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Abstract
We present an architecture that features dynamic

multithreading execution of a single program. Threads
are created automatically by hardware at procedure and
loop boundaries and executed speculatively on a
simultaneous multithreading pipeline. Data prediction is
used to alleviate dependency constraints and enable
lookahead execution of the threads. A two-level hierarchy
significantly enlarges the instruction window. Efficient
selective recovery from the second level instruction
window takes place after a mispredicted input to a thread
is corrected. The second level is slower to access but has
the advantage of large storage capacity.  We show several
advantages of this architecture: (1) it minimizes the
impact of ICache misses and branch mispredictions by
fetching and dispatching instructions out-of-order, (2) it
uses a novel value prediction and recovery mechanism to
reduce artificial data dependencies created by the use of a
stack to manage run-time storage, and (3) it improves the
execution throughput of a superscalar by 15% without
increasing the execution resources or cache bandwidth,
and by 30% with one additional ICache fetch port. The
speedup was measured on the integer SPEC95
benchmarks, without any compiler support, using a
detailed performance simulator.

1 Introduction

Today’s out-of-order superscalars use techniques such
as register renaming and dynamic scheduling to eliminate
hazards created by the reuse of registers, and to hide long
execution latencies resulting from DCache misses and
floating point operations [1]. However, the basic method
of sequential fetch and dispatch of instructions is still the
underlying computational model. Consequently, the
performance of superscalars is limited by instruction
supply disruptions caused by branch mispredictions and
ICache misses. On programs where these disruptions
occur often, the execution throughput is well below a
wide superscalar’s peak bandwidth.

Ideally, we need an uninterrupted instruction fetch
supply to increase performance. Even then, there are other
complexities that have to be overcome to increase
execution throughput [2]. Register renaming requires
dependency checking among instructions of the same
block, and multiple read ports into the rename table. This
logic increases in complexity as the width of the rename
stage increases. A large pool of instructions is also
necessary to find enough independent instructions to run
the execution units at full utilization. The issue logic has
to identify independent instructions quickly, as soon as
their inputs become ready, and issue them to the
execution units.

We present an architecture that improves instruction
supply and allows instruction windows of thousands of
instructions. The architecture uses dynamic multiple
threads (DMT) of control to fetch, rename, and dispatch
instructions simultaneously from different locations of the
same program into the instruction window. In other
words, instructions are fetched out-of-order. Fetching
using multiple threads has three advantages. First, due to
the frequency of branches in many programs, it is easier
to increase the instruction supply by fetching multiple
small blocks simultaneously than by increasing the size of
the fetch block. Second, when the supply from one thread
is interrupted due to an ICache miss or a branch
misprediction, the other threads will continue filling the
instruction window. Third, although duplication of the
ICache fetch port and the rename unit is necessary to
increase total fetch bandwidth, dependency checks of
instructions within a block and the number of read ports
into a rename table entry do not increase in complexity.

In order to enlarge the instruction pool without
creating too much complexity in the issue logic, we have
designed a hierarchy of instruction windows. One small
window is tightly coupled with the execution units. A
conventional physical register file or reorder buffer can be
used for this level. A much larger set of instruction
buffers are located outside the execution pipeline. These
buffers are slower to access, but can store many more
instructions. The hardware breaks up a program
automatically into loops and procedure threads that



execute simultaneously on the superscalar processor. Data
speculation on the inputs to a thread is used to allow new
threads to start execution immediately. Otherwise, a
thread may quickly stall waiting for its inputs to be
computed by other threads. Although the instruction fetch,
dispatch, and execution is out of order, instructions are
reordered after they complete execution and all
mispredictions, including branch and data, are corrected.
Results are then committed in order.

1.1 Related work

Many of the concepts in this paper have roots in recent
research on multithreading and high performance
processor architectures. The potential for achieving a
significant increase in throughput on a superscalar by
using simultaneous multithreading (SMT) was first
demonstrated in [3]. SMT is a technique that allows
multiple independent threads or programs to issue
multiple instructions to a superscalar’s functional units. In
SMT all thread contexts are active simultaneously and
compete for all execution resources. Separate program
counters, rename tables, and retirement mechanisms are
provided for the running threads, but caches, instruction
queues, the physical register file and the execution units
are simultaneously shared by all threads. SMT has a cost
advantage over multiple processors on a single chip due to
its capability to dynamically assign execution resources
every cycle to the threads that need them. The DMT
processor we present in this paper uses a simultaneous
multithreading pipeline to increase processor utilization,
except that the threads are created dynamically from the
same program.

Although the DMT processor is organized around
dynamic simultaneous multiple threads, the execution
model draws a lot from the multiscalar architecture [4,5].
The multiscalar implements mechanisms for multiple
flows of control to avoid instruction fetch stalls and
exploit control independence. It breaks up a program into
tasks that execute concurrently on identical processing
elements connected as a ring. Since the tasks are not
independent, aggressive memory dependency speculation
is used. The multiscalar combines compiler technology
with hardware to identify tasks and register dependencies.
The multiscalar handles the complexity of the large
instruction window resulting from lookahead execution
by distributing the window and register file among the
processing elements. The DMT architecture in contrast
uses a hierarchy of instruction windows to manage
instruction issue complexity. Since the DMT processor
does not rely on the compiler for recognizing register
dependencies, data mispredictions are more common than
on the multiscalar. Hence, an efficient data recovery
mechanism has to be implemented.

The trace processor [6] uses traces to execute many

instructions per cycle from a large window. Like the
multiscalar, the instruction window is distributed among
identical processing elements. The trace processor does
not rely on the compiler to identify register dependencies
between traces. It employs trace-level data speculation
and selective recovery from data mispredictions. The trace
processor fetches and dispatches traces in program order.
In contrast, the DMT processor creates threads out-of-
order, allowing lookahead far away in a program for
parallelism. On the other hand, this increases the DMT
processor data misprediction penalty since recovery is
scheduled from the larger but slower second level
instruction window.

A Speculative Multithreaded Processor (SM) has been
presented in [7]. SM uses hardware to partition a program
into threads that execute successive iterations of the same
loop. The Speculative Multithreaded Processor achieves
significant throughput on loop intensive programs such as
floating-point applications. The DMT processor performs
very well with procedure intensive applications. We view
the two techniques as complementary.

Work reported in [8] highlights the potential for
increasing ILP by predicting data values.

1.2 Paper overview

Section 2 gives a general overview of the
microarchitecture. Section 3 describes the
microarchitecture in more detail including control flow
prediction, the trace buffers where the threads speculative
state is stored, data speculation and recovery, handling of
branch mispredictions, the register dataflow predictor, and
memory disambiguation hardware. Simulation
methodology and key results are presented in section 4.
The paper ends with a final summary.

2 DMT microarchitecture overview

Figure 1a shows a block diagram of the DMT
processor. Each thread has its own PC, set of rename
tables, trace buffer, and load and store queues. The
threads share the memory hierarchy, physical register file,
functional units, and branch prediction tables. The dark
shaded boxes correspond to the duplicated hardware.
Depending on the simulated configuration, the hardware
corresponding to the light shaded boxes can be either
duplicated or shared.

 Program execution starts as a single thread. As
instructions are decoded, hardware automatically splits
the program, at loop and procedure boundaries, into
pieces that are executed as different threads in the SMT
pipeline. Control logic keeps a list of the thread order in
the program, and the start PC of each thread. A thread
stops fetching instructions when its PC reaches the start of
the next thread in the order list. If an earlier thread never
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Figure 1: a) DMT block diagram, b) Execution pipeline, and c) Recovery pipeline
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reaches the start PC of the next thread in the order list, the
next thread is considered to be mispredicted and is
squashed (more on this to follow in section 3.1.2).

The threads communicate through registers and
memory. The dataflow between two threads is one way,
dictated by their position within the sequential program.
To relax the limitations imposed by register and memory
dependencies, thread-level dataflow and data value
prediction is used. A new thread uses as input the register
context from the thread that spawns it. Loads are issued
speculatively to memory as if there are no conflicting
stores from prior threads. Inputs to a thread are validated
as prior thread instructions produce live input registers
and prior stores are issued.

Threads look ahead far into the program to find
parallelism. Since the threads do not wait for their inputs,
data mispredictions are common. The DMT processor
performs selective recovery of instructions affected by a
misprediction, and as soon as the correct input is
available. Selective recovery requires all speculative
execution results to be accessible. Since threads look
ahead far into a program, traditional reorder buffers or

physical register files [1] cannot be enlarged to hold all
the speculative results. These structures have to be
accessible at very high frequency and bandwidth to
support multiple issue per cycle. The above suggest
another level of speculative state hierarchy. We use large
trace buffers outside the pipeline to hold all the
speculative instructions and results. Data misprediction
recovery involves sequentially fetching affected
instructions from a trace buffer, and redispatching them
into the execution pipeline.

2.1 Execution pipeline

Figure 1b shows the execution pipeline. Instructions
are written into a trace buffer as they are passed to the
rename unit. There is one trace buffer per thread. After
mapping logical into physical registers, the rename unit
writes the instructions into the waiting buffers and sends
the destination mappings to the trace buffer. Load and
store queue entries are assigned at this stage. Instructions
are issued for execution when their inputs become
available. Results are written back into the physical



register file, as well as the trace buffers. After completing
execution, instructions are cleared from the pipeline in
order, freeing physical registers that are not needed. We
refer to this pipe stage as early retirement. It is just a
guess at this time that the results are correct and can be
committed. The instructions and their speculative state,
however, still reside in the trace buffers and load/store
queues. Only after all data mispredictions are detected and
corrected is speculative state finally committed in order
from the trace buffers into a final retirement register file.
The load queue entries are then freed, and stores are
issued to memory. Retiring instructions from the trace
buffer in order implies that threads are retired in order.

2.2 Recovery pipeline

Figure 1c shows the data misprediction recovery
pipeline. Before a thread finally retires, its speculative
register inputs are compared to the final retirement values
at the end of the prior thread. Memory mispredictions are
detected by disambiguation logic in the load queues.
When a misprediction is detected from either source,
instruction fetch is switched from the ICache to the trace
buffer. Blocks of instructions are fetched sequentially,
starting from the point of misprediction. Instructions are
sorted, and those affected by the misprediction are
grouped and sent to the rename unit. The rename unit
receives a sequence of recovery instructions in program
order, but not necessarily contiguous in the dynamic trace.
Input registers local to the sequence are renamed using a
thread recovery map table, and logical destinations are
assigned new physical registers. If a register input is
produced outside the sequence, the recovery mapping
table is bypassed. The mapping or value, if available, is
provided from the trace buffer instead. The recovery
instructions execute when their operands become
available, and write their results into the new physical
registers and the trace buffers.

3 Details of the DMT microarchitecture

3.1 Control flow prediction mechanisms

The processor breaks a sequential program into sub-
units of dynamically contiguous instructions and runs
them as different threads. A thread spawns a new thread
(Figure 2a) when it encounters a procedure call (point A)
or a backward branch (point B). Backward branches are
speculatively treated as end of loops, since they most
often are. The default start address of a new thread is the
static address after the call or backward branch. The first
thread continues to execute the procedure or loop, while
the new thread executes subsequent blocks in the
program. A history buffer is used to predict after-loop
thread addresses that differ from default values. State is

kept for each thread to prevent an inner loop thread from
spawning a fall-through thread at the loop backward
branch more than once. The spawned fall-through thread,
however, is allowed to spawn other loop threads.
Therefore, several iterations of an outer loop could be
executing concurrently.

3.1.1 Thread ordering. Due to the type of threads that
are implemented, threads are not necessarily spawned in
program order. Moreover, speculative threads are allowed
to spawn other threads themselves. From the perspective
of any particular thread, the most recent threads it spawns
are the earliest threads to retire. An ordered tree is used to
keep track of the program order of the threads. Threads
spawned by the same thread are inserted into the tree in
order, say left to right. Figure 2b shows a time sequence
of the ordered tree as the program in the example is
executed. At any point in time, a thread order list is
determined by walking the tree from top to bottom, and
right to left.

3.1.2 Thread allocation. The thread allocation policy is
pre-emptive. When all thread contexts are used, a new
thread earlier in program order pre-empts the lowest
thread in the order list. The lowest thread is then
squashed, all its state is reset, and its context is assigned
to the new thread. This policy improves load balancing by
preventing threads too far away in the program from
occupying processor resources for too long waiting for
final retirement. The allocation policy also cleans up the
tree from mispredicted threads, such as those left active
after an unexpected loop exit. A false thread will block
subsequent threads in the program order list from
retirement. Therefore, false threads are at the bottom of
the order list and are pre-empted by new good threads.

3.1.3 Thread selection. A spawned thread may be
squashed, may do little useful work, or even slow down
execution. An optimal thread selection process can be
quite complex. We have chosen simple selection criteria
that have worked reasonably well: thread retirement,
thread overlap, and thread size. An array of 2-bit
saturating counters is accessed using the thread start
address. The thread is selected if the count is above one.
The counter is updated when the selected thread is retired
or squashed. The counter is reset for a thread that is too
small or does not sufficiently overlap other threads.

When a thread is not selected because of its counter’s
state, there is no execution of this thread that takes place
and consequently no feedback information about the
prediction accuracy. Without feedback, the thread’s
counter is stuck in a not-taken state. To avoid this
problem, the counter is also updated by logic that
observes the retired instructions to estimate how the
thread would execute if spawned. This logic works as
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follows. Spawn points in the retirement stream are seen in
reverse order to join points. Potential threads are pushed
on a stack, and joined threads are popped off. The
retirement PC is compared to the top of the stack to
identify joined threads. The thread distance is defined to
be the number of threads encountered between the
spawning and the joining of a thread. The counter is
incremented if a thread joins and the thread distance is
less than the number of machine thread contexts.
Otherwise, it is decremented.

3.1.4 The branch predictor. The branch predictor uses a
modified gshare scheme [9]. All threads access a single
table of 2-bit counters. Each thread has its own branch
history register. When a new thread is spawned, its branch
history register is cleared. Therefore, early branches in a
thread are predicted with limited or no correlation. The
prediction algorithm becomes a true gshare after k
branches in the thread, where k is the history register size.
Each thread has its own return address stack (RAS).
When a new thread is spawned, it receives a copy of the
RAS of the spawning thread.

3.2 The trace buffers and data speculation and
recovery

The trace buffers unit is a complete thread-level
dataflow engine. Thread instructions are written into a
large speculative buffer after renaming. Selective issue of
instructions takes place, as corrected thread inputs arrive.
Threads and their speculative state are retired in order.

3.2.1 Writing instructions and results into a trace
buffer. As instructions are written into the trace buffer
instruction queue, a rename unit maps source operands to

thread buffer entries and writes them with the instructions
(Figure 3). We will be using the phrase ‘execution
pipeline rename unit’ to avoid any confusion with the
‘trace buffer rename unit’. The trace buffers also store
tags and results of the executed instructions. There is an
entry allocated per instruction in each of the trace buffer
instruction queue, tag array, and data array. A tag entry
consists of the physical destination register ID assigned to
the instruction by the pipeline rename unit and a result
valid bit. Results that are written back are tagged with a
thread ID, a trace buffer entry ID, and the physical
register destination. The tag and data arrays are indexed
using the thread and trace buffer entry IDs. If the
destination tag matches, the result valid bit is set in the tag
entry and the result is written into the data array.

In order to avoid slowing down the writeback buses
and subsequently increasing the clock cycle, latches or
buffers can be used to isolate the writeback buses from
the signal routing to the trace buffers. Writing results into
the trace buffers can be delayed without any impact to
performance. Some of these results may be input operands
to other instructions during data recovery, but they are
typically needed many cycles after they are written.

3.2.2 Thread input-output and final retirement
register file. A new thread executes speculatively using
the parent thread’s register context at the spawn point.
The trace buffers unit contains an IO register file for each
thread. When a thread is spawned, a fast copy within cell
sets its input registers with the values from the parent
thread output registers. As instructions from a thread are
dispatched, the thread's input operands are read from its
input register file. There is enough time to read the thread
inputs since operands are not needed until the execute
stage in the pipeline.



Figure 3: The trace buffer block diagram
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The output registers receive register destination
mappings from the pipeline rename unit. Results are
written into the output registers by matching the
writeback tags to these mappings, using a CAM port. If
some values were not written and a new thread is
spawned, the register mappings are copied to the new
thread input registers. The input registers will then grab
the results from the writeback bus as they are written. The
output registers may receive incorrect results from a
mispredicted path. Since they are used speculatively, we
do not attempt to recover the correct output values after a
branch misprediction. Nevertheless, we have observed
very high value prediction accuracy.

When instructions are finally retired, their results are
copied from the trace buffer data array into the retirement
registers. The input registers of all the other threads snoop
the data bus on which the results are transferred to the
retirement registers, using a CAM port. By the time a
thread is completely retired, all the input registers of the
subsequent thread have been checked. If one or more
input registers have not matched, a recovery sequence is
started.

3.2.3 Recovery dispatch. A recovery finite state machine
(FSM) receives requests from two sources: IO register file
and load queues (Figure 3). A request identifies a thread,
an input error location in the thread trace buffer, and the
registers that contain the incorrect values. Register file
requests may identify more than one register error
simultaneously. A load buffer request identifies one
register, the one that has been loaded by the mispredicted
load. When a request is received, the FSM goes through a
sequence of states in which blocks of instructions are read
out of the queue starting at the misprediction point. A
subset of each block that depends on one of the

mispredicted registers is identified. ‘Dependent’ here is
used in the transitive sense to mean either directly or
indirectly. The dependent instructions are not necessarily
consecutive within the block. Sorting logic selects the
dependent instructions and groups them together, leaving
out any instruction that is not affected by the
misprediction. The selected instructions are grouped in
program order and sent to the execution pipeline rename
unit to be dispatched again for execution.

The algorithm that identifies dependent instructions is
very similar to register renaming. Instead of a mapping
table, a dependency table is used. The table contains a
flag for each logical register that indicates if the register
depends on the mispredicted data. At the start of a
recovery sequence, the flag corresponding to each
mispredicted register is set. The dependency table is
checked as instructions are read from the trace buffer. If
one of the source operand flags is set, an instruction
depends on the mispredicted data. The instruction is
selected for recovery dispatch and its destination register
flag is set in the table. Otherwise, the destination register
flag is cleared. Only the table output for the most
significant instruction within a block can be relied upon
all the time. Subsequent instructions may depend on
instructions ahead of them within the block. A bypass at
the table output is needed to handle internal block
dependencies. If the dependency table reaches a state
during the recovery sequence in which all the dependency
flags are clear, the recovery sequence is terminated.

The dependency flags can be used to minimize the
number of read ports in the tag array. Cleared dependency
flags identify source operands from outside the recovery
sequence. Tag array access for operands local to the
sequence is not necessary, since their mappings are
provided by the pipeline rename unit. If an operand from



outside the recovery sequence has been written back to
the trace buffer, the data array is accessed after the tag
array to retrieve the operand’s value. The data valid bits
are stored with the tags to minimize the number of data
array read ports.

We have mentioned earlier that the pipeline rename
unit uses two map tables, one for normal execution and
one for data recovery. Depending on the execution mode,
register mappings are updated, as registers are renamed,
in one of the two tables. Live output registers modified
during a data recovery sequence are exceptions. For these
registers, both tables have to be updated so that, when
normal execution resumes, the correct live outputs are
used. The live output registers from a thread can be easily
identified from the state in the trace buffer rename unit.

The DMT selective recovery can be viewed as thread
re-execution with reuse of instructions that are not
affected by the mispredicted data. However, in contrast to
the general instruction reuse mechanisms introduced in
[10], the trace buffer holds instructions from a contiguous
execution trace. This simplifies significantly the reuse test
and turns it into a simple lookup into a dependency table.

3.3 Handling branch mispredictions and
exceptions

Branch mispredictions can occur during normal
execution as well as recovery execution. Normal
execution mispredictions can be handled in a usual
manner, for example, by shadowing the register mappings
in the pipeline execution unit when a branch is
encountered and restoring the mappings from the
checkpoint if it is mispredicted. Branches that are
mispredicted during recovery may have already passed
early retirement. The checkpoints would have been
cleared by then. Such branches are handled at the branch
final retirement, by clearing the trace buffer speculative
state and restarting execution from the corrected path.

Since false exceptions may be flagged at early
retirement due to data mispredictions, an exception is
handled precisely at the final retirement of a faulting
instruction. At this point, all data mispredictions prior to
the faulting instruction are resolved, and it is safe to reset
the speculative processor state and invoke the exception
handler.

3.4 The register dataflow predictor

Recovery from mispredicted register values may occur
a significant time after the correct values are produced.
We have therefore implemented a method to predict when
a value may be mispredicted, and the instruction that
generates the correct value. A history buffer contains
entries for recently retired threads. Each entry contains an
instruction address field for each input value that was

mispredicted. The instruction addresses are those of the
last register modifiers. These are the instructions that
write the live output registers in the previous thread. A
few address bits suffice to identify the last modifiers.
Instruction addresses are compared to the last-update
addresses from the predictor table early in the pipeline,
e.g. at the decode stage. The matching instructions are
marked to enable an input register update in the trace
buffer and a recovery sequence at writeback time. The
final retirement checks still takes place for these inputs.

3.5 Memory disambiguation hardware

To achieve any significant performance increase, loads
from spawned threads have to be issued to memory
speculatively. Since these loads may actually depend on
stores from earlier threads, it is necessary to have a
mechanism to disambiguate memory references and to
signal recovery requests to the trace buffer, whenever
speculative loads are incorrectly executed.

Fully associative load and store queues hold memory
access instructions for all threads. Entries are allocated the
first time a load or a store is issued. Load entries are
deallocated at final retirement. Store entries are
deallocated after stores are finally retired and issued to
memory. Stores are issued to memory in program order
and compete for DCache port resources with speculative
loads. There could be many cycles of delay from the time
a store is finally retired until it is issued to memory and its
entry is deallocated. Addresses of issued loads are
compared to addresses in the store queues, and vice versa.
When an issued store hits a load in a thread later in the
order list, a recovery request is initiated. Store data values
may be forwarded to issued loads from other threads.
Since a load address could hit more than one store, and
since a priority encoder would be needed to select the
nearest store, we have assumed additional 2 cycles of
latency for loads that hit stores in other thread queues.
Notice that disambiguation logic in the load queue is not
in the critical path, since the logic is not in the load and
store normal execution pipeline. A detailed description of
the memory disambiguation algorithm is contained in
[11].

Data recovery may cause the same dynamic instance of
a load or a store to be issued many times with different
memory addresses. Only the last version of such load or
store has the correct address. Set associative methods,
such as address resolution buffers [12] or speculative
caches [13,14], require special logic to handle incorrect
versions of loads and stores that may have been stored in
the wrong sets. The fully associative queues we have used
do not require this additional logic complexity, since they
are indexed with unique IDs that are assigned to loads and
stores when they are initially fetched from the ICache.
Addresses are simply stored again in the queues when



loads and stores are reissued from a recovery sequence,
overwriting the previous and potentially incorrect
addresses. As a consequence of this design, however, the
thread size is limited by the cost and circuit complexity of
the fully associative queues. We have observed that the
store queue and load queue have to be at least one fourth
of a trace buffer in size each for best performance.

4 Simulation methodology and results

Experiments have been conducted on a detailed, cycle
accurate, performance simulator that is derived from the
SimpleScalar tools set [15]. The simulator takes binaries
compiled with gcc for the SimpleScalar instruction set
architecture (ISA), which is derived from the MIPS ISA.
Experiments are run using seven of the SPEC95
benchmarks compiled with level three optimizations.
Only non-numeric benchmarks are reported since these
have proven difficult to parallelize. The reference inputs
to the benchmarks are used with no modifications to the
source code. All simulations are run until 300 million
instructions finally retire. Performance measurements are
reported based on total execution time and as a percentage
speedup over a 4-wide superscalar with a 128-instruction
window. In order not to favor DMT, which is less
sensitive to branch mispredictions, gshare with very large
BTB and prediction table is used for predicting branches.
The base machine pipeline is the pipeline in Figure 1b,
but with one retire stage. The cache hierarchy has 16KB
2-way set associative instruction and data caches and a
256KB 4-way set associative L2 cache. L1 miss penalty is
4 cycles, and an L2 miss costs additional 20 cycles. The
execution units configuration and latencies are reported
below with the simulation results.

4.1 DMT execution throughput

In this section, measurements that focus on the number
of threads, the fetch bandwidth and the issue bandwidth
are presented. The instruction window size is set to 128
instructions. Window size here refers to the active
instructions in the execution pipeline but does not include
instructions that have early retired and are waiting in the
trace buffer for final retirement. The trace buffer size is
500 instructions per thread, and the trace buffer pipeline is
4 cycles long.

Figure 4 shows performance as a function of the
number of threads. Both the DMT and base superscalar
processors are simulated with unlimited execution units.
Since all threads share the fetch resources, we have
doubled the fetch bandwidth on the DMT processor by
using two fetch ports and two rename units. This allows
us to show the impact of the number of threads on
performance without excessively limiting DMT
performance by the fetch bandwidth. Half the bandwidth

Figure 4: Performance vs. number of threads
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is assigned to the non-speculative thread (the thread in
final retirement) and the other half is allocated equally to
the speculative threads using a round robin policy. There
is a significant increase in performance up to 6 threads,
but little increase above. More than 35% average increase
is achieved on an 8-thread processor. The fetch and
rename block size per thread is kept the same as the base
superscalar width of 4 instructions. We have seen slightly
lower speedups with a fetch block size of 8 instructions.

Figure 5: Performance vs. number of fetch ports on a
4-thread processor
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The anomaly in 8T li and 2T m88ksim performance,
apparent in Figure 4, is due to a sub-optimal thread
selection process combined with resource sharing among
threads and additional execution latencies incurred on
mispredicted thread inputs.

Figure 5 shows the performance of 4-thread DMT with



1, 2 and 4 fetch ports, and an equivalent number of
rename units. Both the DMT and base superscalar
processors are simulated with unlimited execution units.
Even with equivalent total fetch bandwidth (1 fetch port),
the DMT processor outperforms the base superscalar. We
have seen 15% speedup with one fetch port and 6 threads.

Figure 6 shows the performance of a 2-fetch ports
DMT processor with realistic execution resources. The
execution units include 4 ALUs, 2 of which are used for
address calculations, and 1 multiply/divide unit. Two load
and/or store instructions can be issued to the DCache
every cycle. The latencies are 1 cycle for the ALU, 3 for
multiply, 20 for divide, and 3 cycles for a load including
address calculation. The graph in Figure 6 compares the
simulated performance to an ideal DMT which is
unlimited by the number of execution units and DCache
bandwidth. Two sets of measurements are shown for 4
and 6 thread processors. There is very little drop in
speedup from the ideal machine.

Figure 6: Performance comparison of a DMT processor
with limited execution units to an ideal DMT
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Figure 7 shows that a ‘200 instructions per thread’
configuration almost achieves maximum performance on
a 6-thread processor. We have measured an average
thread size between 50 and 130 instructions on the
benchmarks that we have run.

4.2 Lookahead on the DMT processor

On a conventional superscalar, a mispredicted branch
results in squashing instructions from the incorrect path
and rolling back execution to the misprediction point. The
same is true within a thread on the DMT processor.
However, a mispredicted branch in one thread does not
cause subsequent threads to be squashed. DMT therefore
allows execution overlap between instructions located
before and instructions located after a mispredicted
branch. Figure 8 shows, for a 6-thread processor, the

percentage of total retired instructions that are
successfully fetched and executed out-of-order relative to
a mispredicted branch. Similarly, Figure 9 shows
lookahead execution statistics beyond ICache misses.
These percentages are zero on a conventional superscalar.

Figure 7: Performance impact of the trace buffer size
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Figure 8: Lookahead execution beyond mispredicted
branches
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4.3 Data prediction results

Predicting that the input register values for a new
thread are the register context at the spawn point
eliminates false data dependencies created when registers
are saved and restored to the stack during a call sequence.
Considering the scope of the caller variables, it is easy to
see why most of the input values to an after-procedure
thread are predictable. Only variables modified by the
procedure would have changed after the procedure is
executed. Value prediction handles the unmodified
values, while dataflow prediction ensures that modified
values are promptly supplied to the spawned thread.



Figure 9: Lookahead execution beyond ICache misses
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Figure 10 shows the performance of a 4-thread
processor with value prediction only, and with value and
dataflow prediction. Figure 11 shows the percentage of
live thread input register values that are: (1) available at
the spawn point, (2) written subsequent to the spawn time
with the same values (e.g. stored then loaded from
memory), and (3) correctly predicted by either the value
or dataflow prediction method. The combined data
prediction method gives hit rates of more than 90% for
most benchmarks.

Figure 10: Dataflow prediction impact on performance
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4.4 Trace buffer performance requirements and
cost evaluation

We present in this section a partial evaluation of the
trace buffer cost and complexity. We focus on the
instruction queue and the data array, since these are the
largest arrays in the trace buffer in terms of storage
capacity, especially if very far ahead speculation in the
program is targeted. A complete evaluation of the DMT
processor cost and complexity is left for future work.

 Figure 7 shows that a ‘200 instructions per thread’

Figure 11: Data prediction statistics
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configuration gives good performance. This is a total
capacity in the trace buffers of 1200 instructions and their
results, on a 6-thread processor. Assuming 8 bytes of
storage per result, 4 bytes per instruction, and 4 bytes of
control state per instruction (source operand mappings
from the trace buffer rename unit, store and load buffer
IDs, etc…), the total capacity required in the trace buffer
instruction queue and data array is approximately 19KB.
We now show that the bandwidth and latency required
can be supplied from instruction and data arrays of low
complexity, allowing these arrays to be built with high
density storage cells.

The instruction queue is single ported. Blocks of
instructions are written at fetch and read at recovery
sequentially. Moreover, reads and writes do not happen at
the same time. Figure 12 shows the performance for
instruction read blocks of size 2, 4, and 6 instructions, as
well as an ideal instruction queue that has enough read
bandwidth to fill up the recovery dispatch pipe, which is
4-instruction wide. These are sizes before the blocks are
sorted to dispatch the instructions that are dependent on
the mispredicted data. The read bandwidth required is not
excessive. Moreover, there is good tolerance to recovery
latency that allows enough time to read and sort
instructions as shown in Figure 13. This latency tolerance
is not surprising considering that on the average about
30% of the instructions executed by speculative threads
are redispatched from the trace buffer due to data
misprediction, and that with a pipelined trace buffer
dispatch, the latency is incurred only once at the
beginning of the recovery sequence.

Finally, the difference in performance when one read
port data array configuration is compared to an ideal data
array capable of supplying any number of operands every
cycle is hardly noticeable. This is the case because most
of the recovery instruction operands are local to the
sequence and are communicated through the pipeline



register file. On the other hand, the required write
bandwidth into the data array is very high. All issued
instructions, except for branches and stores, write results
into the data array.  However, writing results in the data
array is not in the critical path and can be delayed.  4-way
interleaving of a single write port data array sustains the
write bandwidth, and a 3-deep write queue per bank
eliminates the majority of the bank write conflicts.

Figure 12: Speedup vs. instruction queue block size
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Figure 13: Impact of trace buffer latency on performance
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5 Summary

This paper presents a dynamic multithreading
processor that achieves significant increase in non-
numeric programs throughput with minimal increase in
complexity in the critical execution pipeline. The dynamic
multithreading architecture has several advantages over
conventional superscalars: (1) lookahead execution
beyond mispredicted branches and instruction cache

misses (2) lookahead far into a program, (3) efficient
value prediction that eliminates artificial dependencies
due to procedure linkage using a stack, and (4) increased
instruction supply efficiency due to multiple fetch
streams. A novel DMT microarchitecture has been
implemented with two powerful features: an efficient 2-
level instruction window hierarchy, and a renaming
method that allows fast communication of registers
between threads, and between execution and recovery
sequences of instructions from the same thread.
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