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Abstract 

Since the introduction of virtual memory demand-paging 
and cache memories, computer systems have been exploiting 
spatial and temporal locality to reduce the average latency of a 
memory reference. In this paper, we introduce the notion of 
value locality, a third facet of locality that is frequently present 
in real-world programs, and describe how to effectively capture 
and exploit it in order to perform load value prediction. Tempo- 
ral and spatial locality are attributes of storage locations, and 
describe the future likelihood of references to those locations or 
their close neighbors. In a similar vein, value locality describes 
the likelihood of the recurrence of a previously-seen value within 
a storage location. Modern processors already exploit value 
locality in a very restricted sense through the use of control spec- 
ulation (i.e. branch prediction), which seeks to predict the future 
value of a single condition bit based on previously-seen values. 
Our work extends this to predict entire 32- and 64-bit register 
values based on previously-seen values. We find that, just as con- 
dition bits are fairly predictable on a per-static-branch basis, 
full register values being loaded from memory are frequently 
predictable as well. Furthermore, we show that simple microar- 
chitectural enhancements to two modern microprocessor imple- 
mentations (based on the PowerPC 620 and Alpha 21164) that 
enable load value prediction can effectively exploit value locality 
to collapse true dependencies, reduce average memory latency 
and bandwidth requirements, and provide measurable perfor- 
mance gains. 

1. Introduction and Related Work 
The gap between main memory and processor clock speeds is 

growing at an alarming rate [RD94]. As a result, computer system 
performance is increasingly dominated by the latency of servicing 
memory accesses, particularly those accesses which are not easily 
predicted by the temporal and spatial locality captured by conven- 
tional cache memory organizations [Smi82]. Conventional cache 
memories rely on a program's temporal and spatial locality to 
reduce the average memory access latency. Temporal locality 
describes the likelihood that a recently-referenced address will be 
referenced again soon, while spatial locality describes the likeli- 
hood that a close neighbor of a recently-referenced address will be 
referenced soon. Designing the physical attributes (e.g. size, line 
size, associativity, etc.) of a cache memory to best match the tem- 
poral and spatial locality of programs has been an ongoing challenge 
for researchers and designers alike. Some have proposed adding 
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additional features such as non-blocking fetches [Kro81], victim 
caches [Jou90], and sophisticated hardware prefetching [CB94] to 
alleviate the access penalties for those references that have locality 
characteristics that are not captured by more conventional designs. 

Others have proposed altering the behavior of programs to 
improve the data locality of programs so that it better matches the 
capabilities of the cache hardware. Such improvements have prima- 
rily been limited to scientific code with predictable control flow and 
regular memory access patterns, due to the ease with which rudi- 
mentary loop transformations can dramatically improve temporal 
and spatial locality [ASKL81,CMT94]. Explicit prefetching in 
advance of memory references with poor or no locality has also been 
examined extensively in this context, both with [CMCH91,CB94] 
and without additional hardware support [CKP91,MLG92]. 
Dynamic hardware techniques for controlling cache memory allo- 
cation that significantly reduce memory bandwidth requirements 
have also been proposed [TFMP95]. In addition, alternative pipeline 
configurations that reduce average memory access latency via early 
execution of loads have been examined [Jou88,AS95]. 

The most relevant prior work related to ours is the Tree Machine 
[Har80,Har82], which uses a value cache to store and look up the 
results of recurring arithmetic expressions to eliminate redundant 
computation (the value cache, in effect, performs common subex- 
pression elimination [ASU86] in hardware). Richardson follows up 
on this concept in [Ric92] by introducing the concepts of trivial 
computation, which is defined as the trivialization of potentially- 
complex operations by the occurrence of simple operands; and 
redundant computation, where an operation repeatedly performs the 
same computation because it sees the same operands. He proposes 
a hardware mechanism (the result cache) which reduces the latency 
of such trivial or redundant complex arithmetic operations by stor- 
ing and looking up their results in the result cache. 

In this paper, we introduce value locality, a concept related to 
redundant computation, and demonstrate a technique--Load Value 
Prediction, or LVP--for predicting the results of load instructions at 
dispatch by exploit ing the affinity between load instruction 
addresses and the values the loads produce. LVP differs from Har- 
bison's value cache and Richardson' s result cache in two important 
ways: first, the LVP table is indexed by instruction address, and 
hence value lookups can occur very early in the pipeline; second, it 
is speculative in nature, and relies on a verification mechanism to 
guarantee correctness. In contrast, both Harbison and Richardson 
use table indices that are only available later in the pipeline (Harbi- 
son uses data addresses, while Richardson uses actual operand val- 
ues); and require their predictions to be correct, hence requiring 
mechanisms for keeping their tables coherent with all other compu- 
tation. 

2. Value Locality 
In this paper, we introduce the concept of value locality, which we 

define as the likelihood of a previously-seen value recurring repeat- 
edly within a storage location. Although the concept is general and 
can be applied to any storage location within a computer system, we 
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have limited our current study to examine only the value locality of 
general-purpose or floating-point registers immediately following 
memory loads that target those registers. A plethora of previous 
work on dynamic branch prediction (e.g. [Smi81,YP91]) has 
focused on an even more restricted application of value locality, 
namely the prediction of a single condition bit based on its past 
behavior. This paper can be viewed as a logical continuation of that 
body of work, extending the prediction of a single bit to the predic- 
tion of an entire 32- or 64-bit register. 

Intuitively, it seems that it would be a very difficult task to dis- 
cover any useful amount of value locality in a register. After all, a 
32-bit register can contain any one of over four billion values--how 
could one possibly predict which of those is even somewhat likely 
to occur next? As it turns out, if we narrow the scope of our predic- 
tion mechanism by considering each static load individually, the 
task becomes much easier, and we are able to accurately predict a 
significant fraction of register values being loaded from memory. 

What is it that makes these values predictable? After examining 
a number of real-word programs, we assert that value locality exists 
primarily for the same reason that partial evaluation [SIG91 ] is such 
an effective compile-time optimization; namely, that real-world 
programs, run-time environments, and operating systems incur 
severe performance penalties because they are general by design. 
That is, they are implemented to handle not only contingencies, 
exceptional conditions, and erroneous inputs, all of which occur rel- 
atively rarely in real life, but they are also often designed with future 
expansion and code reuse in mind. Even code that is aggressively 
optimized by modem, state-of-the-art compilers exhibits these ten- 
dencies. We have made the following empirical observations about 
the programs we examined for this study, and feel that they are help- 
ful in understanding why value locality exists: 
• Data redundancy: Frequently, the input sets for real-world 

programs contain data that has little variation. Examples of this 
are sparse matrices, text files with white space, and empty cells 
in spreadsheets. 

• Error-checking: Checks for infrequently-occurring conditions 
often compile into loads of what are effectively run-time con- 
stants. 

• Program constants: It is often more efficient to generate code 
to load program constants from memory than code to construct 
them with immediate operands. 

• Computed branches: To compute a branch destination, for 
e.g. a switch statement, the compiler must generate code to 
load a register with the base address for the branch, which is a 
run-time constant. 

• Virtual function calls: To call a virtual function, the compiler 
must generate code to load a function pointer, which is a run- 
time constant. 

• Glue code: Due to addressability concerns and linkage con- 
ventions, the compiler must often generate glue code for call- 
ing from one compilation unit to another. This code frequently 
contains loads of instruction and data addresses that remain 
constant throughout the execution of a program. 

• Addressability: To gain addressability to non-automatic stor- 
age, the compiler must load pointers from a table that is not 
initialized until the program is loaded, and thereafter remains 
constant. 

• Call-subgraph identities: Functions or procedures tend to be 
called by a fixed, often small, set of functions, and likewise 
tend to call a fixed, often small, set of functions. As a result, 
loads that restore the link register as well as other callee-saved 
registers can have high value locality. 

• Memory alias resolution: The compiler must be conservative 
about stores aliasing loads, and will frequently generate what 
appear to be redundant loads to resolve those aliases. 

• Register spill code: When a compiler runs out of registers, 
variables that may remain constant are spilled to memory and 
reloaded repeatedly. 

Naturally, many of the above are subject to the particulars of the 
instruction set, compiler, and run-t ime environment  being 
employed, and it could be argued that some of them could be elim- 
inated with changes in the ISA, compiler, or ran-time environment, 
or by applying link-time or run-time code optimizations (e.g. 
[SW94, KEH93]). However, such changes and improvements have 
been slow to appear; the aggregate effect of above factors on value 
locality is measurable and significant today on the two modem RISC 
ISAs that we examined, both of which provide state-of-the-art com- 
pilers and run-time systems. It is worth pointing out, however, that 
the value locality of particular static loads in a program can be sig- 
nificantly affected by compiler optimizations such as loop unrolling, 
loop peeling, tail replication, etc., since these types of transforma- 
tions tend to create multiple instances of a load that may now exclu- 
sively target memory locations with high or low value locality. A 
similar effect on load latencies (i.e. per-static-load cache miss rates) 
has been reported by Abraham et al. in [ASW+93]. 

TABLE 1. Benchmark Descriptions 

: :  : : |  ?:;i:::5 ¢ ~  : ' i~ ,~ ,~ i ; :~  : :  : : < , , , :  ~ -  . . . . . . . . . . . . . .  ................................................ 

'ccl-271 GCC 2.7.1; 
SPEC95 flags 

ccl 

cjpeg 

compress 

eqntott 

gawk 

gperf 

grep 

mpeg 

perl 

quick 

sc 

xlisp 

doduc 

hydro2d 

GCC 1.35 from 
SPEC92 

JPEG encoder 

genoutput.i 102M 117M 
from SPEC95 

insn-recog.i 
from SPEC92 

128x128 BW 
image 

SPEC92 file 1 iter. with 1/2 
compression of SPEC92 

SPEC92 Eqn to Mod. input 
truth table from SPEC92 

GNU awk; 1.7M simulator 
result parser output file 

GNU hash fn gperf-a -k 1-13 
generator -D -o dict 

gnu-grep -c Same as com- 
"st*mo" press 

Berkeley MPEG 4 frames w/ 
decoder fast dithering 

SPEC95 Ana- find "admits" 
gram search in 1/8 of input 

Quick sort 5,000 random 
elements. 

Spreadsheet Short input 
from SPEC92 from SPEC92 

SPEC92 LISP 6 queens 
interpreter 

Nuclear reactor Tiny input from 
simulator SPEC92 

Computation of 
galactic jets 

Short input 
from SPEC92 

swm256 Shallow water 5 iterations (vs. 
model 1,200) 

tomcatv Mesh generation 4 iterations (vs. 
program 100) 

Total 

146M N/A 

2.8M 10.7M 

38.8M 50.2M 

25.5M 44.0M 

25.0M 53.0M 

7.8M 10.8M 

2.3M 2.9M 

8.8M 15.1M 

105M l14M 

688K 1.1M 

78.5M 107M 

52.1M 60.0M 

35.8M 38.5M 

4.3M 5.3M 

43.7Mi 54.8M 

30.0M 36.9M 
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The benchmark set we use to explore value locality and quantify Instruction Addresses 
its performance impact is summarized in Table I .  We have chosen 
thirteen integer benchmarks, five of them from SPEC '92, one from 
SPEC '95, along with two image-processing applications (cjpeg and 
mpeg), two commonly-used unix utilities (gawk and grep), GNU's 
perfect hash function generator (gperf), a more recent version of 
GCC (cc 1-271), and a recursive quicksort. In addition, we have cho- 
sen four of the SPEC '92 floating-point benchmarks. All bench- 
marks are compiled at full optimization with each manufacturer's 
reference compilers, with the exception of gperf (our token C++ 
benchmark), which is compiled with IBM's CSET compiler under 
AIX, and GNU's g++ under OSF/1. All benchmarks are run to com- 
pletion with the input sets described, but do not include supervisor- 
state instructions, which our tracing tools are unable to capture. 

Figure 1 shows the value locality for load instructions in each of 
the benchmarks. The value locality for each benchmark is measured 
by counting the number of times each static load instruction 
retrieves a value from memory that matches a previously-seen value 
for that static load and dividing by the total number of dynamic loads 
in the benchmark. Two sets of numbers are shown, one (light bars) 
for a history depth of one (i.e. we check for matches against only the 
most-recently-retrieved value), while the second set (dark bars) has 
a history depth of sixteen (i.e. we check against the last sixteen 
unique values) 1. We see that even with a history depth of one, most 
of the integer programs exhibit load value locality in the 50% range, 
while extending the history depth to sixteen (along with a hypothet- 
ical perfect mechanism for choosing the right one of the sixteen val- 
ues) can improve that to better than 80%. What this means is that the 
vast majority of static loads exhibit very little variation in the values 
that they load during the course of a program' s execution. Unfortu- 
nately, three of our benchmarks (cjpeg, swm256, and tomcatv) dem- 
onstrate poor load value locality. 

1. The history values are stored in a direct-mapped table with 1K 
entries indexed but not tagged by instruction address, and the val- 
ues (one or sixteen) stored at each entry are replaced with an LRU 
policy. Hence, both constructive and destructive interference can 
occur between instructions that map to the same entry. 

00.0 
80.0 
60.0 

40.0 
20.0 
0.0 

[GURE 2. PowerPC Value Locality by Data Type.The 
ght bars show value locality for a history depth of one, while 
te dark bars show it for a history depth of sixteen. 

r 

To further explore the notion of value locality, we collected data 
that classifies loads based on the type of data being loaded: floating- 
point data, non-floating-point data, instruction addresses, and data 
addresses (pointers). These results are summarized in Figure 2 (the 
results shown are for the PowerPC architecture only). Once again, 
two sets of numbers are shown for each benchmark, one for a history 
depth of one (light bars), and the other for a depth of sixteen (dark 
bars). In general, we see that address loads tend to have better local- 
ity than data loads, with instruction addresses holding a slight edge 
over data addresses, and integer data loads holding an edge over 
floating-point loads. 

3. E x p l o i t i n g  V a l u e  L o c a l i t y  

The fact that memory loads in many programs demonstrate a sig- 
nificant degree of value locality opens up exciting new possibilities 
for the microarchitect. In this paper, we describe and evaluate the 
Load Value Prediction Unit, a hardware mechanism which 
addresses both the memory latency and memory bandwidth prob- 
lems in a novel fashion. First, by exploiting the affinity between load 
instruction addresses and the values being loaded, we are able to 
reduce load latency by two or more cycles. Second, we can reduce 
memory bandwidth requirements by identifying highly-predictable 
loads and completely bypassing the conventional memory hierarchy 
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TABLE 2. LVP Unit Configurations. For history depth greater 
than one, a hypothetical perfect selection mechanism is assumed. 

Simple 1024 11 256 2 32 

Constant 1024 11 256 I 128 

Limit 4096 16/Perf 1024 2 128 

Perfect ,~ ~/Perf o,, Perfect 0 

for these loads. The LVP Unit consists of a load value prediction 
table or LVPT (Section 3.1) for generating value predictions, a load 
classification table or LCT (Section 3.2. and Section 3.3) for decid- 
ing which predictions are likely to be correct, and a constant verifi- 
cation unit or CVU (Section 3.3) that replaces accessing the 
conventional memory hierarchy for verifying highly-predictable 
loads. 

3.1. Load Value Prediction Table 
The LVPT is used to predict the value being loaded from memory 

by associating the load instruction with the value previously loaded 
by that instruction. The LVPT is indexed by the load instruction 
address and is not tagged, so both constructive and destructive inter- 
ference can occur between loads that map to the same entry (the 
LVPT is direct-mapped). Table 2 shows the number of entries (col- 
umn 2) as well as the history depth per entry (column 3) for the four 
LVPT configurations used in our study. Configurations with a his- 
tory depth greater than one assume a hypothetical perfect mecha- 
nism for selecting the correct value to predict, and are included to 
explore the limits of history-based load value prediction. 

3.2. Dynamic Load Classification. 
Load value prediction is useful only if it can be done accurately, 

since incorrect predictions can lead to increased structural hazards 

TABLE 3. LCT Hit Rates. Percentages shown are fractions of 
unpredictable and predictable loads identified as such by the LCT. 

and longer load latency (the misprediction penalty is discussed fur- 
ther in Section 4). In our experimental framework we classify static 
loads into three categories based on their dynamic behavior. There 
are loads whose values are unpredictable with the LVPT, those that 
are predictable, and those that are almost always predictable. By 
classifying these separately we are able to take full advantage of 
each case. We can avoid the cost of a misprediction by identifying 
the unpredictable loads, and we can avoid the cost of a memory 
access if we can identify and verify loads that are highly-predictable. 

In order to determine the predictability of a static load instruction, 
it is associated with a set of history bits. Based on whether or not pre- 
vious predictions for a given load instruction were correct, we are 
able to classify the loads into three general groups: unpredictable, 
predictable, and constant loads. The load classification table or LCT 
consists of a direct-mapped table of n-bit saturating counters 
indexed by the low-order bits of the instruction address. Table 2 
shows the number of entries (column 4) as well as the size of each 
saturating counter (column 5) for the LCT configurations used in our 
study. The 2-bit saturating counter assigns the four available states 
0-3 as "don 't predict", "don't predict", "predict" and "constant," 
while the 1-bit counter assigns the two states as "don'tpredict" and 
"constant." The counter is incremented when the predicted value is 
correct and decremented otherwise. In Table 3, we show the per- 
centage of all unpredictable loads the LCT is able to classify as 
unpredictable (columns 2, 4, 6, and 8) and the percentage of predict- 
able loads the LCT is able to correctly classify as predictable (col- 
umns 3, 5, 7, and 9) for the Simple and Limit configurations. 

3.3. Constant Verification Unit 
Although the LCT mechanism can accurately identify loads that 

retrieve predictable values, we still have to verify the correctness of 
the LVPT's predictions. For predictable loads, we simply retrieve 
the value from the conventional memory hierarchy and compare the 
predicted value to the actual value (see Figure 3). However, for 
highly-predictable or constant loads, we use the constant verifica- 
tion unit, or CVU, which allows us to avoid accessing the conven- 
tional memory system completely by forcing the LVPT entries that 
correspond to constant loads to remain coherent with main memory. 

TABLE 4. Successful Constant Identification Rates. 
Percentages shown are ratio of constant loads to all dynamic loads. 

ccl-271 86% 64% 58% 90% 86% 57% 64% 86% 

cjpeg 97% 61% 92% 61% 93% 75% 93% 82% 

compress 99% 94% 97% 90% 98% 56% 97% 94% 

doduc 83% 75% 82% 92% 84% 68% 78% 92% 

eqntott 91% 85% 88% 99% 68% 80% 83% 97% 

gawk 85% 92% 44% 95% 74% 86% 59% 93% 

gperf 93% 75% 76% 97% 77% 79% 77% 91% 

grep 93% 88% 67% 81% 85% 82% 92%1 92% 

hydro2d 82% 85% 63% 91% 86% 80% 60% 89% 

mpeg 86% 90% 78% 93% 84% 88% 85% 93% 

perl 84% 71% 65% 93% 83% 66% 74% 93% 

quick 98% 84% 93% 89% 98% 95% 96% 95% 

sc 77% 90% 59% 97% 86% 85% 78% 95% 

swm256 99% 89% 99% 93% 99% 86% 99% 90% 

tomcatv 100% 89% 100% 98% 99% 68% 99% 70% 

xlisp 88% 83% 77% 93% 90% 74% 76% 93% 

GM 8 [ ~  7 5 ~  ~ 0 ~  ~ 8 ~  8 t ~  9 0 %  

ccl-271 13% 23% 10 ~, 14% 

cjpeg 4% 7% 176' 17% 

compress 33% 34% 36 c, 42% 

doduc 5% 20% 56, 15% 

eqntott 19% 44% 216' 35% 

gawk 10% 28% 316' 31% 

gperf 21% 39% 386' 56% 

grep 16% 24% 186' 22% 

hydro2d 2% 8% 35 10% 

mpeg 12% 25%1 10 c, 28% 

~erl 8% 19%1 7~ 8% 

quick 0% 0%1 31 ~, 31% 

sc 32% 46%1 26 c, 31% 

swm256 8% 17% 12 ~, 12% 

tomcatv 0% 0% 1 ~, 1% 

xlisp 14% 45% 8~ 30% 

GM ~ ! ! ~ a  ~.~ i ~t~2~ 
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For the LVPT entries that are classified as constants by the LCT, 
the data address and the index of the LVPT are placed in a separate, 
fully-associative table inside the CVU. This table is kept coherent 
with main memory by invalidating any entries where the data 
address matches a subsequent store instruction. Meanwhile, when 
the constant load executes, its data address is concatenated with the 
LVPT index (the lower bits of the instruction address) and the 
CVU's content-addressable-memory (CAM) is searched for a 
matching entry. If a matching entry exists, we are guaranteed that the 
value at that LVPT entry is coherent with main memory, since any 
updates (stores) since the last retrieval would have invalidated the 
CVU entry. If one does not exist, the constant load is demoted from 
constant to just predictable status, and the predicted value is now 
verified by retrieving the actual value from the conventional mem- 
ory hierarchy. 

Table 4 shows the percentage of all dynamic loads that are suc- 
cessfully identified and treated as constants. This can also be thought 
of as the percentage decrease in required bandwidth to the L1 data 
cache. We also observed a slight decrease (around 1%) in the sec- 
ond-level-cache bandwidth. Although we were disappointed that we 
were unable to obtain a more significant reduction, we are pleased 
to note that load value prediction, unlike other speculative tech- 
niques like prefetching and branch prediction, reduces, rather than 
increases, memory bandwidth requirements. 

3.4. The Load Value Prediction Unit 
The interactions between the LVPT, LCT, and CVU are described 

in Figure 3 for both loads and stores. When a load instruction is 
fetched, the low-order bits of the load instruction address are used 
to index the LVPT and LCT in parallel. The LCT (analogous to a 
branch history table) determines whether or not a prediction should 
be made, and the LVPT (analogous to a branch target buffer) for- 
wards the value to the load's dependent instructions. Once the 
address is generated, in stage EX1 of the sample pipeline, the cache 
access and CVU access progress in parallel. When the actual value 
returns from the L1 data cache, it is compared with the predicted 
data, and the dependent speculative instructions are consequently 
either written back or reissued. Since the search on the CVU can not 
be performed in time to prevent initiating the memory access, the 
only time the CVU is able to prevent the memory access is when a 
bank conflict or cache miss occurs. In either case, a CVU match will 
cancel the subsequent retry or cache miss. During the execution of 
a store, a fully-associative lookup is performed on the store's address 
and all matching entries are removed from the CVU. 

3.5. LVP Unit Implementation Notes 
An exhaustive investigation of LVP Unit design parameters and 

implementation details is beyond the scope of this paper. However, 
to demonstrate the validity of the concept, we analyzed sensitivity 
to a few key parameters, and then selected several design points to 
use with our microarchitectural studies (Section 6). We realize that 
the designs we have selected are by no means optimal, minimal, or 
very efficient, and could be improved significantly. For example, we 
reserve a full 64 bits per value entry in the LVP Table, while most 
instructions generate only 32 or fewer bits, and space in the table 
could certainly be shared between such entries with some clever 
engineering. The intent of this paper is not to present the details of 
such a design; rather, our intent is to explore the larger issue of the 
impact of load value prediction on microarchitecture and instruc- 
tion-level parallelism, and to leave such details to future work. 

However, we note that the LVP Unit has several characteristics 
that make it attractive to a CPU designer. First of all, since the LVPT 
and LCT lookup index is available very early, at the beginning of the 
instruction fetch stage, access to these tables can be superpipelined 
over two or more stages. Hence, given the necessary chip space, 
even relatively large tables could be built without impacting cycle 
time. Second, the design adds little or no complexity to critical delay 

Fetch 
m 

Disp 

Exl 

Ex2 

Comp 

Load PC 
Sample ~ Sample 
Load I LCT !~ [ r ~ ~  Store 
Execution ~ - Execution 

. . . .  t.5- "~alue [ 

| Index' n' all ' 
/ jew L value I 
-~ ] ~ ' e r i '  ~ ?  Address ~ _ _  ~ 

~- ~ | I I 
FIGURE 3. Block Diagram of the LVP Mechanism. The 
Load PC is used to index into the LVPT and LCT to find a 
value to predict and to determine whether or not a prediction 
should be made. Constant loads that find a match in the CVU 
needn't access the cache, while stores cancel all matching 
CVU entries. When the load completes, the predicted and 
actual values are compared, the LVPT and LCT are updated, 
and dependent instructions are reissued if necessary. 

paths in the microarchitecture. Rather, table lookups and verifica- 
tions are done in parallel with existing activities or are serialized 
with a separate pipeline stage (value comparison). Finally, we reit- 
erate that the LVP Unit, though speculative in nature, actually 
reduces memory bandwidth requirements, rather than aggravating 
them. 

4. Mieroarehitectural Models 
In order to validate and quantify the performance impact of load 

value prediction and constant identification, we implemented trace- 
driven timing models for two significantly different modem micro- 
processor implementations--the PowerPC 620 [DNS95, LTI'95] 
and the Alpha AXP 21164 [BK95]; one aggressively out of order, 
the other clean and in order. We chose to use two different architec- 
tures in order to alleviate our concern that the value locality behavior 
we observed is perhaps only an artifact of certain idioms in the 
instruction set, compiler, run-time environment, and/or operating 
system we were running on, rather than a more universal attribute of 
general-purpose programs. We chose the PowerPC 620 and the AXP 
211 64 since they represent two extremes of the microarchitectural 
spectrum, from complex "brainiac" CPUs that aggressively and 
dynamically reorder instructions to achieve a high IPC metric, to the 
clean, straightforward, and deeply-pipelined "speed demon" CPUs 

TABLE 5. Instruction Lateneies 

Simple Integer 1 1 1 1 
J 

Complex Integer 1-35 1-35 16 16 

Load/Store 1 ! 2 1 2 
i 

Simple FP 1 3 1 4 

Complex FP 18 18 1 36-65 

Branch(pred/mispr) 1 0/1+ 1 0/4 
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FIGURE 4. PowerPC 620 and 620+ Block Diagram. Buffer 
sizes ,are shown as (620/620+). 

that rely primarily on clock rate for high performance [Gwe94]. The 
issue and result latencies for common instruction types on both 
machines are summarized in Table 5.  

4.1. The PowerPC 620 Machine Model 
The microarchitecture of the PowerPC 620 is summarized in 

Figure 4. Our model is based on published reports on the PowerPC 
620 [DNS95, LTr95] and accurately models all aspects of the 
microarchitecture, including branch prediction, fetching, dispatch- 
ing, register renaming, out-of-order issue and execution, result for- 
warding, the non-blocking cache hierarchy, store-to-load alias 
detection and instruction refetching, and in-order completion. To 
alleviate some of the bottlenecks we found in the 620 design, we also 
model an aggressive "next-generation" version of the 620, which we 
term the 620+. The 620+ differs from the 620 by doubling the num- 
ber of reservation stations, FPR and GPR rename buffers, and com- 
pletion buffer entries; adding an additional load/store unit (LSU) 
without an additional cache port (the base 620 already has a dual- 
banked data cache); and relaxing dispatching requirements to allow 
up to two loads or stores to dispatch and issue per cycle. In addition, 
we add a LVP Unit that predicts load values by keeping a value his- 
tory indexed by load instruction addresses. 

The LVP Unit predicts the values during dispatch, then forwards 
them speculatively to subsequent operations via the 620's rename 
busses. Dependent instructions are able to issue and execute imme- 
diately, but are prevented from completing architecturally and are 
forced to retain possession of their reservation stations. Specula- 
tively-forwarded values are tagged with the uncommitted loads they 
depend on, and these tags are propagated to the results of any sub- 
sequent dependent instructions. Meanwhile, uncommitted loads 
execute in the load/store pipe, and the predicted values are verified 
by either a CVU address match or a comparison against the actual 
values retrieved by the loads. Once a load is verified, all the depen- 
dent operations are either ready for in-order completion and can 
release their reservation stations (in the case of a correct prediction), 
or restart execution with the correct load values (if the prediction is 
incorrect). Since the load/store unit supports multiple non-blocking 
loads on cache misses, verifying a predicted value can take up to 
dozens of cycles, allowing the processor to speculate several levels 
down the dependency chain beyond the load, executing instructions 
and resolving branches that would otherwise be blocked by true 
dependencies. 

The worst-case penalty for an incorrect load value prediction in 
this scheme, as compared to not predicting the value in question, is 
one additional cycle of latency, along with structural hazards that 
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FIGURE 5. Alpha AXP 21164 Block Diagram. 

might not have occurred otherwise. The penalty occurs only when 
a dependent instruction has already executed speculatively, but is 
waiting in its reservation station for the load value to be committed 
or corrected. Since the load value comparison takes an extra cycle 
beyond the standard two-cycle load latency, the dependent instruc- 
tion will reissue and execute with the correct load value one cycle 
later than it would have had there been no prediction. In addition, the 
earlier incorrect speculative issue may cause a structural hazard that 
prevents other useful instructions from dispatching or executing. In 
those cases where the dependent instruction has not yet executed 
(due to structural or other unresolved data dependencies), there is no 
penalty, since the dependent instruction can issue as soon as the 
loaded value is available, in parallel with the value comparison in the 
load/store pipeline. In any case, due to the LCT which accurately 
prevents incorrect predictions, the misprediction penalty does not 
significantly affect performance. 

There can also be a structural hazard penalty even in the case of 
a correct prediction. Since speculative values are not verified until 
one cycle after the actual values become available, speculatively- 
issued dependent instructions may end up occupying their reserva- 
tion stations for one cycle longer than they would have had there 
been no prediction 

4.2. The Alpha AXP 21164 Machine Model 
Our in-order processor model, summarized in Figure 5, differs 

from the actual AXP 21164 [BK95] in three ways. First, in order to 
accentuate the in-order aspects of the AXP 21164 we omitted the 
MAF (miss address file) which enables nonblocking L1 cache 
misses. We omitted the MAF from both our baseline 21164 config- 
uration as well as our enhanced LVP configurations. Second, in 
order to allow speculation to occur in our LVP configurations, we 
must compare the actual data returned by the data cache and the pre- 
dicted data. Since the distance between the data cache and the write- 
back is already a critical path in hardware, the comparison requires 
an extra stage before writeback. The third modification, the addition 
of the reissue buffer, allows us to buffer instruction dispatch groups 
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that contain predicted loads. With this feature, we are able to redis- 
patch instructions when a misprediction occurs with only a single- 
cycle penalty. The latter modifications apply only to our LVP con- 
figurations, and not to the baseline 21164 model. 

In order to keep the AXP 21164 model as simple as possible, 
when any one of two dispatched loads is mispredicted then all of the 
eight possible instructions in flight are squashed and reissued from 
the reissue buffer regardless of whether or not they are dependent on 
the predicted data. Since the 21164 is unable to stall anywhere past 
the dispatch stage, we are unable to predict loads that miss the L1 
data cache. However, when an LI miss occurs, we are able to return 
to the non-speculative state before the miss is serviced. Hence, there 
is no penalty for doing the prediction. The inability of our LVP Unit 
to speculate beyond an L1 cache miss in most cases means that the 
LVP Unit's primary benefit is the provision of a zero-cycle load 
[AS951. 

Typically, we envision the CVU as a mechanism for reducing 
bandwidth to the cache hierarchy (evidence of this is discussed in 
Section 6. I). However, since the 211 64 is equipped with a true dual- 
ported cache and two load-store units it is largely unaffected by a 
reduction in bandwidth requirement to the L1 cache. In addition to 
reducing L2 bandwidth, the primary benefit of the CVU in the 21164 
model is that it enables those predictions identified as constants to 
proceed regardless of whether or not they miss the L1 data cache. 
Hence, the only LVP predictions to proceed in spite of an L1 cache 
miss are those that are verified by the CVU. 

5, E x p e r i m e n t a l  F r a m e w o r k  

Our experimental framework consists of three main phases: trace 
generation, LVP Unit simulation, and microarchitectural simula- 
tion. All three phases are performed for both operating environ- 
ments (IBM AIX and DEC OSF/1). 

For the PowerPC 620, traces are collected and generated with the 
TRIP6000 instruction tracing tool. TRIP6000 is an early version of 
a software tool developed for the IBM RS/6000 that captures all 
instruction, value and address references made by the CPU while in 
user state. Supervisor state references between the initiating system 
call and the corresponding return to user state are lost. For the Alpha 
AXP 21164, traces are generated with the ATOM tool [SE94], 
which also captures user state instruction, value and address refer- 
ences only. The instruction, address, and value traces are fed to a 
model of the LVP Unit described earlier, which annotates each load 
in the trace with one of four value prediction states: no prediction, 
incorrect prediction, correct prediction, or constant load. The anno- 
tated trace is then fed in to a cycle-accurate microarchitectural sim- 
ulator that correctly accounts for the behavior of each type of load. 
All of our microarchitectural models are implemented using the 
VMW framework [DS95], which enables significant productivity 
gains by allowing us to reuse and retarget existing models. The LVP 
Unit model is separated from the microarchitectural models for two 
reasons: to shift complexity out of the microarchitectural models 
and thus better distribute our simulations across multiple CPUs; and 
to conserve trace bandwidth by passing only two bits of state per 
load to the microarchitectural simulator, rather than the full 32/64 bit 
values being loaded. 

6. E x p e r i m e n t a l  R e s u l t s  

We collected four types of results from our microarchitectural 
models: cycle-accurate performance results for various combina- 
tions of LVP Unit configurations and microarchitectural models for 
both the 620 and 211 64; distribution of load latencies for the 620; 
average data dependency resolution latencies for the 620; and reduc- 
tions in bank conflicts for the 620. 

6.1. Base Machine Model Speedups with Realistic LVP 
In Figure 6, we show speedup numbers relative to the baseline 

620 for two LVP Unit configuration that we consider realistic (i.e. 
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FIGURE 6. Base Machine Model Speedups. 

buildable within one or two processor generations) as well as two 
idealized LVP Unit configurations. The two realistic configurations, 
Simple and Constant, are described in Table 2. To explore the limits 
of load value prediction, we also include results for the Limit and 
Perfect LVP Unit configurations (also described in Table 2). The 
former is similar to the Simple configuration, only much larger, but 
it is not realistic, since it assumes a hypothetical perfect mechanism 
for selecting which~ of the sixteen values associated with each load 
instruction address is the correct one to predict. The latter configu- 
ration, Perfect, is able to correctly predict all load values, but does 
not classify any of them as constants. Neither of these configurations 
is buildable, but the configurations are nevertheless interesting, 
since they give us a sense of how much additional performance we 
can expect from more aggressive and accurate LVP implementa- 
tions. 

Figure 6 also shows three of these four LVP configurations for the 
Alpha AXP 21164, We omit the Constant configuration from our 
21164 simulations because it does not differ significantly from the 
Simple configuration on the 620 and because we have limited access 
to native Alpha CPU cycles for collecting traces. 

In general, the 2t 164 derives roughly twice as much performance 
benefit from LVP as does the 620. We attribute this to two factors: 
its small first-leveL data cache (8K direct-mapped vs. the 620's 8- 
way associative 32K cache) benefits more from the CVU, and its in- 
order issuing policy makes it more sensitive to load latency, since it 
is forced to depend solely on the compiler to try to overlap it with 
other useful computation. The 620, on the other hand, is able to find 
other useful computation dynamically due to its out-of-order core. 

Two benchmarks (grep and gawk) stand out for the dramatic per- 
formance increases they achieve on both models. This gain results 
from the fact that both benchmarks are data-dependence bound, i.e. 
they have important but relatively short dependency chains in which 
load lateneies make up a significant share of the critical path. Thus, 
according to Amdahl's Law, collapsing the load lateneies results in 
significant speedups. Conversely, benchmarks which we would 
expect to perform better based on their high load value locality (e.g. 
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mpeg and sc on the 620, and compress and mpeg on the 21164), fail 
to do so because load latencies make up a lesser share of the critical 
dependency paths. 

The bandwidth-reducing effects of the CVU manifest themselves 
as lower first-level data cache miss rates for several of the bench- 
marks running on the 21164. For example, the miss rate for com- 
press drops from 4.3% to 3.4% per instruction, a 20% reduction. 
Likewise, eqntott and gperfexperience -10% reductions in their 
miss rates, which translate into the significant speedups shown in 
Figure 6. Even cjpeg and mpeg, which gain almost nothing from 
LVP on the 620, eke out measurable gains on the 21164 due to the 
10% reduction in primary data cache miss rate brought about by the 
CVU. 

6.2. Enhanced Machine and LVP Model Speedups 
To further explore the interaction between load value prediction 

and the PowerPC 620 microarchitecture, we collected results for the 
620+ enhanced machine model described earlier in conjunction with 
four LVP configurations. 

The results for these simulations are summarized in Table 6, 
where the third column shows the 620+'s average speedup of 6.1% 
over the base 620 with no LVP, and columns 4 through 7 show aver- 
age additional speedups of 4.6%, 4.2%, 7.7%, and 11.3% for the 
Simple, Constant, Limit, and Perfect LVP configurations, respec- 
tively. In general, we see that the increased machine parallelism of 
the 620+ more closely matches the parallelism exposed by load 
value prediction, since the relative gains for the realistic LVP con- 
figurations are nearly 50% higher than they are for the baseline 620. 
The most dramatic examples of this trend are grep and gawk, which 
show very little speedup from the increased machine parallelism 
without LVP, but nearly double their relative speedups with LVP 
(with the Simple LVP configuration, grep increases from 20% to 
33%, while gawk increases from 15% to 30%). 

TABLE 6. PowerPC 620+ Speedups. Column 3 shows 620+ 
speedup relative to 620 with no LVP; columns 4-7 show additional 

LVP speedups relative to baseline 620+ with no LVP. 

N ~  ~tant .  . . . . . . .  . f e ~  
........... I 

ccl-271 93,371,808 1.057 1.006 1.003 1.045 1.071 

ccl 117,571,998 1.112 1.012 1.006 1.021 1.041 

cjpeg 2,818,987 1.126 1.001 1.011 1.000 1.021 

compress 33,436,604 1.092 1.006 1.006 1.019 1.175 

doduc 43.796,620 1.030 1.007 1.008 1 .016 1.039 

eqntott 18,823,362 1.049 1.029 1.037 1.083 1.082 

gawk 28,741,147 1.009 1.293 1.240 1.327 1.272 

gperf 4,893,966 1.108 1.026 1.019 1.045 1.034 

grep 2,169,697 1.018 1.329 1.310 1.531 1.789 

hydro2d 5,398,363 1.024 1.018 1.019 1.028 1.041 

mpeg 5,394,984 1.192 1.012 1.023 1.036 1.031 

perl 102,965,698 1.050 1.046 1.007 1 .099 1.116 

quick 704,262 1.019 1.000 0.999 1.051 1.170 

sc 62,227,728 1.061 1.035 1.056 1.061 1.088 

swm256 51,327,965 1.044 1.000 1.000 1.000 1.025 

tomcatv 32,838,452 1.018 1.003 1.003 1.004 1.050 

xlisp 44,844,605 1.052 1.022 1.026 !'059 1.058 
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I 

6.3. Distribution of Load Verification Latencies 
In Figure 7 we show the distribution of load verification latencies 
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FIGURE 7. Load Verification Latency Distribution. / 
Numbers shown are the percentage of correctly-predicted [ 
loads that are verified a given number of cycles after they are l 
dispatched. ] 

for each of the four LVP configurations (Simple, Constant, Limit, 
and Perfect) on the 620 and 620+ machine models. That is, we show 
the percentage of correctly-predicted loads that are verified a given 
number of cycles after they are dispatched. The numbers shown are 
the sum over all the benchmarks. These results provide an intuitive 
feel for the number of cycles of load latency being eliminated by 
load value prediction. Clearly, if a larger percentage of loads have 
longer latency, LVP will prove more beneficial. Interestingly 
enough, the distributions for all four LVP configurations look virtu- 
ally identical, which indicates that more aggressive LVP implemen- 
tations (like Limit and Perfect) are uniformly effective, regardless of 
load latency. One would expect that a wider microarchitecture like 
the 620+ would reduce average load latency, since many of the struc- 
tural dependencies are eliminated. These results counter that expec- 
tation, however, since there is a clear shift to the right in the 
distribution shown for the 620+. This shift is caused by the time dila- 
tion brought about by the improved performance of the 620+, which 
in turn is caused by its microarchitectural improvements as well as 
the relative improvement in LVP performance noted in Section 6.2. 

6.4. Data Dependency Resolution Latencies 
The intent of load value prediction is to collapse true dependen- 

cies by reducing memory latency to zero cycles. To confirm that this 
is actually happening and to quantify the dependencies being col- 
lapsed, we measured the average amount of time an instruction 
spends in a reservation station waiting for its true dependencies to be 
resolved. The results are summarized in Figure 8, which categorizes 
the waiting time reductions by functional unit type. The numbers 
shown are the average over all the benchmarks, normalized to the 
waiting times without LVP. We see that instructions in the branch 
(BRU) and multi-cycle integer (MCFX) units experience the least 
reductions in true dependency resolution time. This makes sense, 
since both branches and move-from-special-purpose-register 
(mfspr) instructions are waiting for operand types (link register, 
count register, and condition code registers) that the LVP mecha- 
nism does not predict. Conversely, the dramatic reductions seen for 
floating-point (FPU), single-cycle fixed point (SCFX), and load/ 
store (LSU) instructions correspond to the fact that operands for 
them are predicted. Furthermore, the relatively higher value locality 
of address loads shown in Figure 2 corresponds well with the dra- 
matic reductions shown for load/store instructions in Figure 8. Even 
with just the Simple or Constant LVP configurations, the average 
dependency resolution latency for load/store instructions has been 
reduced by about 50%. 
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The purpose of the CVU is to reduce memory bandwidth by elim- 

inating the need for constant loads to access the conventional mem- 
ory hierarchy. In our 620 and 620+ models, this benefit manifests 
itself as a reduction in the number of bank conflicts to the two banks 
of the first-level data cache. On the 620, in any given cycle, both a 
load and a store can attempt to access a data cache port. If both 
accesses are to the same bank, a conflict occurs, and the store must 
wait to try again the next cycle. On our 620+ model this problem is 
aggravated, since up to two loads and a store can attempt to access 
the two available banks in each cycle. 

In Figure 9, we show the fraction of cycles in which a bank con- 
flict occurs for each of our benchmarks running on the 620 and 620+ 
models. Overall, bank conflicts occur in 2.6% of all 620 simulation 
cycles for our benchmark set, and 6.9% of all 620+ cycles. Our Sim- 
ple LVP Unit configuration is able to reduce those numbers by 8.5% 
and 5.1% for the 620 and 620+, respectively, while our Constant 
configuration manages to reduce them by 14.0% and 14.2% (we are 
pleased to note that these reductions are relatively higher than those 
shown in Table 4, which means the CVU tends to target loads that 
are, on average, more likely to cause bank conflicts). 

Interestingly enough, a handful of benchmarks (gawk, grep, 
hydro2d) experience a slight increase in the relative number of 
cycles with bank conflicts as shown in Figure 9. This is actually 
brought about by the time dilation caused by the increased perfor- 
mance of the LVP configurations, rather than an increase in the abso- 
lute number of bank conflicts. One benchmark--tomcatv--did 
experience a very slight increase in the absolute number of bank 
conflicts on the 620+ model. We view this as a second-order effect 
of the perturbations in instruction-level parallelism caused by LVP, 
and are relieved to note that it is overshadowed by other factors that 
result in a slight net performance gain for tomcatv (see Table 6). 

7. Conclusions and Future Work 
We make three major contributions in this paper. First, we intro- 

duce the concept of value locality in computer system storage loca- 
tions. Second, we demonstrate that load instructions, when 
examined on a per-instruction-address basis, exhibit significant 
amounts of value locality. Third, we describe load value prediction, 
a microarchitectural technique for capturing and exploiting load 
value locality to reduce effective memory latency as well as band- 
width requirements. We are very encouraged by our results. We have 

FIGURE 9. Percentage of Cycles with Bank Conflicts. 

shown that measurable (3% on average for the 620, 6% on average 
for the 21164) and in some cases dramatic (up to 21% on the 620 and 
17% on the 21164) performance gains are achievable with simple 
microarchitectural extensions to two current microprocessor imple- 
mentations that represent the two extremes of superscalar design 
philosophy. 

We envision future work proceeding on several different fronts. 
First of all, we believe that the relatively simple techniques we 
employed for capturing value locality could be refined and extended 
to effectively predict a larger share of load values. Those refine- 
ments and extensions might include allowing multiple values per 
static load in the prediction table by including branch history bits or 
other readily available processor state in the lookup index; or mov- 
ing beyond history-based prediction to computed predictions 
through techniques like value stride detection. Second, our load 
classification mechanism could also be refined to correctly classify 
more loads and extended to control pollution in the value table (e.g. 
removing loads that are not latency-critical from the table). Third, 
the microarchitectural design space should be explored more exten- 
sively, since load value prediction can dramatically alter the avail- 
able program parallelism in ways that may not match current levels 
of machine parallelism very well. Fourth, feedback-directed com- 
piler support for rescheduling loads for different memory latencies 
based on their value locality may also prove beneficial. Finally, 
more aggressive approaches to value prediction could be investi- 
gated. These might include speculating down multiple paths in the 
value space or speculating on values generated by instructions other 
than loads. 
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