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Why Networks On-Chip…?  

• More and more components on a single chip 

• CPUs, caches, memory controllers, accelerators, etc…

• ever-larger chip multiprocessors (CMPs)

• Communication critical CMP’s performance

• Between cores, cache banks, DRAM controllers,… 

• Servicing L1 misses quickly is crucial

• Delays in information can stall the pipeline

• Traditional architectures won’t scale: 

• Common bus does not scale: electrical loading on the 
bus significantly reduces its speed

• Shared bus cannot support bandwidth demand
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Why Networks On-Chip…?  

• (Energy-) cost of global wires increases

• Idea:  connect components using local wires

• Traditional architectures won’t scale: 

• Common bus does not scale: electrical loading on the 

bus significantly reduces its speed

• Shared bus cannot support bandwidth demand

Idea:   Use on-chip network to interconnect components!

Single-chip cloud computer … 48 cores

Tilera corperation TILE-G … 100 cores

etc
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• Why On-Chip Networks (NoC)…?

• Traditional  NoC design 

• Application-Aware NoC design

• Bufferless NoC design 

• Theory of Bufferless NoC Routing

• Conclusions,  Open Problems  & Bibliography

Overview
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• Many different topologies have been proposed

• Different routing mechanisms

• Different router architectures

• Etc… 

• Design goals in NoC design:

• High throughput, low latency

• Fairness between cores, QoS, … 

• Low complexity, low cost 

• Power, low energy consumption

Network On-Chip (NOC)
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Networks On-Chip (NoC)
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Virtual Channels & Wormhole Routing

Conceptual

View
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• Packets consist of multiple flits

• Wormhole routing:  

• Flits of a packet are routed through the network as a 

“worm”  all flits take the same route. 

• Worm goes from a virtual channel in one router, to virtual 

channel in the next router, etc. 

• Virtual Channel Allocator (VA) allocates which virtual 

channel a head-flit (and hence, the worm) goes to next. 

• Switch Allocator (SA) decides – for each physical link – which flit 

is being sent Arbitration.

• In traditional networks, simple arbitration policies are used

(round robin or age-based (oldest-first))

Virtual Channels & Wormhole Routing
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Virtual Channels & Wormhole Routing
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Virtual Channels & Wormhole Routing

• Advantages of wormhole routing:  

• Only head-flit needs routing information

• Packet arrives at destination faster than if every flit is 

routed independently 

• Clever allocation of virtual channels can guarantee freedom 

of deadlocks
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• Why On-Chip Networks (NoC)…?

• Traditional  NoC design 

• Application-Aware NoC design

• Bufferless NoC design 

• Theory of Bufferless NoC Routing

• Conclusions,  Open Problems  & Bibliography

Overview
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Overview

Network-on-Chip
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• Network-On-Chip (NOC) is a critical resource that is 

shared by multiple applications (like DRAM or caches).
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Virtual Channels & Wormhole Routing
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Packet Scheduling in NoC

 Existing switch allocation (scheduling) policies  

◦ Round robin  

◦ Age

 Problem

◦ Treat all packets equally

◦ Application-oblivious

 Packets have different criticality 

◦ Packet is critical if latency of a packet affects application’s 

performance

◦ Different criticality due to memory level parallelism (MLP)

All packets are not the 

same…!!!
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MLP Principle

Latency (   )
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Different Packets have different criticality due to MLP
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Slack of Packets

 What is slack of a packet?

◦ Slack of a packet is number of cycles it can be delayed in a 

router without reducing application’s performance

◦ Local network slack

 Source of slack: Memory-Level Parallelism (MLP)

◦ Latency of an application’s packet hidden from application due to 

overlap with latency of pending cache miss requests

 Prioritize packets with lower slack
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Concept of Slack 
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Core A

Core B

Packet Latency Slack
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 Slack-based NoC routing: 

When arbitrating in a router, the switch allocator (SA) prioritizes 

packet with lower slack  Aérgia. 
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What is Aérgia?

 Aérgia is the spirit of laziness in Greek mythology

 Some packets can afford to slack!
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Slack in Applications
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Slack in Applications
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Diversity in Slack
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Diversity in Slack
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Slack varies between packets of  different applications

Slack varies between packets of  a single application
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Estimating Slack Priority

Slack (P) = Max (Latencies of P’s Predecessors) – Latency of P

Predecessors(P) are the packets of outstanding cache miss 

requests when P is issued

 Packet latencies not known when issued

 Predicting latency of any packet Q

◦ Higher latency if Q corresponds to an L2 miss

◦ Higher latency if Q has to travel farther number of hops
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 Slack of P = Maximum Predecessor Latency   – Latency of P

 Slack(P) = 

PredL2: Number of predecessor packet that are servicing an 

L2 miss.

MyL2:  Set if  P is NOT servicing an L2 miss

HopEstimate: Max (# of hops of Predecessors) – hops of P

Estimating Slack Priority

PredL2

(2 bits)

MyL2

(1 bit)

HopEstimate

(2 bits)
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Estimating Slack Priority

 How to predict L2 hit or miss at core?

◦ Global Branch Predictor based L2 Miss Predictor 

 Use Pattern History Table and 2-bit saturating counters

◦ Threshold based L2 Miss Predictor

 If  #L2 misses in “M” misses >= “T” threshold then next load 

is a L2 miss. 

 Number of miss predecessors?

◦ List of outstanding L2 Misses

 Hops estimate?

◦ Hops => ∆X + ∆ Y distance

◦ Use predecessor list to calculate slack hop estimate



$

Thomas Moscibroda, Microsoft Research

Starvation Avoidance

 Problem: Starvation

◦ Prioritizing packets can lead to starvation of lower priority packets

 Solution: Time-Based Packet Batching

◦ New batches are formed at every T cycles 

◦ Packets of older batches are prioritized over younger batches

Similar to batch-based 

DRAM scheduling.
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Putting it all together

 Tag header of the packet with priority bits before injection

 Priority(P)?

◦ P’s batch  (highest priority)

◦ P’s Slack

◦ Local Round-Robin                                        (final tie breaker)

PredL2

(2 bits)

MyL2

(1 bit)

HopEstimate

(2 bits)

Batch

(3 bits)
Priority (P) =
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Evaluation Methodology

 64-core system
◦ x86 processor model based on Intel Pentium M

◦ 2 GHz processor, 128-entry instruction window

◦ 32KB private L1 and 1MB per core shared L2 caches, 32  miss buffers

◦ 4GB DRAM, 320 cycle access latency, 4 on-chip DRAM controllers

 Detailed Network-on-Chip model 
◦ 2-stage routers (with speculation  and look ahead routing)

◦ Wormhole switching (8 flit data packets)

◦ Virtual channel flow control (6 VCs, 5 flit buffer depth)

◦ 8x8 Mesh (128 bit bi-directional channels)

 Benchmarks
◦ Multiprogrammed scientific, server, desktop workloads (35 applications)

◦ 96 workload combinations
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Qualitative Comparison

 Round Robin & Age

◦ Local and application oblivious

◦ Age is biased towards heavy applications

 Globally Synchronized Frames (GSF) 
[Lee et al., ISCA 2008]

◦ Provides bandwidth fairness at the expense of system performance

◦ Penalizes heavy and bursty applications 

 Application-Aware Prioritization Policies (SJF) 
[Das et al., MICRO 2009]

◦ Shortest-Job-First Principle

◦ Packet scheduling policies which prioritize network sensitive 

applications which inject lower load 
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System Performance

 SJF provides 8.9% improvement

in weighted speedup

 Aérgia improves system 

throughput by 10.3%

 Aérgia+SJF improves system 

throughput by 16.1%
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Network Unfairness

 SJF does not imbalance

network fairness

 Aergia improves network

unfairness by 1.5X

 SJF+Aergia improves 

network unfairness by 1.3X
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Conclusions

 Packets have different criticality, yet existing packet 

scheduling policies treat all packets equally 

 We propose a new approach to packet scheduling in 

NoCs

◦ We define Slack as a key measure that characterizes the relative 

importance of a packet.

◦ We propose Aergia a novel architecture to accelerate low slack 

critical packets

 Result

◦ Improves system performance: 16.1% 

◦ Improves network fairness: 30.8%
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• Why On-Chip Networks (NoC)…?

• Traditional  NoC design 

• Application-Aware NoC design

• Bufferless NoC design 

• Theory of Bufferless NoC Routing

• Conclusions,  Open Problems  & Bibliography

Overview
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• Many different topologies have been proposed

• Different routing mechanisms

• Different router architectures

• Etc… 

• Design goals in NoC design:

• High throughput, low latency

• Fairness between cores, QoS, … 

• Low complexity, low cost 

• Power, low energy consumption

Network On-Chip (NOC)

Energy/Power in On-Chip Networks

• Power is a key constraint in the design

of high-performance processors

• NoCs consume substantial portion of system

power

• ~30% in Intel 80-core Terascale [IEEE Micro’07]

• ~40% in MIT RAW Chip [ISCA’04]

• NoCs estimated to consume 100s of Watts

[Borkar, DAC’07]
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• Existing approaches differ in numerous ways: 

• Network topology  [Kim et al, ISCA’07, Kim et al, ISCA’08 etc]

• Flow control [Michelogiannakis et al, HPCA’09, Kumar et al, MICRO’08, etc]

• Virtual Channels [Nicopoulos et al, MICRO’06, etc]

• QoS & fairness mechanisms [Lee et al, ISCA’08, etc]

• Routing algorithms [Singh et al, CAL’04]

• Router architecture [Park et al, ISCA’08]

• Broadcast, Multicast [Jerger et al, ISCA’08, Rodrigo et al, MICRO’08]

Current NoC Approaches

Existing work assumes existence of 

buffers in routers!
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• Buffers are necessary for high network throughput

 buffers increase total available bandwidth in network

Buffers in NoC Routers

Injection Rate
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• Buffers are necessary for high network throughput

 buffers increase total available bandwidth in network

• Buffers consume significant energy/power

• Dynamic energy when read/write

• Static energy even when not occupied

• Buffers add complexity and latency

• Logic for buffer management

• Virtual channel allocation

• Credit-based flow control 

• Buffers require significant chip area

• E.g., in TRIPS prototype chip, input buffers occupy 75% of 

total on-chip network area [Gratz et al, ICCD’06]

Buffers in NoC Routers
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• How much throughput do we lose? 

 How is latency affected? 

• Up to what injection rates can we use bufferless routing?

Are there realistic scenarios in which NoC is 

operated at injection rates below the threshold? 

• Can we achieve energy reduction?

 If so, how much…?  

• Can we reduce area, complexity, etc…? 

Going Bufferless…? 

Injection Rate

la
te

n
cy

buffers
no

buffers
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BLESS: Bufferless Routing

• Packet creation:  L1 miss, L1 service, write-back, …

• Injection: A packet can be injected whenever at least one 

output port is available  (i.e., when <4 incoming flits in a grid)

• Always forward all incoming flits to some output port

• If no productive direction is available, send to another 

direction

•  packet is deflected

 Hot-potato routing [Baran’64,  etc]
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BLESS: Bufferless Routing

• Example:  Two flits come in,  both want to go North

• Traditional, buffered network:  One flit is sent North, the 

other is buffered

• In a bufferless network:  One flit is sent North, the other is 

sent to some other direction
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BLESS: Bufferless Routing

Routing 

VC Arbiter

Switch Arbiter

Flit-Ranking

Port-

Prioritization

arbitration policy

Flit-Ranking 1. Create a ranking over all incoming flits

Port-

Prioritization 2. For a given flit in this ranking, find the best free output-port

Apply to each flit in order of ranking
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• Each flit is routed independently. 

• Oldest-first arbitration   (other policies evaluated in paper)

• Network Topology: 
 Can be applied to most topologies (Mesh, Torus, Hypercube, Trees, …) 

1) #output ports ¸ #input ports      at every router
2) every router is reachable from every other router

• Flow Control & Injection Policy: 

 Completely local, inject whenever input port is free  

• Absence of Deadlocks:  every flit is always moving

• Absence of Livelocks:  with oldest-first ranking

FLIT-BLESS: Flit-Level Routing

Flit-Ranking 1. Oldest-first ranking

Port-

Prioritization
2. Assign flit to productive port, if possible.

Otherwise, assign to non-productive port. 
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• Potential downsides of FLIT-BLESS

• Not-energy optimal (each flits needs header information)

• Increase in latency (different flits take different path)

• Increase in receive buffer size

• BLESS with wormhole routing…?

• Problems:

• Injection Problem
(how can I know when it is safe to inject…?

a new worm could arrive anytime, blocking

me from injecting...)

• Livelock Problem
(packets can be deflected forever)

WORM-BLESS: Wormhole Routing

new worm!

[Dally, Seitz’86]
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WORM-BLESS: Wormhole Routing

Flit-Ranking 1. Oldest-first ranking

Port-Prioritization
2. If flit is head-flit

a) assign flit to unallocated, productive port

b) assign flit to allocated, productive port

c) assign flit to unallocated, non-productive port

d) assign flit to allocated, non-productive port

else, 

a) assign flit to port that is allocated to worm 

Deflect worms

if necessary!

Truncate worms

if necessary!

Head-flit: West

This worm 

is truncated!

& deflected!

At low congestion, packets

travel routed as worms

allocated

to North

allocated

to West

Body-flit turns

into head-flit
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• BLESS without buffers is extreme end of a continuum

• BLESS can be integrated with buffers 

• FLIT-BLESS with Buffers

• WORM-BLESS with Buffers

• Whenever a buffer is full, it’s first flit becomes 

must-schedule

• must-schedule flits must be deflected if necessary

BLESS with Small Buffers
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Advantages

• No buffers

• Purely local flow control

• Simplicity 
- no credit-flows

- no virtual channels

- simplified router design

• No deadlocks, livelocks

• Adaptivity
- packets are deflected around 

congested areas! 

• Router latency reduction

• Area savings

BLESS:  Advantages & Disadvantages 

Disadvantages

• Increased latency

• Reduced bandwidth

• Increased buffering at 

receiver

• Header information at 

each flit

Impact on energy…? 
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• BLESS gets rid of input buffers 

and virtual channels

Reduction of Router Latency

BW

RC

VA

SA
ST

LT

BW SA ST
LT

RC ST
LT

RC ST
LT

LA LT

BW:  Buffer Write

RC:   Route Computation

VA:    Virtual Channel Allocation

SA:    Switch Allocation

ST:    Switch Traversal

LT:     Link Traversal

LA LT:   Link Traversal of Lookahead

Baseline

Router

(speculative)

head

flit

body

flit

BLESS

Router

(standard)

RC ST
LT

RC ST
LT

Router 1

Router 2

Router 1

Router 2

BLESS

Router

(optimized)

Router Latency = 3

Router Latency = 2

Router Latency = 1

Can be improved to 2. 

[Dally, Towles’04]
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Advantages

• No buffers

• Purely local flow control

• Simplicity 
- no credit-flows

- no virtual channels

- simplified router design

• No deadlocks, livelocks

• Adaptivity
- packets are deflected around 

congested areas! 

• Router latency reduction

• Area savings

BLESS:  Advantages & Disadvantages 

Disadvantages

• Increased latency

• Reduced bandwidth

• Increased buffering at 

receiver

• Header information at 

each flit

Impact on energy…? 
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• 2D mesh network, router latency is 2 cycles

o 4x4, 8 core, 8 L2 cache banks  (each node is a core or an L2 bank)

o 4x4, 16 core, 16 L2 cache banks (each node is a core and an L2 bank)

o 8x8, 16 core, 64 L2 cache banks (each node is L2 bank and may be a core)

o 128-bit wide links,  4-flit data packets,  1-flit address packets

o For baseline configuration: 4 VCs per physical input port, 1 packet deep

• Benchmarks

o Multiprogrammed SPEC CPU2006 and Windows Desktop applications

o Heterogeneous and homogenous application mixes

o Synthetic traffic patterns: UR, Transpose, Tornado, Bit Complement

• x86 processor model based on Intel Pentium M

o 2 GHz processor, 128-entry instruction window

o 64Kbyte private L1 caches

o Total 16Mbyte shared L2 caches; 16 MSHRs per bank

o DRAM model based on Micron DDR2-800

Evaluation Methodology
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• 2D mesh network, router latency is 2 cycles

o 4x4, 8 core, 8 L2 cache banks  (each node is a core or an L2 bank)

o 4x4, 16 core, 16 L2 cache banks (each node is a core and an L2 bank)

o 8x8, 16 core, 64 L2 cache banks (each node is L2 bank and may be a core)

o 128-bit wide links,  4-flit data packets,  1-flit address packets

o For baseline configuration: 4 VCs per physical input port, 1 packet deep

• Benchmarks

o Multiprogrammed SPEC CPU2006 and Windows Desktop applications

o Heterogeneous and homogenous application mixes

o Synthetic traffic patterns: UR, Transpose, Tornado, Bit Complement

• x86 processor model based on Intel Pentium M

o 2 GHz processor, 128-entry instruction window

o 64Kbyte private L1 caches

o Total 16Mbyte shared L2 caches; 16 MSHRs per bank

o DRAM model based on Micron DDR2-800

Evaluation Methodology

Evaluations with perfect 

L2 caches

 Puts maximal stress 

on NoC

Simulation is cycle-accurate

 Models stalls in network 

and processors

 Self-throttling behavior

Aggressive processor model
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• Energy model provided by Orion simulator [MICRO’02]

o 70nm technology,  2 GHz routers at 1.0 Vdd

• For BLESS, the following is modeled

o Additional energy to transmit header information

o Additional buffers needed on the receiver side

o Additional logic to reorder flits of individual packets at receiver

• Network energy is partitioned into

buffer energy, router energy, and link energy, 

each having static and dynamic components. 

• Comparisons against non-adaptive and aggressive 

adaptive buffered routing algorithms (DO, MIN-AD, ROMM)

Evaluation Methodology
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Evaluation – Synthethic Traces

• First, the bad news 

• Uniform random injection

• BLESS has significantly lower

saturation throughput 

compared to buffered 
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Evaluation – Homogenous Case Study

• milc benchmarks

(moderately intensive)

• Perfect caches!

• Very little performance

degradation with BLESS

(less than 4% in dense

network)

•With router latency 1, 

BLESS can even 

outperform baseline

(by ~10%)

• Significant energy 

improvements 

(almost 40%)
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Evaluation – Homogenous Case Study

• milc benchmarks

(moderately intensive)

• Perfect caches!

• Very little performance

degradation with BLESS

(less than 4% in dense

network)

•With router latency 1, 

BLESS can even 

outperform baseline

(by ~10%)

• Significant energy 

improvements 

(almost 40%)
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Observations: 

1) Injection rates not extremely high

on average

 self-throttling!

2) For bursts and temporary hotspots, 

use network links as buffers!
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Evaluation – Homogenous Case Study
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• Matlab benchmarks

(most intensive)

• Perfect caches!

Worst-case for BLESS

• Performance loss is

within 15% for most

dense configuration

• Even here, more than 

15% energy savings in 

densest network!
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Evaluation – Further Results

• BLESS increases buffer requirement

at receiver by at most 2x  
 overall, energy is still reduced

• Impact of memory latency 

 with real caches, very little slowdown! (at most 1.5%)
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Evaluation – Further Results

• BLESS increases buffer requirement

at receiver by at most 2x  
 overall, energy is still reduced

• Impact of memory latency 

 with real caches, very little slowdown! (at most 1.5%)

• Heterogeneous application mixes

(we evaluate several mixes of intensive and non-intensive applications)

 little performance degradation 

 significant energy savings in all cases

 no significant increase in unfairness across different applications

• Area savings: ~60% of network area can be saved!
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• Aggregate results over all 29 applications

Evaluation – Aggregate Results

Sparse Network Perfect L2 Realistic L2

Average Worst-Case Average Worst-Case

∆ Network Energy -39.4% -28.1% -46.4% -41.0%

∆ System Performance -0.5% -3.2% -0.15% -0.55%
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• Aggregate results over all 29 applications

Evaluation – Aggregate Results

Sparse Network Perfect L2 Realistic L2

Average Worst-Case Average Worst-Case

∆ Network Energy -39.4% -28.1% -46.4% -41.0%

∆ System Performance -0.5% -3.2% -0.15% -0.55%

Dense Network Perfect L2 Realistic L2

Average Worst-Case Average Worst-Case

∆ Network Energy -32.8% -14.0% -42.5% -33.7%

∆ System Performance -3.6% -17.1% -0.7% -1.5%
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• For a very wide range of applications and network settings, 

buffers are not needed in NoC

• Significant energy savings 

(32% even in dense networks and perfect caches)

• Area-savings of 60% 

• Simplified router and network design (flow control, etc…)

• Performance slowdown is minimal (can even increase!)

 A strong case for a rethinking of NoC design!  

Summary
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• Why On-Chip Networks (NoC)…?

• Traditional  NoC design 

• Application-Aware NoC design

• Bufferless NoC design 

• Theory of Bufferless NoC Routing

• Conclusions,  Open Problems  & Bibliography

Overview
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Optimal Bufferless Routing…? 

• BLESS uses age-based arbitration in combination with 

XY-routing  this may be sub-optimal

• Same packets (flits) could collide many times on the way to 

their destination

• Is there a provably optimal arbitration & routing mechanism for 

bufferless networks…? 
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Optimal Bufferless Routing…? 

• Optimal Bufferless “Greedy-Home-Run” Routing

• The following arbitration policy is provably optimal for an 

m x m Mesh network (asymptotically at least) 

1 - Packets move greedily towards their destination if possible

(if there are 2 good links, any of them is fine)

2 - If a packet is deflected, it gets “excited”  with probability 1/p, 

where p = £(1/m). 

3 - When a packet is excited, it has higher priority than non-excited

packets

4 - When being excited, a packet tries to reach the destination 

on the “home-run” path (row-column XY-path)

5 - When two excited packets contend, the one that goes straight 

(i.e., keeps its direction) has priority

6 - If an excited packet is deflected  it becomes normal again 
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Optimal Bufferless Routing…? 

1 2

Packet 1 wants to go to [7,7]

Packet 2 wants to go to [2,7]

say, Packet 1 gets deflected

with probability p, it gets excited

 if excited, it is routed strictly on

the home-run path

 if it is deflected on the home-run

path, it becomes non-excited again.

 this can only happen at the first hop 

or at the turn (only 2 possibilities!)

[0,0]

[7,7]home-run path
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Optimal Bufferless Routing…? 

Proof-sketch:

• An excited packet can only be deflected at its start node, or when 

trying to turn. 

• In both cases, the probability to be deflected is a small constant

(because there needs to be another excited packet starting 

at exactly the right instant at some other node)

• Thus, whenever a packet gets excited, it reaches its destination

with constant probability.  

• Thus, on average, a packet needs to become excited only O(1) 

times to reach its destination. 

• Since a packet becomes excited every p’th time it gets deflected, 

it only gets deflected O(1/p)=O(m) times in expectation.

• Finally, whenever a packet is NOT deflected, it gets close to its 

destination. 
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Optimal Bufferless Routing…? 

Proof-sketch:

• An excited packet can only be deflected at its start node, or when 

trying to turn. 

• In both cases, the probability to be deflected is a small constant

(because there needs to be another excited packet starting 

at exactly the right instant at some other node)

• Thus, whenever a packet gets excited, it reaches its destination

with constant probability.  

• Thus, on average, a packet needs to become excited only O(1) 

times to reach its destination. 

• Since a packet becomes excited every p’th time it gets deflected, 

it only gets deflected O(1/p)=O(m) times in expectation.

• Finally, whenever a packet is NOT deflected, it gets close to its 

destination. 

Notice that even with buffers, O(m) is optimal. 

Hence, asymptotically, having no buffers 

does not harm the time-bounds of routing 

(in expectation) !
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