
Memory
DIMMs

Memory
DIMMs

FHM: Fair and High-Performance Memory Scheduling

Memory Scheduling Issues Contributions & Results The Memory Scheduling Problem

All results are for a 16-core CMP running multi-programmed SPEC-2006 workload mixes. Memory subsystem has 2 channels with 4 banks per channel.

Yoongu Kim, Yu Cai
Department of Electrical and Computer Engineering

Carnegie Mellon University, Pittsburgh, PA 15213
{yoonguk, yucai}@ece.cmu.edu

Michael K. Papamichael
Department of Computer Science

Carnegie Mellon University, Pittsburgh, PA 15213
papamix@cs.cmu.edu

Clustering and Shuffling

Memory Request Ranking

1

Sub-Row Interleaving

Memory Request Ranking

Memory
Controller(s)

Shared Cache

Cache

Core
Cache

Core

Memory Scheduling: Translation of memory requests to
sequence of DRAM commands

 Sequencing of commands determined by memory controllers

 Have to obey many DRAM constraints hard problem

 Typical memory scheduling algorithms are suboptimal

 Traditionally use simple fixed policies: FR-FCFS

 Optimized for single processor

 Cannot adapt to workload’s dynamic memory behavior

 Even more complex problem in a CMP environment

 Higher contention for memory resources & fairness issues

 Concurrently running threads destroy locality

 Current state-of-the-art solutions still suboptimal

 Optimize either for performance or fairness

 PAR-BS sacrifices performance for fairness

 ATLAS sacrifices fairness for performance Fairness

P
e

rf
o

rm
an

ce

ATLAS

PAR-BS

Ideal

2

3

… Rank threads based on memory behavior

 Many metrics to choose from

- MPKI (Misses Per Kilo-Instructions)

- BLP (Bank-Level Parallelism)

- RBL (Row-Buffer Locality)

Validating DRAM Timing

4

 Static ranking unfair to lowest-ranked threads

 Cluster lowest-ranked threads & shuffle them

- Controls performance/fairness trade-off

 Simulator uses abstract memory timing model

- Validate against cycle-accurate DRAM model

 Memory mapping biased towards BLP or RBL

- Sub-Row Interleaving can expose both

 Naïve round-robin scheduling

 Very fair, BUT

 Limits overall system performance

 “Light” threads stuck behind memory-bound threads

 Need to be more clever about scheduling

 Compute-bound threads are latency-sensitive

Memory-bound threads saturate memory bandwidth

 Schedule threads based on their ranking

 Rank threads according to their memory behavior

 MPKI Ranking

 Statically prioritize threads with lowest MPKI

 “Niceness” Ranking

 Incorporates low-level memory behavior

 Ranks threads based on the interference they cause

 Static Ranking improves system throughput, BUT

 can severely hurt fairness of lowest-priority threads

 Highest-intensity threads are scheduled very rarely

 Idea: Cluster threads into groups & treat separately

 Cluster threads into two groups & treat separately

 Low memory-intensity or compute-bound
– Statically prioritize for performance

 High memory-intensity or memory-bound
– Periodically shuffle to maintain fairness

 Thread clustering

 Statically partition based on workload knowledge

 Caution: Partition threshold can greatly affect results

 What if you don’t have any workload knowledge?

 Dynamically determine clustering threshold

 Clustering threshold affects performance and fairness

 Try to find the knee of the curve

 Provides best performance fairness trade-off

 Dynamic clustering outperforms previous algorithms

 Guarantees sufficient bandwidth for “light” threads

 Shares remaining bandwidth among “heavy” threads

 Example workload with 10 memory-intensive threads

 FHM offers best performance & good fairness

 “Sub-Row Interleaving” memory mapping exposes both Bank-Level Parallelism and Row Buffer Locality

 Switches banks every 4 cache-blocks

 Improves Performance and Fairness

 For all memory scheduling algorithms

 Validated DRAM timing against cycle-accurate model
 DRAM: DDR2-667 / CPU: 3.33 GHz
Within 10% of timing-accurate simulator DRAMSim

 Novel memory scheduling algorithm (FHM)

 Outperforms current state-of-the-art algorithms

 Considers thread BLP and RBL in addition to MPKI

 4% higher weighted speedup

 32% lower maximum slowdown

 Sub-Row Interleaving memory mapping scheme

 Exposes Bank-Level Parallelism & Row-Buffer Locality

 Improves performance across all scheduling algorithms

1

Clustering and Shuffling2

Sub-Row Interleaving3 Validating DRAM Timing4

0

2

4

6

8

10

12

PAR-BS ATLAS FHM

W
e

ig
h

te
d

 S
p

e
e
d

u
p

M

a
x
im

u
m

 S
lo

w
d

o
w

n

Weighted Speedup -
WS (higher is better)

Maximum Slowdown -
MS (lower is better)

5.00

6.00

7.00

8.00

9.00

10.00

ATLAS Round-Robin

W
e

ig
h

te
d

 S
p

e
e
d

u
p

M

a
x
im

u
m

 S
lo

w
d

o
w

n

WS

MS

7.20

7.60

8.00

8.40

8.80

9.20

PAR-BS ATLAS Static MPKI

WS

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

PAR-BS ATLAS Static MPKI

MS

0.00

2.00

4.00

6.00

8.00

10.00

ATLAS Good Partition

WS

MS

0.00

5.00

10.00

15.00

20.00

ATLAS Bad Partition

WS

MS

7

8

9

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12 14 16 18

W
e
ig

h
te

d
 S

p
e
e

d
u

p

M
a
x
im

u
m

 S
lo

w
d

o
w

n

of threads in cluster

MS

WS

7.5

8

8.5

9

9.5

10

PAR-BS ATLAS FHM

WS WS w/ Sub-Row Interleaving

3

4

5

6

7

8

PAR-BS ATLAS NICE

MS MS w/ Sub-Row Interleaving

0

50

100

150

200

250

300

350

400

450

simulated actual simulated actual simulated actual

Row-buffer hit latency Row-buffer open latency Row-buffer miss latency

C
y
c

le
s

Fairness

P
e

rf
o

rm
an

ce

ATLAS

PAR-BS

FHM

Limits

Performance Fair
Good Performance

Very unfair

Very Unfair

Best Performance-

Fairness Trade-Off

0

1

2

3

4

5

6

7

8

9

10

PAR-BS ATLAS FHM

W
e
ig

h
te

d

S
p

e
e
d

u
p

M
a
x
im

u
m

 S
lo

w
d

o
w

n

WS

MS

FHM

