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FHM: Fair and High-Performance Memory Scheduling

Memory Scheduling Issues Contributions & Results The Memory Scheduling Problem

All results are for a 16-core CMP running multi-programmed SPEC-2006 workload mixes. Memory subsystem has 2 channels with 4 banks per channel.
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Memory Scheduling: Translation of memory requests to 
sequence of DRAM commands 

 Sequencing of commands determined by memory controllers

 Have to obey many DRAM constraints  hard problem

 Typical memory scheduling algorithms are suboptimal

 Traditionally use simple fixed policies: FR-FCFS

 Optimized for single processor

 Cannot adapt to workload’s dynamic memory behavior

 Even more complex problem in a CMP environment

 Higher contention for memory resources & fairness issues

 Concurrently running threads destroy locality 

 Current state-of-the-art solutions still suboptimal

 Optimize either for performance or fairness 

 PAR-BS sacrifices performance for fairness

 ATLAS sacrifices fairness for performance Fairness
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…  Rank threads based on memory behavior

 Many metrics to choose from

- MPKI (Misses Per Kilo-Instructions)

- BLP (Bank-Level Parallelism)

- RBL (Row-Buffer Locality)

Validating DRAM Timing

4

 Static ranking unfair to lowest-ranked threads

 Cluster lowest-ranked threads & shuffle them

- Controls performance/fairness trade-off

 Simulator uses abstract memory timing model

- Validate against cycle-accurate DRAM model

 Memory mapping biased towards BLP or RBL

- Sub-Row Interleaving can expose both

 Naïve round-robin scheduling

 Very fair, BUT

 Limits overall system performance

 “Light” threads stuck behind memory-bound threads

 Need to be more clever about scheduling

 Compute-bound threads are latency-sensitive

Memory-bound threads saturate memory bandwidth 

 Schedule threads based on their ranking

 Rank threads according to their memory behavior

 MPKI Ranking

 Statically prioritize threads with lowest MPKI

 “Niceness” Ranking

 Incorporates low-level memory behavior

 Ranks threads based on the interference they cause

 Static Ranking improves system throughput, BUT

 can severely hurt fairness of lowest-priority threads

 Highest-intensity threads are scheduled very rarely

 Idea: Cluster threads into groups & treat separately

 Cluster threads into two groups & treat separately

 Low memory-intensity or compute-bound
– Statically prioritize for performance

 High memory-intensity or memory-bound
– Periodically shuffle to maintain fairness

 Thread clustering

 Statically partition based on workload knowledge

 Caution: Partition threshold can greatly affect results

 What if you don’t have any workload knowledge?

 Dynamically determine clustering threshold

 Clustering threshold affects performance and fairness 

 Try to find the knee of the curve

 Provides best performance fairness trade-off

 Dynamic clustering outperforms previous algorithms

 Guarantees sufficient bandwidth for “light” threads

 Shares remaining bandwidth among “heavy” threads

 Example workload with 10 memory-intensive threads

 FHM offers best performance & good fairness

 “Sub-Row Interleaving” memory mapping exposes both Bank-Level Parallelism and Row Buffer Locality

 Switches banks every 4 cache-blocks

 Improves Performance and Fairness

 For all memory scheduling algorithms

 Validated DRAM timing against cycle-accurate model
 DRAM: DDR2-667  /   CPU: 3.33 GHz
Within 10% of timing-accurate simulator DRAMSim

 Novel memory scheduling algorithm (FHM)

 Outperforms current state-of-the-art algorithms

 Considers thread BLP and RBL in addition to MPKI

 4% higher weighted speedup

 32% lower maximum slowdown

 Sub-Row Interleaving memory mapping scheme

 Exposes Bank-Level Parallelism & Row-Buffer Locality 

 Improves performance across all scheduling algorithms
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