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Multi-core and System 

Coherence Design Challenges 
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Agenda 

 Cortex A15 

 AXI Coherency Extensions (ACE) 

 Cache Coherent Interconnect (CCI-400) 

 big.LITTLE 

 Q & A 
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Cortex-A15: Next Generation Leadership 

Target Markets 

 High-end wireless and 

smartphone platforms 

 tablet, large-screen mobile 

and beyond 

 Consumer electronics and 

auto-infotainment 

 Hand-held and console 

gaming 

 Networking, server,    

enterprise applications 

Cortex-A class multi-processor 

 40bit physical addressing (1TB) 

 Full hardware virtualization 

 AMBA 4 system coherency 

 ECC and parity protection for all SRAMs 
 

Advanced power management 

 Fine-grain pipeline shutdown 

 Aggressive L2 power reduction capability 

 Fast state save and restore  
 

Significant performance advancement 

 Improved single-thread and MP performance 

Targets 1.5 GHz in 32/28 nm LP process 

Targets 2.5 GHz in 32/28 nm G/HP process 
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Quad Cortex-A15 MPCore 

Cortex-A15 Multiprocessing 

 ARM introduced up to quad MP in 2004 with ARM11 MPCore 

 Multiple MP solutions: Cortex-A9, Cortex-A5, Cortex-A15 

 Cortex-A15 includes  

 Integrated L2 cache with SCU functionality 

 128-bit AMBA 4 interface with coherency extensions 

Cortex-A15 Cortex-A15 Cortex-A15 Cortex-A15 

Processor Coherency (SCU) 

Up to 4MB L2 cache 

128-bit AMBA 4 interface 

ACP 
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Scaling Beyond Four Cores 

Introducing AMBA 4 coherency extensions 

 Coherency, Barriers and Memory management 
 

Software implications 

 Hardware managed coherency simplifies software 

 Processor spends less time managing caches 

 

Coherency types 

 I/O coherency 

 Devices snoop into processor caches (but processors do not 

snoop into the device) 

 Full cache coherency 

 Cache snooping in both directions  
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Cortex-A15 System Scalability 
Introducing CCI-400 Cache Coherent Interconnect 

 Processor to Processor Coherency and I/O coherency 

 Memory and synchronization barriers 

 TLB and cache maintenance 

128-bit AMBA 4 

Quad Cortex-A15 MPCore 

A15 

Processor Coherency (SCU) 

Up to 4MB L2 cache 

A15 A15 A15 

CoreLink CCI-400 Cache Coherent Interconnect  

128-bit AMBA 4 IO
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MMU-400 

Quad Cortex-A15 MPCore 

A15 

Processor Coherency (SCU) 

Up to 4MB L2 cache 

A15 A15 A15 

System MMU 
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Memory Error Detection/Correction  

Error Correction Control on all software writable memories 

 Single error correct, 2 error detect 

 Multi-bit errors rare 

 Protects 32 bits for L1, 64 bits for L2 

 Error logging at each level of memory  

 Leveraging out-of-order mechanisms for no performance impact 

 Icache and TLB RAMs protected with precise parity (no fault required) 
 

Primarily motivated by enterprise markets 

 Soft errors predominantly caused by electrical disturbances 

 Memory errors proportional to RAM and duration of operation 

 Servers: MBs of cache, GBs of RAM, 24/7 operation 

 Highly probability of error eventually happening 

 If not corrected, eventually causes computer to crash and affect network 
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Cortex-A8 (45nm) 

Cortex-A8 (32/28nm) 

Cortex-A15 (32/28nm) 

High-end Single Thread Performance 

 Both processors using 32K L1 and 1MB L2 Caches, common memory system 

 Cortex-A8 and Cortex-A15 using 128-bit AXI bus master 

Note:  Benchmarks are averaged across multiple sets of benchmarks with a common real memory system attached 

           Cortex-A8 and Cortex-A15 estimated on 32/28nm.  

Single-core 
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Performance and Energy Comparison 

Lower power on 
sustained workload 

* Dual-core operation only required for high-end timing critical tasks. Single-core for sustained operation 

  

Energy consumed 

(lower is better) 

Execution Time for critical task 

(lower is better) 

Time 
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A15 dual-core power at peak Much faster execution time for performance critical task 

(Compute over and above sustained workload) 

Performance at tighter 
thermal constraints 
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Where We Started: Early Goals 

Large performance boost over A9 in general purpose code 

 From combination frequency + IPC 

 Performance is more than just integer 

 Memory system performance critical in larger applications  

 Floating point/NEON for multimedia 

 MP for high performance scalability 

 

Straightforward design flow 

 Supports fully synthesized design flow with compiled RAM instances  

 Further optimization possible through advanced implementation 

 Power/area savings 

 

Minimize power/area cost for achieving performance target 
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Where to Find Performance: Frequency 
Give RAMs as much time as possible 

 Majority of cycle dedicated to RAM for access 

 Make positive edge based to ease implementation 

 

Balance timing of critical “loops” that dictate maximum frequency 

 Microarchitecture loop: 

 Key function designed to complete in a cycle (or a set of cycles)  

 cannot be further pipelined (with high performance) 

 Some example loops:  

 Register Rename allocation and table update 

 Result data and tag forwarding (ALU->ALU, Load->ALU) 

 Instruction Issue decision 

 Branch prediction determination 

 

Feasibility work showed critical loops balancing at about 15-16 gates/clk 
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Where to Find Performance: IPC  

 

 Wider pipelines for higher instruction throughput 

 

 Larger instruction window for out-of-order execution 

 

 More instruction types can execute out-of-order 

 

 Improved memory system performance 
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Cortex-A15 Pipeline Overview 

Fetch 

Decode 

Rename 

Dispatch 

Simple 0 & 1 

Branch 

NEON/FPU 

Multiply 

Load/Store 

5 stages 7 stages 

3-12 stage 

out-of-order pipeline 

12 stage  

in-order pipeline 

 12 stage in-order fetch and decode 

 3-12 stage out-of-order execute  
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Improving Branch Prediction 
Similar predictor style to Cortex-A8 and Cortex-A9: 

 Large target buffer for fast turn around on address 

 Global history buffer for taken/not taken decision 

 

Global history buffer enhancements 

 3 arrays: Taken array, Not taken array, and Selector 

 

Indirect predictor 

 256 entry BTB indexed by XOR of history and address 

 Multiple Target addresses allowed per address 

 

Out-of-order branch resolution: 

 Reduces the mispredict penalty 

 Requires special handling in return stack  
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Fetch Bandwidth: More Details 

Increased fetch from 64-bit to 128-bit 

 Full support for unaligned fetch address 

 Enables more efficient use of memory bandwidth 

 Only critical words of cache line allocated 

 

Addition of microBTB  

 Reduces bubble on taken branches 

 64 entry target buffer for fast turn around prediction 

 Fully associative structure 

 Caches taken branches only 

 Overruled by main predictor when they disagree 
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Out-of-Order Execution Basics 

Out-of-Order instruction execution is done to increase 

available instruction parallelism 

 

The programmer’s view of in-order execution must be 

maintained 

 Mechanisms for proper handling of data and control hazards 

 WAR and WAW hazards removed by register renaming 

 Commit queue used to ensure state is retired non-speculatively 

 Early and late stages of pipeline are still executed in-order 

 Execution clusters operate out-of-order 

 Instructions issue when all required source operands are available 

 



17 

Register Renaming 

Two main components to register renaming 

 Register rename tables 

 Provides current mapping from architected registers to result queue entries 

 Two tables: one each for ARM and Extended (NEON) registers 

 Result queue 

 Queue of renamed register results pending update to the register file 

 Shared for both ARM and Extended register results 
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Execution Clusters 

 Simple cluster  
 Single cycle integer operations 

 2 ALUs, 2 shifters (in parallel, includes v6-SIMD) 
 

 Complex cluster 
 All NEON and Floating Point data processing operations 

 Pipelines are of varying length and asymmetric functions 

 Capable of quad-FMAC operation 
 

 Branch cluster 
 All operations that have the PC as a destination 

 

 Multiply and Divide cluster 
 All ARM multiply and Integer divide operations 

 

 Load/Store cluster 
 All Load/Store, data transfers and cache maintenance operations 

 Partially out-of-order, 1 Load and 1 Store executed per cycle 

 Load cannot bypass a Store, Store cannot bypass a Store 
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Increasing Out-of-Order Execution 

Out-of-order execution improves performance by 

executing past hazards 

 Effectiveness limited by how far you look ahead 

 Window size of 40+ operations required for Cortex-A15 performance targets 

 Issue queue size often frequency limited to 8 entries 

 

Solution: multiple smaller issue queues 

 Execution broken down to multiple clusters defined by instruction type 

 Instructions dispatched 3 per cycle to the appropriate issue queue 

 Issue queues each scanned in parallel  
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Cortex-A15 Execution Clusters 

2 

1 

2 

1 

2 

Instruction 

Issue capability 

 Each cluster can have multiple pipelines 

 Clusters have separate/independent issuing capability 

                                  Simple 0 & 1 

                        Branch 

NEON/FPU 

                             Multiply 

                                  Load/Store 

3-12 stage 

out-of-order pipeline 
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Floating Point and NEON Performance  

Dual issue queues of 8 entries each 

 Can execute two operations per cycle  

 Includes support for quad FMAC per cycle 
 

Fully integrated into main Cortex-A15 pipeline 

 Decoding done upfront with other instruction types 

 Shared pipeline mechanisms 

 Reduces area consumed and improves interworking 
 

Specific challenges for Out-of-order VFP/Neon 

 Variable length execution pipelines 

 Late accumulator source operand for MAC operations  
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Load/Store Cluster 

16 entry issue queue for loads and stores 

 Common queue for ARM and NEON/memory operations 

 Loads issue out-of-order but cannot bypass stores 

 Stores issue in order, but only require address sources to issue 

 

4 stage load pipeline 

 1st: Combined AGU/TLB structure lookup  

 2nd: Address setup to Tag and data arrays 

 3rd: Data/Tag access cycle 

 4th: Data selection, formatting, and forwarding 

 

Store operations are AGU/TLB look up only on first pass 

 Update store buffer after PA is obtained 

 Arbitrate for Tag RAM access 

 Update merge buffer when non-speculative 

 Arbitrate for Data RAM access from merge buffer 

Load/Store Cluster (1-LD plus 1-ST only)

Dual

Issue

16-entry

Issue

Queue

Tag

Data

RAM
FMT

ARB

MUX

LD

AGU

TLB

ST

AGU 

TLB

ARB

MUX

ST

BUF
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The Level 2 Memory System 
Cache characteristics 
 16 way cache with sequential TAG and Data RAM access 

 Supports sizes of 512kB to 4MB 

 Programmable RAM latencies 
 

MP support 
 4 independent Tag banks handle multiple requests in parallel 

 Integrated Snoop Control Unit into L2 pipeline 

 Direct data transfer line migration supported from cpu to cpu 
 

External bus interfaces 
 Full AMBA4 system coherency support on 128-bit master interface 

 64/128 bit AXI3 slave interface for ACP 
 

Other key features 
 Full ECC capability 

 Automatic data prefetching into L2 cache for load streaming  
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Other Key Cortex-A15 Design Features 
Supporting fast state save for power down 

 Fast cache maintenance operations 

 Fast SPR writes: all register state local 
 

Dedicated TLB and table walk machine per cpu 

 4-way 512 entry per cpu 

 Includes full table walk machine and cache walking structures 
 

Active power management 

 32 entry loop buffer 

 Completely disables Fetch and part of the Decode stages of pipeline 
 

ECC support in software writeable RAMs, Parity in read only RAMs 

 Supports logging of error location and frequency 
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Agenda 

 Cortex A15 

 AXI Coherency Extensions (ACE) 

 Cache Coherent Interconnect (CCI-400) 
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AXI Coherency Extensions 

 Extends upon existing non-coherent interface by adding 

support for new transactions and snoop channel 
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Coherency Model 

 Multiple masters with local caches, protocol supports up to 5 

state cache model 
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Domains 

 Allows for course-grained filtering of snoops in a system with 

partitioned memory 
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Example Transactions 
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Block diagram 

 

 

 

 

 

 

ACE-Lite 
Slave 

Interface 

ACE 
Slave 

Interface 

ACE 
Slave 

Interface 

ACE-Lite 
Slave 

Interface 

ACE-Lite 
Slave 

Interface 

SI4 SI3 

SI2 SI1 SI0 

+DVM +DVM +DVM 

CCI-400 

ACE-Lite 
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AXI Low-power Interface 

Cortex-A15 or Cortex-A7 System MMU + (e.g. GPU, DMAC or  LCD controller) 

DRAM controllers Other peripherals 
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ACE master snooping transactions 
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ACE-Lite 
Slave 

Interface 

SI4 SI3 

SI2 SI1 SI0 

+DVM +DVM +DVM 

ACE-Lite 
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Interface 
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SNOOP 

 Transactions from ACE masters can snoop other ACE masters’ caches  

 Transactions from ACE masters cannot snoop ACE-Lite masters’ caches 
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ACE-Lite master snooping transactions 
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Distributed Virtual Memory messages 
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 ACE masters can accept DVM messages, per the ACE protocol  

 CCI-400 DVM extensions allow ACE-Lite masters to receive DVMs messages 

 ACE-Lite masters cannot generate DVM messages 

SI2 

+DVM 

DVM DVM 
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Power Estimation 

 Power estimated using Synopsys Primetime-PX using netlist 

simulations under different traffic scenarios 

 Conditions:  

 Active power shown below: 

 as mW/MHz (blue bars) 

 as uJ/MB (red) 

Modest idle and near idle 
power demonstrates 
effective clock gating 

 

With typical high-
end scenario,  100% 

shared traffic at 
533MHz, CCI-400 

consumes ~100mW  

 

Energy per MB transferred is 
approx 8 uJ/MB.  

e.g. transferring a total of 10GB 
in 1s would consume ~80mW 
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 Uses the right processor for the right job 

 Up to 70% energy savings on common workloads 

 Flexible and transparent to apps – seamless software handover 

 Best of both worlds solution for high performance and low power 

 

Introducing big.LITTLE Processing 

Cortex-A15 

MPCore 

L2 Cache 

CPU 

Cortex-A7 

MPCore 

L2 Cache 

CCI-400 Coherent Interconnect 

CPU 
CPU CPU 

Interrupt Control 

big 

“Demanding tasks” 

LITTLE 

“Always on, always 
connected tasks” 
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Performance and Energy-Efficiency 

 Simple, in-order, 8 stage pipeline 

 Performance better than today’s  

mainstream, high-volume smartphones 

Most energy-efficient applications processor from ARM 

 Complex, out-of-order, multi-issue pipeline 

 Up to 5x the performance of today’s 
mainstream, high-volume smartphones 

Highest performance in mobile power envelope 

Cortex-A7 

Cortex-A15 
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Power Analysis: Setting Up big.LITTLE 

CPU RUN 
at various 

DVFS 
operating 

points 

WFI 

OFF 

CPU0 CPU1 

Android app used to gather CPU Activity information from a device 

(DVFS states and per-CPU RUN / WFI / OFF) 

Note: Cortex-A7 should handle all except the red workloads (we expect it will even be able to 
handle a portion of today’s red workloads) 

Y-Axis is the % of the total runtime for the 

use case 
 

Blue areas represent ‘idle’ states:  

WFI, OFF, and Cluster OFF 
 

All other colors represent CPU RUN, at 

some DVFS OPP 

Red is ‘hottest’ OPP 
 

Per-CPU Data collected on MP systems 
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Basic Workloads Today 
All data from Cortex-A9 

based mobile handset 

 

 Basic activity (phone calls, etc.) can be handled almost entirely in 

“LITTLE” core 
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CPU Migration 

 Per-Core Granularity  

 Each CPU software context can switch to big or LITTLE 

 Each CPU context switches independently of other CPU’s context 
 

 CPU migration is driven by OS power management  

 DVFS algorithm monitors per CPU load 

 Operating point selection is done independently per CPU  

 When a LITTLE CPU cannot service the incumbent load a switch to 

an available big CPU is performed 

 The LITTLE processor within the cluster is switched off  

 When a lower performance is required, the software context will 

switch back to the LITTLE CPU 
 

 If no CPUs are active within a cluster, then its L2 can also be 

powered off 
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Cluster Migration 

 Only one cluster is ever active 

 End-to-end “Interrupt off” switch time ~30K cycles 

 

 Cluster selection driven by OS power management 

 DVFS algorithm selects a suitable operating point 

 A switch from the Cortex-A7 cluster to Cortex-A15 cluster is an 

extension of the DVFS strategy 

 

 Load monitoring is done at the cluster level 

 Linux cpufreq samples load across all CPU in cluster 

 Selects a cluster operating point using the most loaded CPU 

 Switches cluster at  an appropriate point on the DVFS curve 
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big.LITTLE Cluster Migration Mechanics 

Migration Stimulus Received 

Save State 

Normal Operation 

Snooping Allowed 

Outbound Processor 

Cache Invalidate 

Ready for Task Migration 

Migrate State (Snoop Outbound Processor) 

Inbound Processor 

Outbound Processor OFF 

Stimulus from OS/Virtualizer 

via system firmware interface 

Enable Snooping 

Restore State 

Normal Operation 

Power Down 

Power On & Reset 

Disable Snooping 

Clean Cache 

Less than 100-cycles 

~30k cycles 

This is the “critical period” where no 
work is being done on either cluster 

Cycle count is OS 

dependent 

• State transfer is fast and atomic 

• The mechanism is invisible to the payload software 
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Summary 
 

 The combination of Cortex A15, ACE and CCI-400 offers 

customers a complete system coherent solution for the first 

time in ARM’s history 

 Adding the low power Cortex A7 enables the big.LITTLE 

ecosystem to handle dynamic power/performance demands 

 Many tradeoffs were necessary to achieve this while 

maintaining low power leadership with decent performance 
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Some Light Reading 
 

 ARM Architecture Reference Manual ARMv7-A and ARMv7-R Edition 

 http://infocenter.arm.com 

 ARM Architecture  Reference Manuals 

 DesignStart IP 

 http://www.arm.com/support/university/ip/index.php 

 Careers 

 http://www.arm.com/about/careers/students/student-vacancies.php 

 http://www.arm.com/about/careers/graduates/vacancies.php 
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Q & A 


