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Abstract 
Hardly predictable data addresses in man), irregular applica- 

tions have rendered prefetching ineffective. In many cases, the 
only accurate way to predict these addresses is to directly execute 
the code that generates them. As multithreaded architectures be- 
come increasingly popular, one attractive approach is to use idle 
threads on these machines to perform pre-execution--essentially a 
combined act of speculative address generation and prefetching-- 
to accelerate the main thread. In this paper, we propose such a 
pre-execution technique for simultaneous multithreading (SMT) 
processors. By using software to control pre-execution, we are 
able to handle some of  the most important access patterns that 
are ~'pically difficult to prefetch. Compared with existing work on 
pre-execution, our technique is significantly simpler to implement 
(e.g., no integration of  pre-execution results, no need of  shorten- 
ing programs for pre-execution, and no need of special hardware 
to copy register values upon thread spawns). Consequentl3; only 
minimal extensions to SMT machines are required to support our 
technique. Despite its simplicit),, our technique offers an average 
speedup of 24% in a set of  irregular applications, which is a 19% 
speedup over state-of-the-art software-controlled prefetching. 

1. Introduction 
Multithreading [1,32] and prefetching [8, 20, 22] are two major 

techniques for tolerating ever-increasing memory latency. Multi- 
threading tolerates latency by executing instructions from another 
concurrent thread when the running thread encounters a cache mis- 
s. In contrast, prefetching tolerates latency by anticipating what 
data is needed and moving it to the cache ahead of time. Com- 
paring multithreading against prefetching, the main advantage of 
multithreading is that unlike prefetching, it does not need to pre- 
dict data addresses in advance which can be a serious challenge 
in codes with irregular access patterns [20, 26]. Prefetching, how- 
ever, has a significant advantage that it can improve single-thread 
performance, unlike multithreading which requires multiple con- 
current threads. In this paper, we propose a technique which ex- 
ploits each approach's own advantages to complement the other. 
More specifically, our technique accelerates single threads run- 
ning on a multithreaded processor by spawning helper threads to 
perform pre-execution, a generalized form of prefetching which 
also automatically generates data addresses, on behalf of the main 
thread. 

Pre-execution is generally referred to as the approach that tol- 
erates long-latency operations by initiating them early and spec- 
ulatively. There are a number of ways to apply pre-execution, 
including prefetching data and/or instructions [12, 26], pre- 

computing branch outcomes [15], and pre-computing general exe- 
cution results [28, 31]. For our purpose, pre-execution is main- 
ly used as a vehicle for speculatively generating data address- 
es and prefetching--the ultimate computational results are sim- 
ply ignored. Moreover, unlike several recent pre-execution tech- 
niques [4, 5, 9, 26, 28, 31,36] which pre-execute a shortened ver- 
sion of the program, our technique simply works on the original 
program and hence requires no mechanism to trim the program. 
In essence, our technique tolerates latency by exploiting a new di- 
mension of pre-execution--running ahead multiple data streams 
simultaneously. 

Similar to prefetcfiing, pre-execution can be controlled either 
by hardware or software. Hardware-based schemes typically look 
for particular events (e.g., cache misses) to trigger pre-execution, 
and software schemes rely on the programmer or the compiler to 
insert explicit instructions for controlling pre-execution. While the 
hardware-based approach does not pose any instruction overhead, 
the software-based approach has the major advantage of being able 
to exploit application-specific knowledge about future access pat- 
terns. Since we are most interested in applications whose cache 
misses are caused by irregular data accesses, our focus in this s- 
tudy is on a software-controlled pre-execution mechanism. 

Among previously proposed multithreaded architectures, a si- 
multaneous multithreading processor (SMT) [32] is chosen as the 
platform for this study. An SMT machine allows multiple inde- 
pendent threads to execute simultaneously (i.e. in the same cycle) 
in different functional units. For example, the Alpha 21464 [13] 
will be an SMT machine with four threads that can issue up to 
eight instructions per cycle from one or more threads. Although 
pre-execution could be applied to other multithreaded architec- 
tures as well, the SMT architecture does offer a unique advantage 
that resource sharing between the main thread and pre-execution 
threads can be promptly adjusted to favor the ones that would in- 
crease overall performance. For instance, if the main thread has 
been stalled for cache misses in recent cycles, execution resources 
would be given up from the main thread to pre-execution threads, 
thereby allowing them to tolerate more misses. 

1.1. Objectives of This Study 
This paper makes the lbllowing contributions. First, we in- 

vestigate how pre-execution can be exploited to generate address- 
es of irregular data accesses early. Through examining a collec- 
tion of benchmarks, we propose a number of software-controlled 
pre-execution schemes, each of which is designated for an im- 
portant class of access patterns. These schemes would be help- 
ful to programmers for writing memory-friendly programs us- 
ing pre-execution threads, and to the compiler for inserting pre- 
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Figure 1. Illustration of four applications of software-controlled pre-execution for tolerating memory latency. The main thread is 
darkly shaded while pre-execution threads are lightly shaded. 

execution automatically. Second, we discuss the hardware and 
software extensions required for an SMT processor to support pre- 
execution. Third, we quantitatively evaluate the performance of 
our pre-execution technique and compare it against the best exist- 
ing software-controlled prefetching schemes. Our results demon- 
strate that pre-execution significantly outperforms prefetching in a 
set of irregular applications, offering at least 30% speedups over 
the base case in over half of our applications. Finally, by explor- 
ing the design space of our technique through experimentation, we 
show that the performance benefits of our technique can be mostly 
realized with only very minimal extensions to SMT processors. 

2. Software-Controlled Pre-Execution 
We now discuss the basic concepts behind software-controlled 

pre-execution, followed by a number of applications of this mech- 
anism that we found in some commonly used benchmarks. 

2.1. Basic Concepts 
Software-controlled pre-execution allows the programmer or 

compiler to initiate helper threads to run ahead of the main thread 
into parts of the code that are likely to incur cache misses. Thus, 
the very first thing is to decide where to launch pre-execution in 
the program, based on the programmer's knowledge, cache miss 
profiling [23], or compiler locality analysis [24]. Once this deci- 
sion has been made, new instructions for spawning pre-execution 
threads are inserted at the right places in the program. Each thread- 
spawning instruction requests for an idle hardware context to pre- 
execute the code sequence starting at a given PC. If there is no 
hardware context available, the pre-execution request will simply 
be dropped. Otherwise, a pre-execution thread, say T,  will be suc- 
cessfully spawned with its initial register state copied from that of 
the parent thread. After this copying is done, T will start running 

at the given PC in a so-called pre-execution mode. Instructions 
are executed as normal under this mode except that (i) all excep- 
tions generated are ignored and (ii) stores are not committed into 
the cache and memory so that speculative actions that happened 
during pre-execution will not affect the correctness of the main 
execution. Finally, T will stop either at a pre-determined PC or 
when a sufficient number of instructions have been pre-executed. 
At this point, T will free its hardware context and the results held 
in T ' s  registers are simply discarded (i.e. they will not be integrat- 
ed back to the main execution). Further details of this mechanism 
will be given later in Section 3. 

2.2. A p p l i c a t i o n s  o f  P r e - E x e c u t i o n  
To study how software-controlled pre-execution can be em- 

ployed to generate data addresses and prefetch well ahead of the 
main execution, we examine a set of applications drawn from 
four common benchmark suites (SPEC2000 [16], SPEC95 [10], 
SPLASH-2 [34], and Olden [25]). A large number of cache miss- 
es in these applications are due to relatively irregular access pat- 
terns involving pointers, hash tables, indirect array references, or 
a mix of them, which are typically difficult for prefetching to han- 
dle. We categorize these access patterns and suggest pre-execution 
schemes for them. In the rest of this section, we describe these 
schemes using our benchmarks as examples. 

2.2.1. Pre-Executing Multiple Pointer Chains 
A well-known challenge in prefetching pointer-based codes 

is the pointer-chasing problem [20] which depicts the situation 
where the address of the next node we want to prefetch is not 
known until we finish with the current load. To tackle this prob- 
lem, prefetching techniques based on jump pointers [20, 27] have 
been proposed to record the address of the node that we would like 
to prefetch at the current node according to past traversals. These 
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techniques would tolerate the latency of accessing a single chain 
if the traversal order is fairly static over time and the overhead of 
maintaining those jump pointers does not overwhelm the benefit. 

Recently, a technique called multi-chain prefetching [19] has 
been proposed to attack the pointer-chasing problem from a differ- 
ent angle. Instead of prefetching pointer chains one at a time, this 
technique prefetches multiple pointer chains that will be visited 
soon while traversing the current one, whereby the latency of ac- 
cessing future chains can be overlapped with that of accessing the 
current one. This technique has the advantage over jump-pointer 
based schemes that it neither relies on a repeating traversal order 
nor needs to maintain extra pointers. Of course, the key to the 
success of multi-chain prefetching is to have enough independent 
chains that can be traversed in parallel. Fortunately, such chains 
are not uncommon as we do discover them in three of our appli- 
cations: m c f ,  m s t ,  and em3d. Given these chains, we need some 
mechanism to visit them simultaneously. The original multi-chain 
prefetching [19] uses a special hardware prefetch engine for this 
purpose. In our case, this is a natural application of pre-execution: 
We simply spawn one helper thread to pre-execute each pointer 
chain. Thus, if there are a total of N hardware contexts supported 
by the machine, we can potentially pre-execute N - 1 chains in 
parallel (one thread is always used by the main execution). An il- 
lustration of this scheme can be found in Figure l(a). To make our 
discussion more concrete, let us look at two benchmarks in detail. 

The Spec2000 benchmark m c f  spends roughly half of its ex- 
ecution time in a nested loop which traverses a set of linked list- 
s. An abstract version of this loop is shown in Figure 2(a), in 
which the for-loop iterates over the lists and the while-loop vis- 
its the elements of each list. As we observe from the figure, the 
first node of each list is assigned by dereferencing the pointer 
f i r s t _ o f _ s p a r s e _ l i s t ,  whose value is in fact determined by 
a r c o u t ,  an induction variable of the for-loop. Therefore, even 
when we are still working on the current list, the first and the re- 
maining nodes on the next list can be loaded speculatively by pre- 
executing the next iteration of the for-loop. 

Figure 2(b) shows a version of the program with pre-execution 
code inserted (shown in boldface). END_FOR is simply a label 
to denote the place where a r c o u t  gets updated. The new in- 
struction PreExecute_Star t (END_FOR) initiates a pre-execution 
thread, say T,  starting at the PC represented by E N D _ F O R  Right 
after the pre-execution begins, T ' s  registers that hold the values 
of i and a r c o u t  will be updated. Then i ' s  value is compared 
against t r i p s  to see if we have reached the end of the for-loop. 
If so, thread T will exit the lor-loop and encounters a PreExe-  
cu te .S top0 ,  which will terminate the pre-execution and free up 
T for future use. Otherwise, T will continue pre-executing the 
body of the for-loop, and hence compute the first node of the next 
list automatically. Finally, after traversing the entire list through 
the while-loop, the pre-execution will be terminated by another 
PreExecute_Stop0. Notice that any PreExecu te~Sta r t0  instruc- 
tions encountered during pre-execution are simply ignored as we 
do not allow nested pre-execution in order to keep our design sim- 
ple. Similarly, PreExecute_Stop0 instructions cannot terminate 
the main thread either. 

In this application, we pre-execute only one list at a time be- 
cause there are a sufficient number of nodes on each list to pre- 
execute to hide the latency. However, that would not be the case if 

(a) Original Code 

register int i; 
register arc_t *arcout; 
for(; i<t r ips ;  ){ 

//loop over 'trips" lists 
if (arcout[ll . ident != FIXED) { 

first_of_sparse_list = arcout + 1 ; 
} 

arcin = (arc_t *)first_of-sparse-list 
--+tail-+mark; 

//traverse the list starting with 
//thefirst node just assigned 
while (arcin) { 

tail = arcin--+tail; 

arcin = (arc_t *)tail---+mark; 
} 
i++, arcout+=3; 

} 

(b) Code with Pre-Execution 

register int i; 
register arc_t *arcout; 
for(; i<tr ips;  ){ 

//loop over 'trips" lists 
if (arcout[l] . ident != FIXED) { 

first_of_sparse.list = arcout + l ; 
} 

//invoke a pre-execution starting 
/ /a t  E N D . F O R  
PreExecute_Star t (END_FOR);  
arcin = (arc_t *)first_of_sparse_list 

-+ ta i l -+mark ;  
//traverse the list starting with 
/ / the first node just assigned 
while (arcin) { 

tail = arcin--+tail; 

arcin = (arc_t *)tail--+mark; 
} 
//terminate this pre-execution after 
/ /  prefetching the entire list 
PreExecute-Stop0; 

END_FOR:  
/ / the target address of the pre- 
//execution 
i++, arcout+=3; 

} 
//terminate this pre-execution if we 
//have passed the end of the for-loop 
PreExeeute.StopO; 

Figure 2. Abstract versions of an important loop nest in the 
Spec2000 benchmark mc f .  Loads that incur many cache miss- 
es are underlined. 

the lists are short, as we would expect in chaining-based hash ta- 
bles. An example of this scenario is found in the application ms t ,  
as described below. 

The Olden benchmark r e s t  makes intensive use of hashing; 
an abstract version of the hashing-related code is shown in Fig- 
ure 3(a). The function HashLookup() is called by a list of 
hash tables to perform hashing on each of them. Chaining-based 
hashing, as the one performed by H a s h L o o k u p  ( ), is known to 
be challenging to prefetching [20, 27] for two reasons. First, the 
bucket to be hashed to should be fairly random if the hashing func- 
tion is well designed. Thus, predicting the bucket address itself 
tends to be difficult. Second, a good hashing function will al- 
so avoid collisions and therefore the average chain length at each 
bucket should be very small. Thus, jump-pointer based prefetch- 
ing techniques also would not be effective. 

Fortunately, pre-execution offers a unified solution to both 
problems. By computing N hashing functions at the same time 
(one through the main execution and N - 1  through pre-execution), 
we can potentially reduce memory stall by a factor of N.  Fig- 
ure 3(b) demonstrates such a case with N = 3. To facilitate 
pre-execution, the for-loop in function B l u e R u l e  ( ) is unrolled 
twice. Doing this allows the next two iterations of the for-loop to 
explicitly exist in the code so that they can be used as the targets 
of the two PreExecu te_Sta r t0 ' s .  Notice that both n e x t _ l  and 
n e x t _ 2  are assigned twice- -once  for the pre-execution and once 
fbr the main execution. We need this seemingly redundant compu- 
tation since the values of tmp-+next and tmp--}next-+next 
may be modified in between the pre-execution and the main exe- 
cution. Pre-execution is terminated either after H a s h L o o k u p  ( ) 
is done or after the for-loop exits. 
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(a) Original Code (b) Unrolled Code with 
Pre-Execution 

void BlueRule(Vertex ins, 
Vertex vlist) { 

for (tmp=vlist-+next;  trap; ) { 
Vertex next_l, next_2; 
next_l = tmp-+next ;  
f f  invoke a pre-execution 
//starting at U N R O L L _ I  
P reExeeu te .S t a r t (UNROLL_l ) ;  
i f(next_l)  { 

next_2 = next_l--+next: 
# invoke a pre-execution 
# starting at UNROLL_2  

void BlueRule(Vertex ins, PreExeeute_Star t (UNROLL_2) ;  
Vertex vlist) { } 

• . .  . . .  

for ( tmp=vlist-+next;  tmp; / / look up hash table tmp--+edgehash 
tmp=tmp-+next)  { dist = (int) HashLookup(ins,  

tmp-+edgehash) ;  
/ / look up hash table 
/ / tmp-+edgehash next_l = tmp-+next ;  
dist = (int) HashLookup(ins,  U N R O L L _ l : / / 1 s t  unrolled 

tmp-+edgehash) ;  if (next_l) { 
• . .  . . .  

}//end-fiJr / / look up hash table 
} //next_l ~ edgehash 

dist = (int) HashLookup(ins,  
void *HashLookup(unsigned key, next_l -+edgehash);  

Hash hash) { //terminate pre-execution 
• "" / /af ter hashing 
/ /hash to the jth bucket PreExeeute_Stop0; 
j = (hash-+mapfunc)(key);  
//assign the chain's head to ent } else 
ent = hash-+array[j] ;  break; 
if (ent) { next.2 = next_l -+next;  

U N R O L L _ 2 : / / 2 n d  unrolled 
for ( ;ent-+key!=key; ) { if (next_2) { 

/ /  search Jbr the key over ... 
/ /over  the list, which is / / look up hash table 
/1' very SHORT next-2 -+ edgehash 
ent = ent-+next;  dist = (int) HashLookup(ins,  
... next_2--+edgebash); 

} /,I terminate pre-execution 
} / /af ter hashing 

PreExecute.Stop(); 

break; 
tmp = next_2--+next; 

}//end-Jbr 
//terminate an)" pre-execution 
//passing the end of  the loop 
PreExeeute-Stop0; 

} 

void *HashLookup(unsigned key, 
Hash hash) { 

/////IDENTICAL TO ORIGINAL////  
} 

Figure 3. Abstract versions of the hashing component in ms t .  
Loads that incur many cache misses are underlined. 

2.2.2. Pre-Executing Loops Involving Difficult-to- 
Prefetch Array References 

Following the fashion that we pre-execute pointer chains, we 
can also pre-execute array references across multiple loop itera- 
tions (see Figure l(b) for an illustration). In particular, we are 
interested in cases that present challenges for the compiler to 
prefetch. Such cases typically include array references in loop- 
s with control-flow as well as references with strides that are not 
compile-time constants. An example of the latter case is indirect 
array references, which are quite common in scientific and engi- 

neering applications such as sparse-matrix algorithms and wind- 
tunnel simulations. Another common example is arrays of point- 
ers. To cope with these cases, the compiler usually needs to heuris- 
tically decide how to prefetch, perhaps based on profiling infor- 
mation [22]. In contrast, these cases do not present a problem to 
pre-execution as it directly runs the code and hence does not need 
to make any compile-time assumptions. 

Among our benchmarks, we find that indirect array references 
contribute significantly to the cache misses in the Spec2000 ap- 
plication equake. On the other hand, arrays of pointers cause 
many misses in r a y t r a c e ,  a Splash-2 application. We apply pre- 
execution to them and compare it against the best-known compiler 
algorithm for prefetching indirect references [22]. The results will 
be presented later in Section 5.2. 

2,2.3. Pre-Executing Multiple Procedure Calls 
So far, we have been focusing on pre-executing loop iterations 

(either for pointer dereferences or array references). A straight- 
forward extension is to pre-execute at the level of procedures, as 
pictured in Figure l(c). This would be particularly helpful in the 
case where a number of procedures are used to access different 
data structures (or different parts of a large structure). For ex- 
ample, in the classical binary-tree traversal through recursion, one 
could pre-execute the right subtree while the main execution is still 
working on the left one. 

We apply this rather simple pre-execution scheme to the 
Spec2000 benchmarks t w o l f .  Most cache misses occur in the 
procedure u c x x 2  ( ) ,  which invokes a few other procedures to 
process various data structures. The ways that these structures 
are accessed in each of these procedures are extremely compli- 
cated: They involve linked lists, arrays, multi-level pointer deref- 
erencing, and complex control flow. Thus, it is very challenging 
to add prefetches within these procedures. Fortunately, by pre- 
executing these procedures simultaneously, the latency of touching 
those complicated structures can be successfully hidden without 
caring much how they are actually accessed. The detailed results 
will be shown in Section 5.1. 

2.2.4. Pre-Executing Multiple Control-Flow Paths 
Our final pre-execution scheme targets the situation where the 

address of the next data reference (which is likely a cache miss) 
depends on which control-flow path we are going to take out of 
multiple possibilities. Instead of waiting until the correct path is 
known, we can pre-execute all possible paths and hence prefetch 
the data references on each of them (see the illustration in Fig- 
ure l(d)). Alter the correct path is determined, we can then can- 
cel all wrong-path pre-execution and only keep the one that is on 
the right path to allow it running ahead of the main execution. A 
similar idea of executing multiple paths at once [18, 33] has been 
exploited before to reduce the impact of branch misprediction. 

Let us illustrate this scheme using the Spec95 benchmark 
c o m p r e s s .  In this application, the function c o m p r e s s  ( ) reads 
a series of characters from the file being compressed. Each charac- 
ter read is applied a var3,ing hash function to form an index to the 
table h t a b ,  and most cache misses in this benchmark are caused 
by looking up h t a b .  When we look up h t a b  for the curren- 
t character, there are three possible outcomes: no match, a single 
match, or a collision which needs a secondary hash. The interest- 
ing point here is that the hash function that will be applied to the 
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Thread_I  D = PreExecute_Start(Start_PC, M a x J n s t s ) :  
Request for an idle context to start pre-execution at 
S t a r t _ P C  and stop when M a x J n s t s  instructions have 
been executed; T h r e a d _ I D  holds either the identity of 
the pre-execution thread or -1 if there is no idle context. 
This instruction has effect only if it is executed by the main 
thread. 

PreExecute~topO: The thread that executes this instruction 
will be self terminated if it is a pre-execution thread; no 
effect otherwise. 

PreExecute_Cancel (ThreadJD):  Terminate the pre- 
execution thread with T h r e a d J D .  This instruction has 
effect only if it is executed by the main thread. 

Figure 4. Proposed instruction set extensions to support pre- 
execution. (C syntax is used to improve readability.) 

next character in turn depends on the outcome of the current table 
lookup. Because of this dependency, prefetching has shown lit- 
tle success in this benchmark. Nevertheless, we could potentially 
pre-execute all the three paths that correspond to the three possi- 
ble outcomes before performing the current table lookup. One of 
these pre-executions would correctly pre-compute the next hash 
function and perform the next table lookup in advance, while the 
other two pre-executions will be eventually canceled after the ac- 
tual outcome of the current table lookup is known. 

In summary, pre-execution can be a powerful weapon to at- 
tack the latency problem. Its ability to automatically generate ad- 
dresses and prefetch, regardless of the complexity of the data ac- 
cess patterns and control flow, could allow it to overcome some 
of  the challenges faced by existing prefetching techniques. The 
pre-execution schemes we discuss in this section are by no means 
exhaustive but can handle some of the most important access pat- 
terns. Given that pre-execution is so appealing, we address the 
issues of implementing it in an SMT machine in the following 
section. 

3. Implementat ion  Issues 
We now discuss the support that we need from the instruc- 

tion set, the hardware, and the software to implement software- 
controlled pre-execution on an SMT machine. 

3.1. Extensions to the Instruction Set Architecture 
To exploit pre-execution, the machine must have some way to 

control pre-execution--i.e, specify when and where to start and 
terminate pre-execution. Rather than taking a purely hardware- 
based approach as done in some other studies [12, 31], we pro- 
pose extending the underlying instruction set architecture (ISA) 
by adding a few instructions which allow software to control pre- 
execution directly. It is interesting to note that this approach is 
analogous to software-controlledprefetching [21,22]. The advan- 
tages of this approach are its programmability and flexibility, in 
addition, we expect the software overhead to be low given today's 
wide-issue superscalar processors, which is generally quite true 
for software-controlled prefetching. 

Figure 4 shows our proposed ISA extensions, which consist of 
three new instructions with zero to three register operands each. 
PreExecute~tart spawns a pre-execution thread at a particu- 
lar PC and stops when certain number  of instructions have been 

executed in the pre-execution (Note: We have assumed a large 
M a z J n s t s  in the PreExecute_Star t  shown earlier in Figures 2 
and 3.) It will return the identity of the spawned thread or -1 if 
there is no context available. PreExecute_Stop explicitly termi- 
nates a thread itself if it is in the pre-execution mode while Pre- 
Execute_Cancel  terminates the pre-execution running on anoth- 
er thread. To simplify the design, only the main thread (i.e. not 
a pre-execution thread) is allowed to spawn and terminate a pre- 
execution thread. In other words, nested pre-executi0n is not sup- 
ported in the current design. Also note that the ISA can be further 
extended to have different favors of control over pre-execution. 
For example, one could imagine another PreExecute_Star t  in- 
struction with stopping conditions like maximum number of loads, 
maximum number of cache misses, etc. 

3.2. Inserting Pre-Execution into the Application 
Once we are provided with the extended instructions for con- 

trolling pre-execution, the next step is to insert them into the ap- 
plication. They can be inserted either by the original programmer 
while the program is being developed or by applying the compiler 
to existing programs. 

In the first approach, since the programmer is already famil- 
iar with the program, she/he can potentially insert pre-execution 
without explicitly performing the analysis that would be done by 
the compiler. To facilitate the insertion process, we can have an 
application programming interface (API) lbr manipulating pre- 
execution threads. In fact, a similar interlace called PThreads [6] 
has long been used to exploit parallelisn~ using threads. By provid- 
ing a new API (perhaps we can call it MThreads) or extending the 
existing PThreads to support pre-execution threads, programmers 
can use threads to address both the memory latency and parallelis- 
m problems. Also, the examples given in Section 2.2 would help 
programmers design their own pre-execution schemes. 

In the second approach, the compiler (with assistances from 
profiling or program annotations) is responsible for inserting pre- 
execution. It needs to perform the algorithm shown in the ap- 
pendix, which is designed in the light of existing prefetching al- 
gorithms [20, 22]. The first three steps constitute a Iocalio' anal- 
ysis phase which determines which references are likely to cause 
cache misses and could benefit from pre-execution. The remaining 
three steps work together as a scheduling phase which calculates 
the pre-execution distance and performs all necessary code trans- 
formations. 

3.3. Duplication of Register State 
When a pre-execution thread is spawned, its register state need- 

s to be initialized with that of the parent thread. Such register-state 
duplication is also needed in many other related techniques like 
threaded multi-path execution [33], speculative data-driven mul- 
tithreading [28], and thread-level data speculation [30], etc. For 
these techniques, the entire register state has to be copied as fast as 
possible. Consequently, special hardware mechanisms have been 
proposed to accomplish this task. In our case, although we can al- 
so make use of these mechanisms, we observe that software-based 
mechanisms may already be sufficient if the startup overhead is 
small relative to the runtime of the pre-execution thread. We now 
consider both hardware and software-based duplication in detail. 
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3.3.1. Hardware-Based Duplication 
A mechanism called mapping synchronization bus (MSB) has 

been proposed to copy register state across threads for threaded 
multi-path execution (TME) [33]. In this approach, it is actually 
the register map (instead of register values themselves) that get- 
s copied across threads. While the MSB correctly synchronizes 
the register maps prior to a thread spawn, there is one complica- 
tion afterward. Since a physical register can be shared by both 
threads, it is possible that one thread will free the register while it 
is still being used by the other thread. One solution is to commit 
no instructions in the pre-execution thread and hence it will never 
free any physical registers. Although this approach works well for 
TME, it may not be adequate in our case since this would limit the 
lifetime of our pre-execution threads (due to running out of phys- 
ical registers), which tends to be much longer than that of TME 
threads (because a pre-execution thread would spend the time to 
cover multiple cache misses while a TME thread is done once the 
branch is resolved). Another solution which better fits our need is 
using reference count. Here, we associate a reference counter to 
each physical register to count the number of threads that the regis- 
ter is in use. If a physical register becomes shared by an additional 
thread due to a thread spawn, its reference counter is increment- 
ed by one. This counter will be decremented when the physical 
register is freed by a thread. Eventually, the last thread that frees 
the register will return it to the pool of free physical registers for 
future use. 

3.3.2. Software-Based Duplication 
An alternative to employing special hardware is using software 

to perform the duplication. Essentially, we can write a small rou- 
tine which first saves the register values of one thread to memory 
and then retrieves them back from memory into the registers of 
the other thread. The obvious advantage of this approach is it- 
s simplicity--virtually no special hardware is required. On the 
other hand, its potential drawback is a longer thread-spawn la- 
tency. Fortunately, the following three observations imply that a 
software-based approach may be viable. 

First, the memory region for passing the register values is small 
(only 256 bytes for 32 64-bit logical registers of the main thread) 
relative to the cache size. In addition, it is frequently referenced in 
the part of the code that invokes pre-execution. Therefore, this re- 
gion should be found in the cache most of the time while it is being 
used. Second, since our pre-execution mechanism targets hiding 
miss latency, it can potentially tolerate a longer thread-spawn la- 
tency. For instance, if a pre-execution thread covers 10 L2 misses 
which take 100 cycles each, then adding 50 cycles for copying reg- 
ister values delays the pre-execution by only 5%. Third, in many 
cases, it is not necessarily to pass the entire register state. One 
generally useful heuristic is not to copy floating-point registers at 
all. In addition, software can decide to copy only the subset of 
registers that are relevant to data-address generation and the sur- 
rounding control flow. For example, for the pre-execution code 
of m c f  shown in Figure 2(b), only six registers (those holding i ,  
areout, trips, and first_of_sparse_list, plus the stack 
and global pointers) needed to be copied from the main thread to 
the pre-execution thread. 

To determine how fast the duplication needed to be done, we 
experimented with a wide range of thread-spawn latencies. It is 

Table 1. Simulation parameters. 
Pipeline Parameters 

Number of Hardware Contexts I 4 
Fetch/Decode/Issue/Commit Width I 8 
Instruction Queue 128 entries 
Functional Units 8 integer, 6 floating-point; 

latencies are based on 
the Alpha 21264 [17] 

Branch Predictor A McFarling-style choosing branch 
predictor like the one in 

the Alpha 21264 [17] 
Thread Prioritization Policy A modified ICOUNT scheme [32] 

which favors the main thread 

Memory Parameters 

Line Size 32 bytes 
l-Cache 32KB, 4-way set-associative 
D-Cache 32KB, 4-way set-associative 
Miss Handlers (MSHRs) 64 total for data and inst. 
Unified L2-Cache 1MB, 8-way set-associative 
Primary-to-Secondary Miss Latency 12 cycles (plus any delays 

due to contention) 
Primary-to-Memory Miss Latency 72 cycles (plus any delays 

due to contention) 
Primary-to-Secondary Bandwidth 32 bytes/cycle 
Secondary-to-Memory Bandwidth 8 bytes/cycle 

encouraging that performance of pre-execution is fairly insensi- 
tive to thread-spawn latency. Thus, we assumed a software-based 
thread-spawn latency (32 cycles) in our baseline experiments. The 
detailed results will be shown later in Section 5.3.2. 

3.4. Handling Speculative Results 
Due to the speculative nature of pre-execution, it can generate 

incorrect results. There are three ways that these results could 
affect the correctness of the main thread. We now consider how 
each of them can be handled: 

Register values: They are automatically taken care of by the 
underlying SMT architecture. Since each thread has its own set 
of logical registers, any incorrect computational results produced 
during pre-execution are only locally visible and cannot affect the 
main execution. 

Exceptions: We can simply ignore all exceptions such as in- 
valid load addresses, division by zero, etc. generated under the 
pre-execution mode. Thus, the main thread will not notice any 
additional exceptions. 

Stores: There are two possible approaches here. The first ap- 
proach is to simply discard all stores under the pre-execution mod- 
e. The second approach, which is what we assumed in our base- 
line machine, uses a scratchpad to buffer the effect of stores dur- 
ing pre-execution. Instead of writing into the cache and memory, 
a pre-executed store will write into the scratchpad. And a pre- 
executed load will look up data in both the cache and the scratch- 
pad. The main advantage of this approach is that pre-executed 
loads can observe the effect of earlier stores from the same thread, 
which may be important to generating future data addresses or 
maintaining the correct control flow. For instance, if a procedure 
with a pointer-type argument (e.g., the head of a linked list) is 
called during pre-execution, both the pointer value and the return 
address could be passed through the stack. Thus, it would be de- 
sirable to be able to read both values back from the stack in the 
procedure so that the correct data item can be fetched and the pro- 
cedure can eventually return to its caller as well. 
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Table 2. Application characteristics. Each application was simulated 100M instructions after skipping "lnsts Skipped" instructions. 

Description ]~ Source ~ Pre-ExecutionScheme ~ 
Compress Compresses and decompresses file in memory Spec95 [I 0] Reference Multiple control-flow paths 2591M 
Em3d Simulates the propagation of electromagnetic waves in a 3D object Olden [25] 2K nodes Multiple pointer chains 364M 
Equake Simulates the propagation of elastic waves in large, highly heterogeneous valleys Spec00 [16] Training Multiple array references 1066M 
Mcf Schedules single-depot vehicles in public mass transportation Spec00 Training Multiple pointer chains 3153M 
Mst Finds the minimum spanning tree of a graph Olden 2K nodes Multiple pointer chains 1364M 
Raytrace Ray-tracing program Splash-2 [34] Car Multiple array references 1680M 
Twolf Determines the placement and global connections for standard cells Spec00 Training Multiple procedure calls 406M 

3.5. Termination of Pre-Execution 
We have already discussed in Section 3.1 that the application 

itself can terminate pre-execution via PreExecute_Stop or PreEx- 
ecute_Cancel. In addition, there are a few system-enforced termi- 
nating conditions for preserving correctness or avoiding wasteful 
computation. 

To preserve correctness, a pre-execution thread must be termi- 
nated if its next PC is out of the acceptable range imposed by the 
operating system. Moreover, to make sure that a pre-execution 
thread will be eventually terminated, there is a default limit on 
the number of instructions that a pre-execution thread can execute. 
Once this limit is reached, the thread will be terminated anyway. 

To avoid wasteful computation, we have an option that enables 
the hardware to terminate a pre-execution thread if it is already 
caught up by the main thread. Accurate detection of when a pre- 
execution thread and the main thread meet (if it ever happens) 
is challenging since they can follow totally different control-flow 
paths. One heuristic is to have the hardware keep track of the s- 
tarting PC, say P ,  and the number of instructions pre-executed so 
far, say N,  for each pre-execution thread. If at some point the 
main thread has executed N instructions after passing P ,  then we 
assume that the main thread and the pre-execution thread meet. 
While this heuristic is not perfect, we find that it is simple to im- 
plement and yet quite useful in practice. 

4. Experimental  Framework  
To evaluate the performance benefits of software-controlled 

pre-execution, we modeled it in an SMT processor and applied 
it to a collection of irregular applications. We added our proposed 
ISA extensions to the underlying Alpha ISA by making use of a 
few unused opcodes. Since the compiler support for automatically 
inserting pre-execution is still under development, we inserted it 
manually in this study, following the algorithm shown in the ap- 
pendix. 

We performed detailed cycle-by-cycle simulations of our ap- 
plications on an out-of-order SMT processor. Our simulator called 
Asim [3] is newly developed for evaluating future Alpha systems. 
it models the rich details of the processor including the pipeline, 
register renaming, instruction queue, branch prediction, the mem- 
ory hierarchy (including tag, bank, and bus contention), and the 
additional SMT support (including per-thread PC's and return s- 
tacks, thread prioritization, etc). Table 1 shows the parameters 
used in our model for the bulk of our experiments. In addition, 
since Asim is entirely execution-driven, it can faithfully model the 
effects down any speculative paths (including both pre-execution 
paths and predicted paths). 

Our applications are shown in Table 2. To avoid lengthy simu- 
lations, we first identified a representative region of each applica- 
tion. We then skipped the simulation until that region was reached 

and ran the simulation for 100M instructions. Since extra instruc- 
tions were added to the pre-executed version of the application, 
special care was taken to ensure that it was the same 100M instruc- 
tions being simulated in the original and pre-executed versions. 1 
The applications were compiled using the standard Compaq C 
compiler version 6.1 with -02  optimizations under Tru64 Unix 
4.0. 

5. Experimental  Results  
We now present results from our simulation studies. We s- 

tart by evaluating the performance of software-controlled pre- 
execution. Next, we compare this with the best-known software 
prefetching techniques for individual applications. Finally, we ex- 
plore the performance impact of architectural support. 

5.1. Performance of Pre-Execution 
Figure 5 shows the results of our first set of experiments 

in which a thread-spawn latency of 32 cycles and a per-thread 
scratchpad of 64 entries were assumed. We will study the per- 
formance impact of these two parameters later in Section 5.3. 

Figure 5(a) shows the overall performance improvement on 
the main execution offered by pre-execution, where the two bars 
correspond to the cases without pre-execution (O) and with pre- 
execution (PX). These bars represent execution time normalized 
to the case without pre-execution, and they are broken down in- 
to four categories explaining what happened during all potential 
graduation slots. As we see in the figure, pre-execution offers 
speedups ranging from 5% to 56% in six out of the seven applica- 
tions. These improvements are the result of significant reduction 
in the total load-miss stall (i.e. sum of the top two sections in Fig- 
ure 5(a)), with four applications (em3d, equake, mst, and ray- 
t r a c e )  enjoying roughly 50% reduction. Turning our attention 
to the costs of pre-execution, there are two kinds of pre-execution 
overhead: (i) the resource sharing between the main execution and 
pre-execution, and (ii) the additional instructions for controlling 
pre-execution. Fortunately, Figure 5(a) shows that c o m p r e s s  
is the only case where pre-execution overhead more than offset 
the reduction in memory stalls; for the other six applications pre- 
execution overhead increases the sum of the bus), and other stall 
sections by at most 4%. 

Figure 5(b) tabulates a number  of statistics specific to pre- 
execution. The second column is the total number of pre-execution 
requests, and the third column shows how many of these requests 
were able to find idle hardware contexts. Overall, at least 60% of 
these requests were satisfied. They are further divided into three 

1We first marked some important program points in the region and 
counted how many times these markers were passed in the original ver- 
sion. We then simulated the same number of markers in the pre-executed 
version. 
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(b) Performance Details of Pre-Execution 
Pre-Execution 

Application Requests 

Compress 2972214 
Em3d 40000 
Equake 36470 
Mcf 8596 
Mst 390377 
Rayfrace I000000 
Twolf 68537 

Aclual Leading Pre-Executions 
Pre-Executions Number I Average LeadTime(cycles) 

2483355 403849 58 
40000 40000 1796 
30423 30423 2139 
6353 6100 2782 

378992 378560 578 
613929 613928 246 
55969 41852 680 

Lagging Pre-Executions 
Number I Average LagTime (cycles) 

699982 18 
0 0 
0 0 

253 I1 
429 9 

0 0 
0 0 

Wrong-Path 
Pre-Executions 

1379524 
0 
0 
0 
3 
1 

14117 
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Figure 5. Performance of software-controlled pre-execution ( 0  = original, P X  = pre-executed) 

categories. "Leading Pre-Executions" are those that actually led 
the main execution (by the amount shown under "Average Lead 
Time"). On the contrary, "Lagging Pre-Executions" are those that 
had not been started by the time that the main execution reached 
the starting PC of the pre-execution (the lagging amount is shown 
under "Average Lag Time"). Finally, the rest are "Wrong-Path 
Pre-Executions" which instead took a path different from the main 
execution. 

To understand the performance results in greater depth, we 
present two additional performance metrics. Figure 5(c) shows the 
number of load D-cache misses in the original and pre-execution 
cases, which are divided into three categories. A partial miss is a 
D-cache miss that combines with an outstanding miss to the same 
line, and therefore does not necessarily suffer the full miss latency. 
Afidl  miss, on the other hand, does not combine with any access 
and therefore suffers the full latency. A late pre-executed miss is 
a D-cache miss that combines with an outstanding miss generated 
by pre-execution (i.e. the pre-execution was launched too late). If 
pre-execution has perfect miss coverage, all of the full and partial 
misses would have been converted into hits (which do not appear 
in the figure) or at least into late pre-executed misses. We ob- 
serve from Figure 5(c) that, except in c o m p r e s s ,  pre-execution 
reduces the number of load misses in the main execution by 16% to 
53%. For c o m p r e s s ,  recall that pre-execution is overlapped with 
only a single lookup of h t a b  (refer back to Section 2.2.4 for the 
details). However, since most of these lookups are actually found 
in either the D-cache or L2-cache, there is insufficient time for 

pre-execution to compute the address for the next lookup. For oth- 
er applications, late pre-execution does not appear to be a problem 
as the late pre-executed misses section is generally small. Even 
for ms t ,  a case where existing prefetching techniques [20, 26, 27] 
are unable to prefetch early enough, only 9% of misses are pre- 
executed late. 

Figure 5(d) shows another useful performance metric: the 
amount of data traffic between the D-cache and the L2-cache. 
Each bar in Figure 5(d) is divided into three categories, explaining 
if a transfer is triggered by a normal reference (load+store; no- 
tice that the fidl misses but not partial misses in Figure 5(c) are 
counted in this category), or instead triggered by pre-execution. 
Pre-execution transfers are further classified as useful or useless, 
depending on whether the data fetched gets used by a load or s- 
tore in the main execution before it is displaced from the D-cache. 
Ideally, pre-execution will not increase memory traffic, since we 
expect the same data to be accessed in both the main execution 
and pre-execution. Nevertheless, Figure 5(d) shows that there are 
substantial increases in the traffic for both compress and mcf. 
The extra traffic in c o m p r e s s  is due to the fact that multiple path- 
s are being pre-executed--hence data fetched by the wrong paths 
tends to be useless. In mcf ,  the lists traversed in the while-loop 
shown in Figure 2(b) can be exceptionally long--wi th  over 1000 
nodes in some cases. Thus, nodes pre-executed early became use- 
less if they were displaced from the cache by the nodes that we 
accessed near the end of the current list. Fortunately, in the other 
five applications, the additional traffic generated by pre-execution 
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(a) Prefetching Schemes 

Prefetching 
Application Scheme 

Compress Greedy [20] 
Em3d Chain jumping [27] 
Equake Indirect [22] 
Mcf Chain jumping 
Mst Greedy 
Raytrace Indirecl 
Twolf Greedy 

(b) Execution Time Normalized to the Original Case 
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Figure 6. Performance comparison between pre-execution and prefetching (PF = prefetched, P X  = pre-executed). 
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Figure 7. Performance of pre-execution with different thread prioritization (X = adding X to the "ICOUNT" of each pre-execution 
thread; our baseline is 4*) .  Note that higher ICOUNT values mean lower priorities. Execution time is normalized to the original 
case. 

is only less than 7%. 

5.2. Per formance  Comparison  with Prefetching 

To investigate how well pre-execution performs relative 
to prefetching, we applied state-of-the-art software-controlled 
prefetching techniques to our applications. For the two appli- 
cations involving indirect array references ( e q u a k e )  and arrays 
of pointers ( r a y t r a c e ) ,  Mowry's extended algorithm [22] for 
prefetching these references was used. For the remaining five 
applications, we experimented with the greedy prefetching and 
jump-pointer  prefetching proposed by Luk and Mowry [20, 21] as 
well as the extensions of jump-pointer prefetching (full jumping, 
chain jumping, and root jumping) proposed by Roth and Sohi [271. 
In all cases, a wide range of prefetching distances (whenever ap- 
plicable) were tested, and the best performing one was chosen for 
the comparison. 

Figure 6(a) reports the best software-controlled prefetching 
techniques we found for individual applications, and Figure 6(b) 
shows their performance. We first notice that our prefetching re- 
suits are consistent with Roth and Sohi's [27] for em3d  and m s t  2, 
the two applications that are common to both studies. Compar- 

ing pre-execution against prefetching, Figure 6(b) shows that pre- 
execution outperforms prefetching in six applications. The most 
prominent case is m s t ,  where prefetching is ineffective due to 
hash-table accesses. On the other hand, prefetching performs as 
well as pre-execution in m c f  since the traversal order of its list 
nodes is repetitive enough to make chain-jumping prefetching ef- 
fective. The performance advantages of pre-execution observed in 
equake and raytrace originate from the improved miss cover- 
age. In contrast, although both pre-execution and prefetching have 

')For rest,  the best software-based jump-pointer prefetching technique 
found by Roth and Sohi was root jumping. But since greedy prefetching 
performs better than root jumping in this application, we instead use greedy 
prefetching. 

about the same miss coverage in em3d, prefetching incurs signif- 
icantly higher overhead for maintaining jump pointers. Finally, 
prefetching covers few misses in c o m p r e s s  and t w o l f .  Over- 
all, we have seen that software-controlled pre-execution can result 
in significant speedups over prefetching tbr applications contain- 
ing irregular data access patterns. 

5.3. Architectural  Support  
We now explore the impact of three key architectural issues on 

the performance of pre-execution. 

5.3.1. Thread Prior i t izat ion 

Execution resources are shared by the main execution and pre- 
execution. However, this sharing does not have to be fair-- in  fact, 
it is reasonable to allow the main execution to have a larger share s- 
ince it directly determines the overall perlbrmance. One simple yet 
effective way to prioritize threads is the ICOUNT scheme [32] pre- 
viously proposed for choosing which threads to fetch on SMT ma- 
chines. Under ICOUNT, each thread maintains a priority counter 
that counts the number of unissued instructions belonging to that 
thread, and fetch priority is given to the thread with the lowest 
counter value. By controlling instruction fetching this way, thread- 
s that issue instructions at faster rates will be given more execution 
resources across tile entire machine than the others. 

To give higher priority to the main thread, we bumped up the 
priority counter of each pre-execution thread by a positive con- 
stant. Note that larger counter values result in lower priorities. 
Figure 7 shows the performance of pre-execution with different 
constants added to the counters. Our baseline is the 4* cases while 
the 0 cases correspond to the original ICOUNT scheme. As we see 
in the figure, the sum of the bus 3 , and other stall components of ex- 
ecution time decreases with larger constants. This implies that our 
prioritization scheme does help allocate more execution resources 
to the main thread. However, as we bump up the counter by 8 or 
above, performance begins to drop in em3d,  e q u a k e ,  and r e s t  
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Figure 8. Performance of pre-execution with various thread-spawn latencies (X  -- X cycles; our baseline is 32") .  Part (a) shows the 
execution time. Part (b) shows the average number of original load misses eliminated per pre-execution. 

because pre-execution has too few resources to get its work done. 
Overall, we find that 4 is a fairly good choice here. 

5.3.2. Thread-Spawn Latency 

A key implementation issue of pre-execution is the thread- 
spawn latency, the amount of time required to copy the register 
state from one thread to another. We have already discussed in 
Section 3.3 a number of register-copying techniques which involve 
a tradeoff between hardware complexity and the thread-spawn la- 
tency. To determine how fast the copying needed to be done, we 
experimented with thread-spawn latencies ranging from 0 to 256 
cycles. The results are shown in Figure 8. First, we observe from 
Figure 8(a) that the performance of pre-execution is nearly insen- 
sitive to the thread-spawn latency in four applications. Although 
pre-execution does suffer from larger thread-spawn latencies in 
r e s t  and r a y t r a c e ,  they can still achieve speedups of 45% and 
18%, respectively, even with a latency as large as 128 cycles. For 
c o m p r e s s ,  increasing the spawn-latency lowers the chance of 
generating useless pre-execution and hence actually improves per- 
formance. To understand why pre-execution can tolerate such long 
thread-spawn latencies, we show in Figure 8(b) the average num- 
ber of original load D-cache misses (further classified into L2-hits 
and L2-misses) eliminated by each pre-execution. The relatively 
small number of misses eliminated per pre-execution in ms t and 
r a y t r a c e  explains why they are more affected by the thread- 
spawn latency. In contrast, the other four applications (except 
c o m p r e s s )  eliminate an average of at least 20 misses and can 
eliminate as many as 600. Thus, delaying a thread spawn by a few 
tens cycles would not significantly affect their performance. 

Overall, we see that a very fast register-copying mechanism 
is not required to exploit the benefits of pre-execution. In order 
to estimate how much time a software-based copying mechanis- 
m would take, we measured the amount of time needed to pass 
32 registers from one thread to another through memory using 
software. Our results indicate that it takes about 24 cycles on 
average. Therefore, we have assumed a software-based register- 
copying mechanism that takes 32 cycles in our baseline machine. 

5.3.3. Handling Pre-Executed Stores 
Our final set of experiments evaluate the impact of the policy 

for handling stores encountered during pre-execution. Recall from 
Section 3.4 that we can write these stores into a scratchpad or sim- 
ply discard them. Figure 9(a) shows how pre-execution perlbrms 
with three scratchpad sizes: 0, 64, and 128 entries. Surprising- 
ly, pre-execution works equally well with no scratchpad at all (i.e. 
the 0 cases). There are two possible reasons lot this. The first is 
that computational results that decide which addresses being ac- 
cessed in pre-execution (and their surrounding control flow) are 
mostly communicated through registers. The second possible rea- 
son is that the store queue of the underlying machine has already 
provided sufficient buffering (Note: The store queue is a common 
piece of hardware in out-of-order machines to hold stores before 
they commit. In contrast, the scratchpad is a special buffer added 
beyond the store queue to hold stores after they "commit" during 
pre-execution.) To find the true reason, we ran an experiment that 
discarded all pre-executed stores (i.e. they were not written into the 
store queue at all). The results are shown in Figure 9(b), which in- 
dicate that ignoring pre-executed stores does not hurt pertbrmance. 
This evidences that it is the pre-executed stores themselves that do 
not matter. This is good news since a scratchpad may not be nec- 
essary to support pre-execution. 

In summary, the experimental results in this section demon- 
strate that the additional hardware support for our pre-execution 
scheme can be very minimal: Register copying can be done in 
software and a scratchpad may not be necessary. Essentially, we 
only need the support for creating and terminating pre-execution 
threads as well as that for marking them as non-excepting. In ad- 
dition, we also show that our modified ICOUNT scheme is quite 
useful for adjusting the resource sharing between the main execu- 
tion and pre-execution. 

6. Related Work 
Dundas and Mudge [12] are among the first who suggested us- 

ing pre-execution to improve cache performance. In their scheme, 
the hardware pre-executes future instructions upon a cache miss 
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Figure 9. Performance of pre-execution under two different ways to handle pre-executed stores. In part (a), pre-executed stores 
wrote into a scratchpad; three sizes of the scratchpad are shown (X = X entries; our baseline is 64*) .  In part (b), all stores were 
discarded during pre-execution (P*  = stores preserved; O = stores discarded). 

in a single threaded machine. Compared to typical out-of-order 
machines, this scheme has the advantage that instructions that de- 
pend on the result of the cache miss can be pre-executed before the 
miss completes. However, it has two drawbacks. First, we must 
suffer from a cache miss before triggering pre-execution. Second 
and more seriously, such pre-execution would not be effective for 
pointer-chasing loads whose addresses actually depend on the val- 
ues returned from cache misses. 

The notion of using helper threads to accelerate the main ex- 
ecution was independently introduced in the form of simultane- 
ous subordinate microthreading (SSMT) [7] and assisted execu- 
tion [11]. In both schemes, helper threads do not directly run the 
program: Instead, they are designated to perform some specific 
algorithms such as stride prefetching and self-history branch pre- 
diction. In contrast, since our pre-execution mechanism actually 
runs the program itself, it is more capable of handling irregular 
data accesses. In addition, our mechanism is built on top of SMT 
machines and hence requires less additional hardware support than 
SSMT and assisted execution do. 

Recall that our scheme simply ignores the computational re- 
suits of pre-execution. More aggressive schemes that actually 
use the results of speculative threads have also been proposed. 
Examples of them are the multiscalar architecture [29], thread- 
level data-speculation (TLDS) [30], threaded multiple path execu- 
tion (TME) [33], dynamic multithreading (DMT) [2], slipstream 
processors [31], and speculative data-driven multithreading (D- 
DMT) [28]. Of course, being able to use the results of specula- 
tive threads is appealing. Nevertheless, by caring only data ad- 
dresses but not the final results of pre-execution, our scheme is 
substantially simpler to implement as we consider the following 
three aspects. First, our scheme requires no mechanism to in- 
tegrate the results of pre-execution back to the main execution. 
Hence, we do not need to verify (and possibly recover from) these 
speculative results. Second, our scheme can tolerate larger thread- 
spawn latencies. We have already shown in Section 5.3.2 that it 
is viable to copy register state using software, thereby eliminating 
the need of special hardware-based register-copying mechanism- 
s. Third, by relaxing our scheme from concerning the accuracy 
of pre-execution results, it has higher flexibility in deciding where 
and when to launch pre-execution in the program. 

Several researchers have investigated ways to pre-execute only 
a subset of instructions (as known as a slice) that lead to perfor- 
mance degradation such as cache misses and branch mispredic- 
tions. Zilles and Sohi [35] found that speculation techniques like 
memory dependency prediction and control independence can be 
used to significantly reduce the slice size. Recently, a collection 
of schemes [4, 5, 9, 15, 26, 28, 31,36] have been proposed to con- 
struct and pre-execute slices. They differ from ours in two major 

ways. First, our pre-execution strategies (i.e. those presented in 
Section 2.2) are designed based on a high-level understanding of 
data access patterns. Thus, our strategies may be easier for the 
programmer or compiler to apply. Second, a common theme of 
our strategies is to pre-execute multiple data streams simultane- 
ously while the other schemes focus on pre-executing a single da- 
ta stream/branch as quickly as possible. Nevertheless, we believe 
that our approach and theirs can be complementary, and we leave 
an integration of them as potential future work. 

7. Conclusions 
As multithreaded machines emerge into mainstream comput- 

ing, it is appealing to utilize idle threads on these machines to 
improve single-thread performance. In this paper, we have ex- 
amined such a technique: pre-execution. With the harnessing of 
software, pre-execution can accurately generate data addresses and 
fetch them in advance, regardless of their regularity. Experimental 
results demonstrate that our technique significantly outperform- 
s software-controlled prefetching, offering an average speedup of 
24% in a set of irregular applications. Another important finding 
is that the additional support required by SMT machines in order 
to enjoy these performance benefits is only minimal: mainly the 
mechanisms for launching and terminating pre-execution, and for 
making pre-execution non-excepting. Given these encouraging re- 
suits, we advocate a serious consideration of supporting software- 
controlled pre-execution in future SMT machines. 
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Appendix: Compiler Algorithm for Inserting 
Pre-Execution 
Phase h Locality Analysis 

Step 1: Locate  where  cache misses occur  in the program.  This  step can 
be accompl ished  through some low-overhead profil ing tools such as DCPI 
or through cache simulations.  

Step 2: Determine if  the misses identified in Step 1 are generated by 
access patterns that can potentially be pre-executed. For  the four important  
classes of  accesses  patterns we discussed in Section 2.2, they are all rec- 
ognizable by the compiler:  Previous prefetching work  has used compilers  
to recognize pointer-based data structures [20] and array (both affine and 
sparse) accesses [22]; control-f low analysis and cal l -graph analysis [24] 
can easily discover  multiple paths and procedure calls. 

Step 3: If Step 2 shows that pre-execution might  be beneficial, the com-  
piler has to determine whether  the pre-execution and actual execution will 
access the same data. This can be computed  through aliasing analysis,  
which typically gives three possible answers:  " 'yes", "no" ,  or "maybe" .  S- 
ince the overhead o f  pre-execution is relative low compared  to the cache 
miss penalty, the compiler  can aggressively per form pre-execution for both 
the "yes"  and " m a y b e "  cases. For  example,  for the m s t  code f ragment  
shown in Figure 3(b), the compiler  optimist ical ly assumes  that the value of  
t m p - + n e x ~  remains  the same dur ing the pre-execution and actual execu- 
tion and hence can pre-execute the next hash. 

Phase II: Scheduling 

Step 4: At this point, the compiler  must  decide how far ahead it need- 
s to pre-execute.  Ideally, we would like to pre-execute as far as possi-  
ble without  pollut ing the cache. However,  comput ing  the volume of  data 
brought  in by pre-execution is chal lenging due to non-compi le- t ime con- 
stants like unknown loop bounds,  the length o f  linked lists, etc. There 
are three possible approaches  here. The first approach  is to assume that 
pre-execution would access a small volume of  data with respect to the 
cache size. Under  this assumption,  the compile  will pre-execute as far 
as possible. This  is a reasonable assumpt ion for today ' s  machines since 
their caches (especially the L2 caches) are typically large enough to hold 
the data accessed within a few iterations of  the innermost  loop. The sec- 
ond approach  relies on the user to specify the expected values of  those 
non-compi le- t ime constants  through p rog ram annotations.  In the third ap- 
proach,  the compi ler  can generate two versions o f  pre-execution code: One 
corresponds to the "small  vo lume"  case and the other corresponds to the 
" large vo lume"  one. In addition, it also includes the code that will adap-  
t to one o f  these two versions at run-t ime.  A similar  approach  has been 
suggested [22] for prefetching loops with unknown bounds.  

Step 5: Perform code t ransformations to facilitate pre-execution. 
These t ransformat ions  are mainly  for generat ing explicit target address-  
es for pre-execution. An example  of  them is the loop unroll ing done in 
Figure 3(b). Moreover,  additional code may  be required to preserve the 
correctness  of  the main execution. For  instance, both n e x t _ l  and n e x -  
t_2 in Figure 3(b) have to be reloaded prior to the main execution. 

Step 6: Finally, insert P r e E x e c u t e _ S t a r t ' s  and P r e E x e c u t e _ S t o p ' s  in- 
to the program.  P r e E x e e u t e _ S t a r t ' s  are inserted at the earliest points in 
the p rog ram where  pre-execution can be launched with the correct  data ad- 
dresses.  P r e E x e c u t e _ S t o p ' s  are put at the expected ends of  pre-execution 
as well as all possible exits. 
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