode stages of pipeline

ECC support in software writeable RAMs, Parity in read only RAMs

 Supports logging of error location and frequency

25

Agenda

 Cortex A15

 AXI Coherency Extensions (ACE)

 Cache Coherent Interconnect (CCI-400)

 big.LITTLE

 Q & A

26

AXI Coherency Extensions

 Extends upon existing non-coherent interface by adding

support for new transactions and snoop channel

27

Coherency Model

 Multiple masters with local caches, protocol supports up to 5

state cache model

28

Domains

 Allows for course-grained filtering of snoops in a system with

partitioned memory

29

Example Transactions

30

Agenda

 Cortex A15

 AXI Coherency Extensions (ACE)

 Cache Coherent Interconnect (CCI-400)

 big.LITTLE

 Q & A

31

Block diagram

ACE-Lite
Slave

Interface

ACE
Slave

Interface

ACE
Slave

Interface

ACE-Lite
Slave

Interface

ACE-Lite
Slave

Interface

SI4 SI3

SI2 SI1 SI0

+DVM +DVM +DVM

CCI-400

ACE-Lite
Master

Interface

ACE-Lite
Master

Interface

ACE-Lite
Master

Interface

MI2 MI1 MI0

ACLK

ARESETn

Configuration Inputs

PMU Signals

nERRORIRQ

AXI Low-power Interface

Cortex-A15 or Cortex-A7 System MMU + (e.g. GPU, DMAC or LCD controller)

DRAM controllers Other peripherals

32

ACE master snooping transactions

ACE-Lite
Slave

Interface

ACE
Slave

Interface

ACE
Slave

Interface

ACE-Lite
Slave

Interface

ACE-Lite
Slave

Interface

SI4 SI3

SI2 SI1 SI0

+DVM +DVM +DVM

ACE-Lite
Master

Interface

ACE-Lite
Master

Interface

ACE-Lite
Master

Interface

MI2 MI1 MI0

SNOOP

SNOOP

 Transactions from ACE masters can snoop other ACE masters’ caches

 Transactions from ACE masters cannot snoop ACE-Lite masters’ caches

33

ACE-Lite master snooping transactions

ACE-Lite
Slave

Interface

ACE
Slave

Interface

ACE
Slave

Interface

ACE-Lite
Slave

Interface

ACE-Lite
Slave

Interface

SI4 SI3

SI1 SI0

+DVM +DVM

ACE-Lite
Master

Interface

ACE-Lite
Master

Interface

ACE-Lite
Master

Interface

MI2 MI1 MI0

SNOOP SNOOP

 Transactions from ACE-Lite masters can snoop other ACE masters’ caches

 Transactions from ACE-Lite masters cannot snoop ACE-Lite masters’ caches

SI2

+DVM

34

Distributed Virtual Memory messages

ACE-Lite
Slave

Interface

ACE
Slave

Interface

ACE
Slave

Interface

ACE-Lite
Slave

Interface

ACE-Lite
Slave

Interface

SI4 SI3

SI1 SI0

+DVM +DVM

ACE-Lite
Master

Interface

ACE-Lite
Master

Interface

ACE-Lite
Master

Interface

MI2 MI1 MI0

DVM

 ACE masters can accept DVM messages, per the ACE protocol

 CCI-400 DVM extensions allow ACE-Lite masters to receive DVMs messages

 ACE-Lite masters cannot generate DVM messages

SI2

+DVM

DVM DVM

35

Power Estimation

 Power estimated using Synopsys Primetime-PX using netlist

simulations under different traffic scenarios

 Conditions:

 Active power shown below:

 as mW/MHz (blue bars)

 as uJ/MB (red)

Modest idle and near idle
power demonstrates
effective clock gating

With typical high-
end scenario, 100%

shared traffic at
533MHz, CCI-400

consumes ~100mW

Energy per MB transferred is
approx 8 uJ/MB.

e.g. transferring a total of 10GB
in 1s would consume ~80mW

0

1

2

3

4

5

6

7

8

9

10

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Idle Near idle Typical b/w 0%
shared

Typical b/w
100% shared

Energy

uJ/MB

Power

mW/
MHz

36

Agenda

 Cortex A15

 AXI Coherency Extensions (ACE)

 Cache Coherent Interconnect (CCI-400)

 big.LITTLE

 Q & A

37

 Uses the right processor for the right job

 Up to 70% energy savings on common workloads

 Flexible and transparent to apps – seamless software handover

 Best of both worlds solution for high performance and low power

Introducing big.LITTLE Processing

Cortex-A15

MPCore

L2 Cache

CPU

Cortex-A7

MPCore

L2 Cache

CCI-400 Coherent Interconnect

CPU
CPU CPU

Interrupt Control

big

“Demanding tasks”

LITTLE

“Always on, always
connected tasks”

38

Performance and Energy-Efficiency

 Simple, in-order, 8 stage pipeline

 Performance better than today’s

mainstream, high-volume smartphones

Most energy-efficient applications processor from ARM

 Complex, out-of-order, multi-issue pipeline

 Up to 5x the performance of today’s
mainstream, high-volume smartphones

Highest performance in mobile power envelope

Cortex-A7

Cortex-A15

L
IT

T
L

E

b
ig

Q
u
e
u
e

I
s
s
u
e

I
n
t
e
g
e
r

39

Power Analysis: Setting Up big.LITTLE

CPU RUN
at various

DVFS
operating

points

WFI

OFF

CPU0 CPU1

Android app used to gather CPU Activity information from a device

(DVFS states and per-CPU RUN / WFI / OFF)

Note: Cortex-A7 should handle all except the red workloads (we expect it will even be able to
handle a portion of today’s red workloads)

Y-Axis is the % of the total runtime for the

use case

Blue areas represent ‘idle’ states:

WFI, OFF, and Cluster OFF

All other colors represent CPU RUN, at

some DVFS OPP

Red is ‘hottest’ OPP

Per-CPU Data collected on MP systems

40

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
cp

u
0

cp
u

1

cp
u

0

cp
u

1

cp
u

0

cp
u

1

cp
u

0

cp
u

1

cp
u

0

cp
u

1

30 min voice call Camorder-1080p Facebook 20min File Download
Wifi

Newsrob RSS Sync
30min

Basic Workloads Today
All data from Cortex-A9

based mobile handset

 Basic activity (phone calls, etc.) can be handled almost entirely in

“LITTLE” core

41

CPU Migration

 Per-Core Granularity

 Each CPU software context can switch to big or LITTLE

 Each CPU context switches independently of other CPU’s context

 CPU migration is driven by OS power management

 DVFS algorithm monitors per CPU load

 Operating point selection is done independently per CPU

 When a LITTLE CPU cannot service the incumbent load a switch to

an available big CPU is performed

 The LITTLE processor within the cluster is switched off

 When a lower performance is required, the software context will

switch back to the LITTLE CPU

 If no CPUs are active within a cluster, then its L2 can also be

powered off

42

Cluster Migration

 Only one cluster is ever active

 End-to-end “Interrupt off” switch time ~30K cycles

 Cluster selection driven by OS power management

 DVFS algorithm selects a suitable operating point

 A switch from the Cortex-A7 cluster to Cortex-A15 cluster is an

extension of the DVFS strategy

 Load monitoring is done at the cluster level

 Linux cpufreq samples load across all CPU in cluster

 Selects a cluster operating point using the most loaded CPU

 Switches cluster at an appropriate point on the DVFS curve

43

big.LITTLE Cluster Migration Mechanics

Migration Stimulus Received

Save State

Normal Operation

Snooping Allowed

Outbound Processor

Cache Invalidate

Ready for Task Migration

Migrate State (Snoop Outbound Processor)

Inbound Processor

Outbound Processor OFF

Stimulus from OS/Virtualizer

via system firmware interface

Enable Snooping

Restore State

Normal Operation

Power Down

Power On & Reset

Disable Snooping

Clean Cache

Less than 100-cycles

~30k cycles

This is the “critical period” where no
work is being done on either cluster

Cycle count is OS

dependent

• State transfer is fast and atomic

• The mechanism is invisible to the payload software

44

Summary

 The combination of Cortex A15, ACE and CCI-400 offers

customers a complete system coherent solution for the first

time in ARM’s history

 Adding the low power Cortex A7 enables the big.LITTLE

ecosystem to handle dynamic power/performance demands

 Many tradeoffs were necessary to achieve this while

maintaining low power leadership with decent performance

45

Some Light Reading

 ARM Architecture Reference Manual ARMv7-A and ARMv7-R Edition

 http://infocenter.arm.com

 ARM Architecture  Reference Manuals

 DesignStart IP

 http://www.arm.com/support/university/ip/index.php

 Careers

 http://www.arm.com/about/careers/students/student-vacancies.php

 http://www.arm.com/about/careers/graduates/vacancies.php

46

Q & A

