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ABSTRACT 
Although central processor speeds continues to improve, improve- 
ments in overall system performance are increasingly hampered 
by memory latency, especially for pointer-intensive applications. 
To counter this loss of performance, numerous data and instruc- 
tion prefetch mechanisms have been proposed. Recently, several 
proposals have posited a memory-side prefetcher; typically, these 
prefetchers involve a distinct processor that executes a program 
slice that would effectively prefetch data needed by the primary 
program. Alternative designs embody large state tables that learn 
the miss reference behavior of the processor and attempt to prefetch 
likely misses. 

This paper proposes Content-Directed Data Prefetching, a data 
prefetching architecture that exploits the memory allocation used 
by operating systems and runtime systems to improve the perfor- 
mance of pointer-intensive applications constructed using modem 
language systems. This technique is modeled after conservative 
garbage collection, and prefetches "likely" virtual addresses ob- 
served in memory references. This prefetching mechanism uses the 
underlying data of the application, and provides an 11.3% speedup 
using no additionalprocessor state. By  adding less than ½% space 
overhead to the second level cache, performance can be further in- 
creased to 12.6% across a range of"real world" applications. 

1. INTRODUCTION 
In early processor designs, the performance of the processor and 

memory were comparable, but in the last 20 years their relative 
performances have steadily diverged [4], with the performance im- 
provements of the memory system lagging those of the processor. 
Although both memory latency and bandwidth have not kept pace 
with processor speeds, bandwidth has increased faster than latency. 
Until recently, a combination of larger cache blocks and high band- 
width memory systems have maintained performance for applica- 
tions with considerable spatial reference locality. A number of data 
prefetching methods have been developed for applications that have 
regular memory reference patterns. Most hardware prefetch mech- 
anisms work by recording the history of load instruction usage, and 
index on either the address or the effective address of load instruc- 
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tions [3, 6, 11]. This requires the prefetcher to have observed the 
load instruction one or more times before an effective address can 
be predicted and can work very well for loads that follow an arith- 
metic progression. 

At the same time, modem managed runtime environments such 
as Java and .NET, rely on dynamic memory allocation, leading to 
reduced spatial locality because of these linked data structures. Al- 
though these applications do benefit from prefetchers designed for 
regular address patterns, their irregular access patterns still cause 
considerable delay. An alternative mechanism is to try to find a 
correlation between miss addresses and some other activity. The 
correlation [2] and Markov [5] prefetchers record patterns of miss 
addresses in an attempt to predict future misses, but this prefetch 
technique requires a large correlation table and a training phase. 
Roth et al. introduced dependence-based techniques for capturing 
producer-consumer load pairs [ 12]. 

Compiler-based techniques [9] insert prefetch instructions at sites 
where pointer dereferences are anticipated. Luk and Mowry [8] 
showed that a greedy approach to pointer prefetching can improve 
performance despite the increased memory system overhead. Li- 
pasti et al. [7] developed heuristics that consider pointers passed 
as arguments on procedure calls and inserted prefetches at the call 
sites for the data referenced by the pointers. Ozawa et al. [ 10] clas- 
sify loads whose data address come from a previous load as list 
accesses, and perform code motions to separate them from the in- 
structions that use the data fetched by list accesses. 

Since prefetch mechanisms target different classes of program 
references, they can be combined to yield a more effective total 
prefetching behavior; this was explored for the Markov prefetcher 
and it was found that stride prefetchers improve the performance of 
the Markov prefetcher by filtering references with arithmetic pro- 
gressions, leaving more table space for references to linked data 
structures [5]. 

This paper investigates a technique that predicts addresses in 
pointer-intensive applications using a hardware only technique with 
no built-in biases toward the layout of the recursive data struc- 
tures being prefetched, and with the potential to run many instances 
ahead of the toad currently being executed by the processor. The 
ability to "run ahead" of an application has been shown to be a re- 
quirement for pointer-intensive applications [12], which tradition- 
ally do not provide sufficient computational work for masking the 
prefetch latency. Some hybrid prefetch engines [13] do have the 
ability to run several instances ahead of the processor, but require 
aprior i  knowledge of the layout of the data structure, and in some 
cases, the traversal order of the structure. 

The method proposed, content-directed data prefetching, bor- 
rows techniques from conservative garbage collection [1], in that 
when data is demand-fetched from memory, each address-sized 
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word of the data is examined for a "likely" address. Candidate 
addresses need to be translated from the virtual to the physical ad- 
dress space and then issued as prefetch requests. As prefetch re- 
quests return data from memory, their contents are also examined 
to retrieve subsequent candidates. There are a number of ways to 
identify "likely" addresses. Conservative garbage collection must 
identify all possible addresses, and occasionally errs in a way that 
classifies non-addresses as possible addresses, causing garbage to 
be retained. The problem here is simpler since prefetching is not 
necessary for correctness and only serves to improve performance. 

The content-directed data prefetcher also takes advantage of the 
recursive construction of linked data structures. By monitoring 
both demand load traffic and the prefetch request traffic, the con- 
tent prefetcher is able to recursively traverse linked structures. A 
common challenge found in data pEt fetching of most application 
types is finding sufficient computationfil work to mask the latency 
of the prefetcher reqt~ests. Chen and Baer [3] approached this prob- 
lem using a look-ahead program counter. The recursive feature of 
the content prefetcher achieves the same effect, in that it allows the 
content prefetcher to run ahead of the program's execution, provid- 
ing the needed time to mask the prefetch request latencies. 

The content-directed data prefetcher is designed to assist ap- 
plications using linked data structures. Applications with regular 
or "stride" references do not commonly load and then follow ad- 
dresses. However, most modem processors provide some sort of 
stride prefetcher. Some prefetchers, such as correlation prefetch- 
ers, can mimic a stride prefetcher when used in isolation, and using 
only these prefetchers may inflate their true impact. In this pa- 
per, the content-directed data prefetcher is combined with a stride 
prefetcher to achieve a robust prefetcher, and performance is al- 
ways compared to a baseline architecture that includes a stride pre- 
fetcher to clarify the contribution of the content data prefetcher. 

The main contributions of this paper are: 

• Establishing the concept of content-directed data prefetch.- 
ing. This paper contributes a history-free prefetching method- 
ology that can issue timely prefetches within the context of 
pointer-intensive applications. The scheme overcomes the 
limitations of"context-based" prefetchers (e.g. Markov pre- 
fetchers), which require a training period. The content pre- 
fetcher described in this paper does not require such a train- 
ing period, and has the ability to mask compulsory cache 
misses. 

• Evaluation of an effective pointer recognition algorithm. This 
is a core design feature of the content prefetcher. Without an 
accurate means of distinguishing an address from any other 
random data, content-directed data prefetching would not 
yield performance increases. 

• Introduction of a reinforcement mechanism that accurately 
guides the content prefetcher down active prefeteh paths. This 
method affords the content prefeteher with a storage-efficient 
way of recording the current prefeteh paths, providing the 
needed feedback required to continue uninterrupted down a 
recursive prefetch path. 

The rest of this paper is organized as follows. The simulation 
framework used to examine the feasibility and practicality of the 
content prefetcher is presented in Section 2, followed by the de- 
sign and implementation of the prefetcher in Section 3. A perfor- 
mance evaluation of the content prefetcher embodiment is given in 
Section 4. Section 5 provides a design and performance compari- 
son between the content prefetcher and the Markov prefeteher, with 
Section 6 concluding this paper. 

Processor 
Core Frequency 4000 MHz 
Width fetch 3, issue 3, retire 3 
Misprediction Penalty 28 cycles 
Buffer Sizes reorder 128, store 32, load 48 
Functional Units integer 3, memory 2, floating point 1 
Load-to-use LI: 3 cycles, 
Latencies L2:16 cycles 
Branch Predictor 16K entry gshare 
Data Prefetcher Hardware stride prefeteher 
Busses 
L2 throughput 1 cycle 
L2 queue size 128 entries 
Bus bandwidth 4.26 GBytes/sec 

- 133 MHz 8B quad pumped 
Bus latency 460 processor cycles 

- 8 bus cycles thru chipset (240) 
- 55 nsec DRAM access time (220) 

Bus queue size 32 entries 
Caches 
Trace Cache 12 K#ops, 8-way associative 
ITLB 128 entry, 128-way associative 
DTLB 64 entry, 4-way associative 
DL1 Cache 32 Kbytes, 8-way associative 
UL2 Cache 1 Mbytes, 8-way associative 
Line Size 64 bytes 
Page Size 4 Kbytes 

Table 1: Performance model: 4-GHz system configuration. 

2. SIMULATION M E T H O D O L O G Y  
Results provided in this paper were collected using simulation 

tools built on top of a pop-level IA-32 architectural simulator that 
executes Long Instruction Traces (LIT). Despite the name, a LIT 
is not a trace but is actually a checkpoint of the processor state, in- 
eluding memory, that can be used to initialize an execution-based 
simulator. Included in the LIT is a list of  LIT injections which are 
interrupts needed to simulate events like DMA. Since the LIT in- 
cludes an entire snapshot of memory, this methodology allows the 
execution of both user and kernel instructions. To re&tee simula- 
tion time, rather than running an entire application, multiple care- 
fully chosen LITs are run for 30 million instructions and are aver- 
aged to represent an application. 

2.1 Performance Simulator 
The performance simulator is an execution-driven cycle-accurate 

simulator that models an out-of-order microprocessor similar to the 
In te l~  Pentium(~) 4 microprocessor. The performance simulator 
includes a detailed memory subsystem that fully models busses 
and bus contention. The parameters for the processor configura- 
tion evaluated in this paper are given in Table 1. Such a configu- 
ration tries to approximate both the features and the performance 
of future processors. Included with the base configuration of the 
performance simulator is a stride-based hardware prefetcher. It is 
important to note that all the speedup results presented in this paper 
are relative to the model using a stride prefetcher. By using both an 
accurate performance model, and making sure the base model is 
complete in its use of standard performance enhancement compo- 
nents (e.g., a stride prefetcher), the speedups presented in this paper 
are both accurate and realistic improvements over existing systems. 

2.2 Avoiding Cold Start Effects 
When executing the benchmarks within the simulators, it is nee- 

essary to allow the workloads to run for a period of time to warm- 
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Figure 1: Non-cumulative MPTU trace for a 4-MByte UL2 Cache. 

up the simulator. In the framework of this paper, it is important 
to allow the memory system to warmup to minimize the effects of 
compulsory misses on the performance measurements. The con- 
ventional means for warming up a simulator is to allow the simula- 
tor to execute for a given number of instructions before collecting 
statistics. The metric used in this paper to establish this instruction 
count is Misses Per 1000 #ops (MPTU). This is the average number 
of demand data fetches that will miss during the execution of 1000 
#ops. MPTU takes into account the number of operations being ex- 
ecuted by the program, as well as the number of cache accesses, and 
provides a measure of a program's demand on the particular cache 
level. Figure 1 provides an MPTU trace of the second-level cache. 
The trace was generated for a processor configuration utilizing a 
4-MByte unified second-level cache (UL2), as this will require a 
longer warm-up period. Using such a large cache guarantees that 
the instruction count will be valid for the UL2 cache sizes used 
during this study. The X-axis of the trace represents time, which 
is measured in retired #ops. It should be noted that for readabil- 
ity purposes, the sequence has been limited to showing only one 
benchmark from each of the six workload suites (see Table 2). 

The MPTU trace shows a very distinct transient period from 
zero to 5,000,000 retired #ops. By the time the execution of the 
programs reach 7,500,000 retired #ops, the MPTU has reached a 
steady-state. Several spikes are seen later in the program's execu- 
tion, but this is to be expected as both transitions between contexts 
within the program are encountered, and capacity misses start to 
appear. Using the trace as a guide, each application is allowed to 
execute for 5,000,000 IA-32 instructions ( ~  7, 500,000#ops), be- 
fore the collection of performance statistics starts. 

2.3 Workloads 
The workloads used in this paper are presented in Table 2. The 

applications are either commercial applications or compiled using 
highly optimizing commercial compilers. The table lists the num- 
ber of IA-32 instruction executed, the number of #ops executed, 
and the MPTU for both 1-MByte and 4-MByte second-level cache 
configurations. The workloads include applications from some of 
the most common productivity application types. This includes In- 

temet business applications (e.g. b2b), game-playing and multime- 
dia applications (e.g. quake), accessibility applications (e.g. speech 
recognition), on-line transaction processing (e.g. tpcc), computer- 
aided design (e.g. verilog), and Java (or runtime) applications (e.g. 
specjbb). 

3. PREFETCHER SCHEME AND IMPLE- 
MENTATION 

This section presents the basic operation of the content prefetcher, 
and discusses some of the issues involved in the design decisions. 

3.1 Basic Design Concept 
The primary role of any prefetcher is to predict future memory 

accesses. The content prefetcher attempts to predict future memory 
accesses by monitoring the memory traffic at a given level in the 
memory hierarchy, looking expressly for virtual addresses (point- 
ers). The prefetcher is based on the premise that if  a pointer is 
loaded from memory, there is a strong likelihood that the address 
will be used as the load address (effective address) of a future load. 
Specifically, the content prefetcher works by examining the fill con- 
tents of demand memory requests that have missed at some level in 
the memory hierarchy (e.g. L2 cache). Wheri the fill request re- 
turns, a copy of the cache line is passed to the content prefetcher, 
and the cache line is scanned for likely virtual addresses. I fa  can- 
didate address is found, a prefetch request is issued for that ad- 
dress. The inherent difficulty in this prediction technique is trying 
to discem a virtual address from both data values and random bit 
patterns. 

3.2 On-chip versus Off-chip 
The content prefetcher can be implemented as being either on- 

chip, as an integrated piece of the processor's memory hierarchy, or 
as part of the memory controller (off-chip). Placing the prefetcher 
on-chip provides several benefits. First, with the content prefetcher 
residing at and prefetching into the L2 cache, the cache itself can 
be used to provide useful feedback to the content prefetcher. This 
can identify which prefetches suppressed a demand request cache 
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Sui te  Benchmark Instructions #ops 
Internet 
Interact 
Multimedia 

b2b 
b2e 

30,000,000 
30,000,000 

40,369,085 
49,979,480 

quake 30,000,000 45,208,724 
Productivity speech 30,000,000 43,825,381 
Productivity re3 30,000,000 47,226,941 
Productivity creation 30,000,000 52,939,628 
Server 
Server 
Server 
Server 
Workstation 
Workstation 
Workstation 
Workstation 
Runtime 

30,000,000 
30,000,000 
30,000,000 
30,000,000 
30,000,000 
30,000,000 
30,000,000 
30,000,000 

tpce-1 
tpcc-2 
tpcc-3 
tpcc-4 
venlog-fune 
vefilog-gate 
proE 
slsb 
specjbb-vsnet 

52,944,514 
53,149,114 
51,719,199 
51,896,535 
45,893,143 
36,933,152 
43,863,049 
49,697,532 
45,694,508 

L2 MPTU 
(1 MB) ] (4 MB) 

1.04 0.83 
0.13 0.13 
1.41 0.30 
1.19 0.44 
0.43 0.33 
0.56 0.24 
1.88 0.68 
2.29 0.87 
2.49 0.87 
2.05 0.70 
7.60 5.49 

24.12 19.74 
0.26 0.23 
3.23 2.74 
1.23 1.10 

Table 2: Instructions executed, ~op executed, and L2 MPTU statistics for the benchmark sets. 

miss, and whether the content prefetcher is issuing prefetcbes for 
cache lines that already reside in the L2 cache. Second, having 
the prefetcher on-chip provides the prefetcher with access to the 
memory arbiters, allowing the prefetcher to .determine whether a 
matching memory request is currently in-flight. The final and the 
most compelling benefit is that placing the content prefetcher on- 
chip resolves issues concerning address translation. The candidate 
addresses being generated by the prefetcher are virtual addresses. 
However such addresses need to be translated to access main mem- 
ory. With the content prefetcher on-chip, the prefetcher can utilize 
the on-chip data translation look-aside buffer (TLB). This is very 
important since statistics collected during simulation runs showed 
that on average, over a third of the prefetch requests issued required 
an address translation not present in the data TLB at the time of 
the request. The main drawback of an on-chip content prefetcher 
is that it may keep the pointer chasing critical path thru membry 
untouched. However, since the pointer chasing is now decoupled 
from the instruction stream execution, this critical time is now no 
longer additive to other limiting factors like computational work 
and branch mispredicts. Stated differently, pointer-intensive ap- 
plications do not strictly utilize recursive pointer paths (e.g hash 
tables). 

The major benefit of having the prefetcher off-chip is the possi- 
ble reduction in the prefetch latency, as prefetch requests will not 
have to endure a full L2 to main memory request cycle; the pointer 
chasing critical path would be broken. An off-chip prefetcher could 
potentially maintain a TLB to provide the address translations. The 
problem with this implementation is that while this secondary TLB 
may be able to monitor the physical pages being accessed, it does 
not have direct access to the virtual addresses associated with the 
physical pages. Adding pins to provide the linear address bits is an 
option. A second drawback to placing the prefetcher off-chip is the 
lack of feedback available to the prefetcher, as it is not receiving 
any direct reinforcement concerning the accuracy of the prefetches 
being issued. 

After analyzing the benefits of both placement options, the deci- 
sion was made to place the content prefetcher on-chip. The main 
reason is that in the applications focused on in this study, limit- 
ing factors other than true pointer chasing are mostly predominant. 
This will be confirmed by the fact that 72% of the prefetches is- 
sued have their latency completely hidden. It will also be shown 
later in this paper that allowing the prefetcher to use feedback from 
the caches is extremely desirable for performance, and placing the 
content prefetcher on-chip affords the prefetcher its best access to 

31 Effective Address 0 

f!l   l llllllllllllllllllllllllll 
Compare Bits / /  Filter Bits Align Bits 

31 Candidate Virtual Address 0 

Figure 2: Position of the Virtual Address Matching compare, 
filter, and align bits. 

the various feedback sources. 

3.3 Address Prediction Heuristics 
Some method must be designed to determine ifa  cache line value 

is a potential virtual address, and not a data value. The virtual 
address matching predictor originates from the idea that the base 
address of a data structure is hinted at via the load of any member 
of the data structure. In other words, most virtual data addresses 
tend to share common high-order bits. This is a common design in 
modern operating systems that is exploited by the content-designed 
prefetcher. 

More accurately, we assume all data values found within the 
structure that share a base address can be interpreted as pointers 
to other members (nodes) of the same structure. For tiffs method, 
the effective address of the memory request that triggered the cache 
miss and subsequent fill is compared against each address-sized 
data value in the newly filled cache line. A given bit arrangement 
can be interpreted as a pointer, a value, or some random bits. Ex- 
amples of the latter are compressed data or values taken out of their 
original byte grouping. A bit array is deemed to be a candidate ad- 
dress if the upper N compare bits of both the effective address of 
the triggering request and the bit arrangement match (see Figure 2), 
as this is a strong indicator that they share the same base address. 
The number of bits compared needs to be large enough to minimize 
false predictions on random patterns. 

The virtual address matching heuristic works well except for the 
two regions defined by the upper N bits being all O's or all 1 's. For 
the lower region, any value less than 32-N bits will match an effec- 
tive address whose upper N bits are all zeros. The same is true for 
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the upper region, where a large range of negative values can poten- 
tially be predicted as a likely virtual address. This is problematic 
because many operating systems allocate stack or heap data in those 
locations. 

Instead of not predicting in these regions, an additional filter as 
shown in Figure 2 is used to distinguish between addresses and data 
values. In the case of the lower region, if  the upper N bits of both 
the effective address and the data value being evaluated are all zero, 
the next M bits, called filter bits, past the upper N compare bits of 
the data value are examined. If a non-zero bit is found within the 
filter bit range, the data value is deemed to be a likely address. The 
same mechanism is used for the upper range, except a non-one bit 
is looked for in the filter bit range. Using zero filter bits would 
mean no prediction within both extreme regions, while increasing 
the number of filter bits relaxes the requirements for a candidate 
address. 

One further method of isolating addresses from data is using 
memory alignment. For memory efficiency reasons, most IA-32 
compilers will attempt to place variables and structures on 4-byte 
boundaries. Given the following data structure: 

struct x { 

char a ; 

struct x *next; 
} 

the compiler may not only place the base address of the structure 
on a four byte boundary, but it may also pad the size of the c h a r  
to be 4-bytes so that both members of the structure will also be on 
4-byte boundaries. The result is that all addresses related to the 
data structure will be 4-byte aligned. This alignment information 
can be used to the address predictor's benefit in two ways. First, 
with all the pointers being 4-byte aligned, the two least significant 
bits of each address will be zero. Therefore any candidate with a 
non-zero bit in either of these two bit locations can be discarded as 
a possible address. Figure 2 shows the position of the align bits. 

The second benefit involves the scanning of the cache line. In 
a 64-byte cache line, if  the predictor were to take single byte steps 
through the cache line, 61 data values would have to be scrutinized. 
Knowing that addresses only reside on 4-byte boundaries can allow 
the predictor to take a scan step of four through the cache line, re- 
ducing the number of data values that need to be examined from 61 
to 16. This reduces the amount of work required during a cache line 
scan, and minimizes false predictions on non-aligned data values. 

3.4 Content Prefeteher Design Considerations 

3.4.1 Recursion and Prefetch Priorities 
The content prefetcher contains a recurrence component. Tra- 

ditional prefetchers (e.g. stride, stream, correlating) observe only 
the demand fetch reference stream, or the demand miss reference 
stream subset, when trying to generate prefetch load addresses. The 
content prefetcher differs in that it not only examines the demand 
reference stream, but it also examines theprefetch reference stream. 
The result is that the content-based prefetcher will generate new 
prefetches based on previous prefetches (a recurrence relationship). 
This recurrence feature allows the prefeteher to follow the recursive 
path implicit in linked data structures. 

The request depth is a measure of the level of recurrence of a 
specific memory request. A demand fetch is assigned a request 
level of zero. A prefetch resulting from a demand fetch miss is 
assigned a request depth of one. A chained prefetch, a prefetch 
resulting from a prior prefetch, is assigned a request depth equal 
to one more than the prefetch that triggered the recurrent prefetch 

A) 

B) 

C) 

D) 

E) 

P R E F E T C H  C H A I N I N G  

Deamnd Miss Depth - 0 
Cache line A scanned as a 
result of  the demand miss. 
Prefetch for line B issued. 

Prefetch Depth = 1 
Cache line B scanned 
when prefetch fall returns. 
Prefetch for line C issued. 

Prefetch Depth=2  
This is a chained prefetch. 
Line C scanned. 
Prefetch for line D issued. 

Prefetch D e p t h - 3  
Prcfetch chain terminated 
as the req depth reaches 3. 
Line D is not scanned. 

P A T H  R E I N F O R C E M E N T  

Demand (PF) Hi t  Depth = 0 
Cache line B (re)scanned as 
result of  the prefctch hit. 
Depth updated from 1 to 0. 
Prefctch of line C is issued. 

Prefetch Depth= 1 
Depth reset from 2 to I when 
prcfetch found in cache f rom 
the previous scan of line B. 
Cache line C is (re)scanned. 
Prefctch rcq issued for line D. 

Prefetch D e p t h - 2  
Depth reset from 3 to 2, 
prefetch mere transaction 
Cache line D is (re)scanned. 
found in- f l ight .  

Prefeteh req issued for line E. 

Prefetch D e p t h - 3  
Prefetch chain is extended. 
The prefetch chain is term- 
inated as the depth reaches 3. 
Cache Hne E is not scanned. 

Figure 3: Example of prefetch chaining and path reinforcement. 

request. The request depth can be seen as the minimal number of 
links since a non-speculative request. 

This depth element provides a means for assigning a priority to 
each memory request, with this priority being used during memory 
bus arbitration. To limit speculation, prefetch requests with a depth 
greater than a defined depth threshold are dropped, and not sent to 
the memory system. An example of this recurrence mechanism is 
shown in the first part (left side) of Figure 3. 

3.4.2 Feedback-Directed Prefetch Chain Reinforce- 
ment  

A prefetch chain defines a recursive path that is being traversed 
by the content prefetcher. Any termination of a prefetch chain 
can lead to lost prefetch opportunities, as no explicit history of the 
prefetch chain is stored. To re-establish a prefetch chain, a cache 
miss must occur along the traversal path; the content prefetcher 
then evaluates the cache miss traffic and may once again establish 
the recursive prefetch chain. This is shown in Figure 4(a) where the 
base scheme results in a miss every four requests when the thresh- 
old depth has been set to 3. 

To avoid interruption in the prefetch chain, the content prefetcher 
includes a reinforcement mechanism that is based on the obser- 
vation that the chain itself is implicitly stored in the cache. Thus 
any demand hit on a prefetched cache line provides the content 
prefetcher with the needed feedback required to sustain a prefetch 
chain. To determine the hit on a prefetched cache line, a very small 
amount of space is allocated (enough bits to encode the maximum 
allowed prefetch depth) in the cache line to maintain the depth of 
a reference. This amounts to less than a ½% space overhead when 
using two bits per cache line. 

Assigned request depth values are not fixed for the lifetime of the 
associated prefetch memory transaction or cache line. When any 
memory request hits in the cache, and has a request depth less than 
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(a) no reinforcement 

Rescan 

(b) with reinforcement 

Resean 

(c) controlling the number ofrescans 

~>~ MISS ( ~  lilT Depth Threshold - 3 

Figure 4: Re-establishing a terminated prefetch chain. 

the stored request depth in the matching cache line, it is assumed 
that the cache line is a member of an active prefetch chain. In such 
events, two actions are taken. First, the stored request depth of the 
prefetched cache line is updated (promoted) for having suppressed 
the cache miss of the fetch request. This is consistent with m/tin- 
taining the request depth as the number of links since a non spec- 
ulative request. The second action is that the cache line is scanned 
(using the previously described mechanism) in order to extend the 
prefetch chain. 

So while a prefetch chain may be temporarily halted due to a 
large request depth, the ability to both change a cache line's stored 
request depth and rescan the cache line allows the content prefetcher 
to re-establish a prefetch chain. This reinforcement mechanism is 
applied to the example of the previous section in Figure 3 (right 
side). This mechanism also allows a prefetch chain to be restarted 
due to a prefetch request being dropped due to other unspecified 
reasons (e.g. insufficient bus arbiter buffer space). 

Figure 4(b) graphically shows that a hit on the first prefetch re- 
quest causes a rescan of the next two lines, resulting in the prefetch 
of the fourth line. This outcome happens for every subsequent hit, 
resulting in no other misses than the original one. In short, the rein- 
forcement mechanism strives to keep the prefetching a number of 
depth threshold links ahead of the non speculative stream. This is 
a very effective way of controlling speculation without impairing 
potential performance improvement. The cost is a few more bits 
in each cache line as well as consuming second level cache cycles 
to re-establish prefetch chains. Figure 4(c) shows how to half the 
number ofrescans by re*establishing a chain only when the incom- 
ing depth is at least two fewer than the stored depth. 

3.4.3 Bandwidth Efficiency: Deeper versus Wider 
The recursive component of the content prefetcher can lead to 

highly speculative prefetches. One could take the stance that 

Figure 5: Flow diagram of the content prefetcher prediction 
mechanism. 

prefetches "deeper" in the pmfetch chain are more speculative than 
those earlier in the chain. The prefetcher needs to place a thresh- 
old on this depth to limit highly speculative prefetches. But the 
question then arises how deep is deep enough, and can the mem- 
ory bandwidth being allocated to highly speculative prefetches be 
better utilized elsewhere. 

Until now, there has been an implicit assumption that the size of 
a node instance within a linked data structure is correlated in some 
manner to the size of the cache lines - obviously no such correla- 
tion exists since allocated data structures may span multiple cache 
lines. This means that no guarantees can be made about the loca- 
tions of the data structure members within the cache lines. More 
specifically, the location of the pointer that leads to the next node 
instance of the reeursive data structure may be in the same or the 
next cache line. Without these next pointers, the prefetch opportu- 
nities provided the content prefetcher will be limited. 

To overcome this possible limitation, the content prefetcher has 
the ability to fetch wider references; that is, instead of specula- 
tively prefetching down longer, deeper prefetch chains, tile content 
prefetcher limits the depth ofprefetch chains, and will attempt to 
prefetch more cache blocks that may hold more of the node instance 
associated with a candidate address. This is easily done by simply 
issuing one or more prefetches for the cache lines sequentially fol- 
lowing the candidate address as "next-line" prefetches. The right 
combination of depth versus width is established in Section 4.2, 
where empirical measurements are used to choose a specific con- 
figuration. 

3.5 Content Prefeteher Micro-Architecture 
Figure 5 provides a flow diagram showing the operation of the 

content prefetcher prediction mechanism that makes use of the vir- 
tual address matching heuristic. As shown in the flow diagram, for 
an address-sized word to be validated as a candidate virtual address, 
it must meet the requirements defined by the compare, filter, and 
align bits, as well as the prefetch depth threshold. An examination 
of the flow diagram can lead to the conclusion that the scanning of a 
cache line for candidate addresses is strictly a sequential operation. 
This is not true, as such scanning is parallel by nature, with each 
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Figure 6: Microarchitecture with a memory system that in- 
cludes both a stride and content prefetcher. 

address-sized being evaluated concurrently. Such a design can (and 
does) lead to multiple prefetches being generated per cycle. 

The microarchitecture of the memory system that includes the 
on-chip content prefetcher is shown in Figure 6. The content data 
prefetcher is located at the second cache level of the memory hierar- 
chy, which is the lowest on-chip level. This provides the prefetcher 
with access to various components that can be used to provide 
feedback to the prefetcher. This memory system features a vir- 
tuaUy indexed L1 data cache and a physically indexed L2 uni- 
fied cache; meaning L1 cache misses require a virtual-to-physical 
address translation prior to accessing the L2 cache. The stride 
prefetcher monitors all the L1 cache miss traffic and issues requests 
to the L2 arbiter. A copy of all the L2 fill traffic is passed to the 
content prefetcher for evaluation, with candidate addresses issued 
to the L2 arbiter. 

Unlike many RISC processors, the processor model used in this 
study uses a hardware TLB "page-walk", which accesses page table 
structures in memory to fill TLB misses. All such "page-walk" 
traffic bypasses the prefetcher because some of the page tables are 
large tables of pointers to lower level page entries. Scanning such 
a cache line (which is full of virtual addresses) would lead to a 
combinational explosion of highly speculative prefetches. 

The L2 and bus arbiters maintain a strict, priority-based order- 
ing of requests. Demand requests are given the highest priority, 
while stride prefetcher requests are favored over content prefetcher 
requests because of their higher accuracy. 

Having the content prefetcher on-chip provides the prefetcher 
with ready access to all arbiters. Before any prefetch request is en- 
queued to the memory system, both L2 and bus arbiters are checked 
to see if a matching memory transaction is currently in-flight. If 

such a transaction is found, the prefetch request is dropped. In the 
event that a demand load encounters an in-flight prefetch memory 
transaction for the same cache line address, the prefetch request is 
promoted to the priority and depth of the demand request, thus pro- 
viding positive reinforcement (feedback) to the content prefetcher 
and insuring timely prefetches. 

The arbiters are a fixed size. If  in the process of trying to enqueue 
a request the arbiter is found to not have any available buffer space, 
the prefetch request is squashed. No attempt is made to store the 
request until buffer space becomes available in the arbiter. The be- 
havior of the arbiters is such that no demand request will be stalled 
due to lack of buffer space if  one or more prefetch requests cur- 
rently reside in the arbiter. In this event, the arbiter will dequeue 
a prefetch request in favor of the demand request. The prefetch 
request with the lowest priority is removed from the arbiter, with 
the demand request taking its place in the arbiter. At this point the 
prefetch request is dropped. 

A limit study was performed to measure the impact of prefetch- 
ing directly into the L2 cache. Bad prefetches were injected on 
every idle bus cycles to force evictions, resulting in cache pollu- 
tion. This study showed that a low accuracy prefetcher can lead 
to an average 3% performance reduction, and highlighted the need 
to maintain a reasonable accuracy with any prefetcher that directly 
fills into the cache. 

4. EVALUATION OF THE CONTENT PRE- 
FETCHER IMPLEMENTATION 

This section begins by describing the steps taken to tune the 
address prediction heuristics. The tuning takes an empirical ap- 
proach to adjusting the parameters specific to the address predic- 
tion mechanism. The results of the tuning are carried over to the 
cycle-accurate performance model, where they are used to demon- 
strate the performance improvements made possible when a content 
prefetcher is added to a memory system that already makes use of 
a stride prefetcher. 

4.1 Tuning The  Vi r tua l  Address Matching Pre-  
d ic tor  

Traditionally coverage and accuracy (shown in Equations 1 and 2) 
have been used to measure the goodness ofa  prefetch mechanism. 

prefetch hits  (1) 
coverage = misses wi thout  prefetching 

useful prefetches (2) 
accuracy = number  of prefetches generated 

The coverage and accuracy metrics are not sufficient metrics to use 
when making performance measurements, because they do not pro- 
vide any information about the timeliness or criticality of the load 
misses being masked by the prefetches. What coverage and accu- 
racy do provide is good feedback when tuning the prefetcher mech- 
anism. Therefore in the framework of the simulation environment 
used in this paper, they are being used strictly as a means of tuning 
the prefetch algorithm, and should not be construed as providing 
any true insight into the performance of the content pmfetcher. 

As described in Section 3, the virtual address matching predictor 
has four "knobs" that can be set to control the conditions placed 
on a candidate address. These are compare bits, filter bits, align 
bits, and scan step. Figure 7 summarizes the average impact of the 
number of compare and filter bits on both prefetch coverage and 
accuracy. In this figure the prefetch coverage and accuracy values 
have been adjusted by subtracting the content prefetches that would 
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Figure 7: A summary of various compare and filter bit combinations. The horizontal axis shows a specific configuration of compare 
and filter bits. For example 08.4 uses 8 "compare" bits and 4 "filter" bits within the 32-bit address space. 

have also been issued by the stride prefetcher. It is important to 
isolate the contribution made by the content prefetcher to properly 
determine a productive configuration. From the author's perspec- 
tive, the decision as to which compare-filter bit combination to use 
is the pair of 8 compare bits and 4 filter bits, as it provides the best 
coverage/accuracy tradeoff. 

This decrease in the coverage and increase in accuracy is ex- 
plained by examining the operation of the virtual address matching 
algorithm. A tradeoff is being made between accuracy and oov- 
erage as the number of compare bits is increased. By increasing 
the number of compare bits, a more stringent requirement is being 
placed on candidate addresses in that more of the upper address bits 
are required to match. This obviously has to have a positive influ- 
ence on the accuracy, as it should reduce the number of false pre- 
dictions that lead to useless prefetches. The decrease in coverage 
comes from the reduction in the size of the prefetchable range. As- 
suming 32-bit addresses, using 8 compare bits leads to a prefetch- 
able range of 16 MBytes (32 minus 8 bits equals 24 bits, which 
provides an address range of 0 to 16M). Now increasing the num- 
ber of compare bits to 9, effectively halves the prefetchable range, 
which manifests itself as a decrease in the prefetch coverage. 

Figure 8 summarizes the impact of varying the number of least- 
significant bits examined to drop candidate prefetches (alignment 
bits) and the number of bytes stepped after each evaluation (scan 
step), with the compare and filter bits fixed at 8 and 4, respectively. 

Increasing the number of alignment bits to two increases the ac- 
curacy as expected, but at the expense of the coverage. This indi- 
cates that not all compilers align the base address of each node; this 
is expected from compilers optimizing for data footprint. For this 
reason, predicting only on 2-byte alignment seems the best tradeoff 
between coverage and accuracy. Extending this logic to cache-line 
scanning, the step size should be set to two bytes as pointers are ex- 
pected to be at least 2-byte aligned. This is confirmed in Figure 8 
where the 2-byte step size appears as the best tradeoff. This leads 
to a final address prediction heuristic configuration of 8 compare 
bits, 4 filter bits, 1 align bit, and a scan step of 2-bytes. 

These bit combinations are subjective, and were chosen as such 
to carry out the experiments presented in the following sections. 
They are specific to the applications, compilers, and operating sys- 
tems utilized in this study. They would require further tuning if 
the content prefetcher was going to be used beyond the scope of 
this study. One area of research currently being investigated by the 
authors is adaptive (runtime) heuristics for adjusting these parame- 
ters. 

4.2 Performance Evaluation 

4.2.1 Speedup Comparison 
Pointer-intensive applications can and do exhibit regularity, thus 

the logical extension to the content prefetcher is the next line pre- 
fetcher. The only concern is the added UL2 cache pollution that 
will occur as a result of the increase in the number of prefetches 
being issued. A means of compensating for this increase in re- 
quests is to decrease the prefetch chain depth threshold, that is, 
to trade "deeper" for "wider". A second reason for trading depth 
bandwidth for width bandwidth is that the deeper (or longer) the 
prefetch chain, the more speculative are the prefetches. Next line 
prefetches are not as speculative, and are more time critical. Thus 
the reasoning is that prefetching wider will lead to better perfor- 
mance. 

Figure 9 provides the speedups for various combinations of pre- 
vious and next line prefetching relative to a content-based prefetch. 
Also varied is the allowed depth of the prefetch chains, and the use 
of prefetch path reinforcement. When examining Figure 9, a first 
observation is that on the average, prefetching the previous line pro- 
vides no added benefit. At the individual benchmark level, some of 
the benchmarks do respond positively to the previous line prefetch- 
ing, but when viewed collectively, the previous line prefetching is 
not beneficial. This becomes more evident when making the com- 
parison across constant bandwidth requirements. Issuing a single 
next line prefetch consumes the same memory bandwidth as is- 
suing a single previous line prefetch. Examining Figure 9 shows 
that when next line bandwidth is exchanged for previous line band- 
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width (one previous and one next, vs., two next), an overall drop in 
the performance is seen. In a sense this was expected. Recurrence 
pointers, the pointers that provide the internode connection (and the 
pointers that the content prefetcher tries to detect), generally point 
to the start address of the node, and so the previous cache line usu- 
ally has no association to the cache line pointed to by the candidate 
address identified by the content prefetcher. 

Of interest is why when no prefetch path reinforcement is uti- 
lized, using larger prefetch depths results in better performance. 
As stated previously, deeper chains can lead to more speculative 
prefetches, and the possibility of increased cache pollution. But 
from a performance perspective, prematurely terminating a prefetch 
chain can be costly. In order to re-establish an active prefetch chain, 
the memory system must take a demand load miss to allow the con- 
tent prefetcher to see the existing UL2 fill data, and affording it the 
opportunity to scan the data. So for active chains when no path re- 
inforcement is being used, a smaller allowed prefetch depth limits 
the benefits the content prefetcher can provide, forcing the prefetch 
and execution paths to converge. 

Recursive prefetch path reinforcement, discussed in Section 3, 
provides the needed feedback required to continue uninterrupted 
down an active prefetch path. Seeing that the recursive paths are 
indeed being actively pursued, such a feedback mechanism should 
prove beneficial. Further examination of Figure 9 shows that path 
reinforcement does indeed improve performance. The important 
observation to be made is the reversal of which prefetch depths 
provide the best performance. As discussed above, when no path 
reinforcement is being utilized, the larger the prefetch depth thresh- 
old, the better the performance. When reinforcement is turned on, 
the exact opposite is true, and the best performance is seen when 
the prefetch depth threshold is set at three. This occurs for sev- 
eral reasons. The first is path reinforcement overcomes the per- 
formance limitations that can occur when a prefetch chain is be- 
ing repeatedly started, terminated, and then subsequently restarted. 
With reinforcement, i fa  prefetch chain is active it should never be 
terminated, regardless of the prefetch depth threshold. Next, al- 
lowing longer prefetch chains allows more bad prefetches to enter 
the memory system, as non-used prefetch chains will be allowed 
to live longer until being terminated. Lastly, the rescan overhead 
of the path reinforcement mechanism can put a strain on the mem- 
ory system, specifically the UL2 cache. Allowing longer prefetch 
chains can result in a significant increase in the number of rescans, 
which can flood the bus arbiters and cache read ports, impacting 
the timeliness of the non-rescanned prefetches. 

Figure 9 shows that the best performance is seen when path 
reinforcement is turned on, the prefetch depth threshold is set at 
three, and the content prefetcher issues prefetch requests for both 
the predicted candidate address, and the next three cache lines fol- 
lowing the candidate address. In this configuration, the content 
prefetcher enhanced memory system provides a 12.6% speedup, 
which is a 1.3% improvement over not using path reinforcement. 
These speedups are relative to the stride prefetcher enhanced per- 
formance simulator. 

4.2.2 Contribution of TLB Prefetching 
One of the benefits of the virtual address matching heuristic is its 

ability to issue prefetches when a virtual-to-physical address trans- 
lation is not currently cached in the data TLB. The ability for the 
content prefetcher to issue page-walks not only leads to speculative 
prefetching of data values, but also leads to speculative prefetching 
of address translations. To measure the contribution of this TLB 
prefetching to the overall performance gains realized by the con- 
tent prefetcher, the size of the data TLB was repeatedly doubled, 

starting at 64 entries, until the size of the TLB was 1024 entries. 
By allowing more translations to be cached, and if a significant 
portion of the speedups were due to prefetches to the data TLB, a 
marked drop in the content prefetcher speedup would be observed. 

Repeatedly doubling the size of the cache from 64 entries to 1024 
entries results in a small decrease in the measured speedups, only 
dropping from 12.6% at 64 entries, to 12.3% at 1024 entries. Two 
conclusions can be drawn from the results. First, the speedups real- 
ized across the various TLB sizes remains approximately the same. 
This indicates that the TLB prefetching is a minor contributor to 
the overall performance gains being realized, and that the content 
prefetcher can not be simply replaced by a larger data TLB. A sec- 
ond conclusion is that the data TLB does not appear to be suffering 
from pollution caused by the speculative prefetching. I fTLB pol- 
lution was a factor, an increase in speedups would be be expected 
as the number of TLB entries was increased. 

4.2.3 Performance Summary 
Figure 10 provides a look at the timeliness of both the stride 

prefetcher and the content prefetcher. The bottom two stacked 
bar provides the percentage of full and partial prefetches for stride 
prefetcher. The next two sub-bars are the full and partial prefetches 
for the content prefetcher, with the top sub-bar being the percent- 
age of demand load misses that were not eliminated by the two 
prefetchers. A couple of important observations can be made. As- 
suming that the stride prefetcher is effective at masking the stride- 
based load misses, then those loads not masked by the stride pre- 
fetcher exhibit a more irregular pattern. Of these remaining non- 
stride based loads, the content prefetcher is fully eliminating 43% 
of the load misses, and is at least partially masking the load miss 
latency of 60% of these loads. Not all irregular loads are caused by 
pointer-following, and as such, the content prefetcher can not mask 
all the non-stride based load misses. 

In the on-chip versus off-chip prefetcher placement discussion 
(see Section 3), one of the drawbacks expressed for placing the 
content prefetcher on-chip was pointer-intensive applications of- 
ten have little work between pointer references. This makes it 
difficult to find the needed computational work to fully mask the 
prefetch latencies. Of the issued content prefetches that at least par- 
tially masked the memory use latency of a load request, 72% fully 
masked the load-use latency. This large percentage is an indication 
that the pointer-chasing path is not a limiting factor on the work- 
loads used in this study, and thus validates the decision to place the 
content prefetcher mechanism on-chip. Using the information con- 
cerning full versus partial latency masking, the content prefetcher 
is more timely than the stride-based prefetcher. 

Overlaid on Figure 10 is the individual speedups for each of the 
benchmarks. For clarity, the performance results given throughout 
the paper have been presented using the average. Here, the perfor- 
mance of individual benchmarks is shown. 

5. QUANTITATIVE COMPARISON 
The content prefetcher is not alone in its ability to issue prefetches 

in pointer-intensive applications. One prefetcher design that shares 
this ability is the Markov prefetcher [5]. The content prefetcher 
may have numerous advantages over the Markov prefetcher: it uses 
very little state and needs no training period. In this section, we 
compare the performance of the content-directed prefetcher to the 
Markov prefetcher using the same simulation framework:. 

The Markov prefetch mechanism used in this paper is based on 
the 1-history Markov model prefetcher implementation described 
in [5]. The prefetcher uses a State Transition Table (STAB) with 
a fan out of four, and models the transition probabilities using the 
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Table 3: The Markov prefetcher system configurations. 

least recently used (LRU) replacement algorithm. The stride and 
Markov prefetchers are accessed sequentially, with precedence be- 
ing given to the stride prefetcher. If  the stride prefetcher issues 
a prefetch request for the given memory reference, the Markov 
prefetcher will be blocked from issuing any prefetch requests. This 
is used to reduce the number of redundant prefetches, and provide 
more space in the prefetch request queue. 

Two different Markov configurations were examined (see Ta- 
ble 3). In the first configuration, the resources allocated to the UL2 
are divided equally between the Markov STAB and the UL2 cache. 
For the simulated processor configuration, the original 1-MByte 
UL2 is divided into a 512 KByte UL2 and a 512 KByte Markov 
STAB. In the second configuration, 1/8 of the resources allocated 
to the UL2 cache are re-allocated to the Markov STAB. The perfor- 
mance model uses an UL2 cache that is 8-way set associative, thus 
the 1/8 - 7/8 division of resources between the Markov STAB and 
UL2, respectively, is equivalent to allocating one way of each set 
within the UL2 cache to the Markov STAB. The resulting division 
of the original UL2 resources is an 896 KByte UL2 cache, and a 
128 KByte Markov STAB. Resource division was used to keep the 
overall system resources equal between the Markov prefetcher and 
the content prefetcher. 

The speedups provided the two memory system configurations 
are shown in Figure 11. These speedups are relative to the per- 
formance simulator utilizing a 1-MByte UL2 cache and enhanced 
with a stride prefetcher. 
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Figure 11: Comparison of the average speedup provided by the 
Markov and Content prefetchers. 

Also included in Figure 11 is a Markov configuration that uses 
a l-MByte UL2 cache, but allows the Markov STAB to grow un- 
bounded. This unbounded configuration, markov_big, provides an 
upper limit on the performance contributions the Markov prefetcher 
can provide. The first configurations, markov_l/8 and markov_l/2, 
clearly show that repartitioning the original UL2 resources between 
the UL2 and the Markov STAB is not a wise design decision. The 
Markov prefetcher is not capable of compensating for the perfor- 
mance loss induced by reducing the size of the UL2 cache. When 
allowing the Markov STAB to grow unbounded (markov_big), and 
thus allowing resources to be added as needed to the prefetcher 
mechanism, the maximum possible speedup provided by the Markov 
prefetcher is 4.5%. The content prefetcher provides nearly three 
times a higher speedup, at very little cost. 

The greater improvement of the content prefetcher can be ex- 
plained by both the operation of the content prefetcher, and by the 
simulation framework. The content prefetcher does not require 
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a training phase, which proves to be a distinct advantage. The 
Markov prefetcher must endure a training phase, and with large 
caches, such as the 1-MByte cache used in this study, there is still a 
strong likelihood, (modulo the application's working set size) that 
the data that trained the Markov prefetcher is still resident in the 
cache. So while the Markov prefetcher has seen the sequence pre- 
viously and is now in a state to issue prefetches for the memory 
sequence, it is not provided the opportunity to issue prefetches as 
the data is still resident in the cache. Thus the training phase re- 
quired by the Markov prefetcher severely restricts the prefetcher's 
performance potential. The content prefetcher does not suffer from 
these compulsory misses, and is capable of issuing prefetches while 
the Markov prefetcher is still training. Further, the length of the 
LITs may also impede the realized performance of the Markov 
prefetcher. Expecting the Markov prefetcher to both adequately 
train and provide a performance boost within the 30 million in- 
struction constraint of the LITs may be overly optimistic, but it is 
believed that longer runs will not drastically change these conclu- 
sions. 

6. CONCLUSIONS 
This paper has presented content-directed data prefetching, a 

hardware only technique for data prefetching, and simulated its 
performance over a number of significant applications. Also in- 
troduced is virtual address matching, an innovative heuristic that 
takes into account both memory alignment issues and bounding 
cases when dynamically discerning between virtual addresses and 
data or random values. 

This study has shown that a simple, effective, and realizable con- 
tent sensitive data prefetcher can be built as an on-chip compo- 
nent of the memory system. The design includesprefetch chaining, 
that takes advantage of the inherent recursive nature of linked data 
structures to allow the prefetcher to generate timely requests. The 
implementation was validated using a highly detailed and accurate 
simulator modeling a Pentium-like microarchitecture. Simulations 
were run on aggressively sized L2 caches, thus eliminating any 
false beriefits that may have been realized through the use of un- 
dersized caches. The average speedup for the set ofworldoads was 
12.6%, with the speedups of the individual workloads ranging from 
1.4% to 39.5%. These speedups are very significant in the context 
of realistic processor designs and the fact that this improvement is 
in addition to that gained by using a stride prefetcher. 

One of the major findings is that the content prefetcher enhanced 
memory system is capable of delivering timely prefetches to fully 
suppress demand load misses in all the applications used in this 
study. Previous research has indicated that this is a difficult task to 
achieve in the context of pointer-intensive applications. 
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