
Memory
DIMMs

Memory
DIMMs

FHM: Fair and High-Performance Memory Scheduling

Memory Scheduling Issues Contributions & Results The Memory Scheduling Problem

All results are for a 16-core CMP running multi-programmed SPEC-2006 workload mixes. Memory subsystem has 2 channels with 4 banks per channel.

Yoongu Kim, Yu Cai
Department of Electrical and Computer Engineering

Carnegie Mellon University, Pittsburgh, PA 15213
{yoonguk, yucai}@ece.cmu.edu

Michael K. Papamichael
Department of Computer Science

Carnegie Mellon University, Pittsburgh, PA 15213
papamix@cs.cmu.edu 

Clustering and Shuffling

Memory Request Ranking

1

Sub-Row Interleaving

Memory Request Ranking

Memory 
Controller(s)

Shared Cache

Cache

Core
Cache

Core

Memory Scheduling: Translation of memory requests to 
sequence of DRAM commands 

 Sequencing of commands determined by memory controllers

 Have to obey many DRAM constraints  hard problem

 Typical memory scheduling algorithms are suboptimal

 Traditionally use simple fixed policies: FR-FCFS

 Optimized for single processor

 Cannot adapt to workload’s dynamic memory behavior

 Even more complex problem in a CMP environment

 Higher contention for memory resources & fairness issues

 Concurrently running threads destroy locality 

 Current state-of-the-art solutions still suboptimal

 Optimize either for performance or fairness 

 PAR-BS sacrifices performance for fairness

 ATLAS sacrifices fairness for performance Fairness

P
e

rf
o

rm
an

ce

ATLAS

PAR-BS

Ideal

2

3

…  Rank threads based on memory behavior

 Many metrics to choose from

- MPKI (Misses Per Kilo-Instructions)

- BLP (Bank-Level Parallelism)

- RBL (Row-Buffer Locality)

Validating DRAM Timing

4

 Static ranking unfair to lowest-ranked threads

 Cluster lowest-ranked threads & shuffle them

- Controls performance/fairness trade-off

 Simulator uses abstract memory timing model

- Validate against cycle-accurate DRAM model

 Memory mapping biased towards BLP or RBL

- Sub-Row Interleaving can expose both

 Naïve round-robin scheduling

 Very fair, BUT

 Limits overall system performance

 “Light” threads stuck behind memory-bound threads

 Need to be more clever about scheduling

 Compute-bound threads are latency-sensitive

Memory-bound threads saturate memory bandwidth 

 Schedule threads based on their ranking

 Rank threads according to their memory behavior

 MPKI Ranking

 Statically prioritize threads with lowest MPKI

 “Niceness” Ranking

 Incorporates low-level memory behavior

 Ranks threads based on the interference they cause

 Static Ranking improves system throughput, BUT

 can severely hurt fairness of lowest-priority threads

 Highest-intensity threads are scheduled very rarely

 Idea: Cluster threads into groups & treat separately

 Cluster threads into two groups & treat separately

 Low memory-intensity or compute-bound
– Statically prioritize for performance

 High memory-intensity or memory-bound
– Periodically shuffle to maintain fairness

 Thread clustering

 Statically partition based on workload knowledge

 Caution: Partition threshold can greatly affect results

 What if you don’t have any workload knowledge?

 Dynamically determine clustering threshold

 Clustering threshold affects performance and fairness 

 Try to find the knee of the curve

 Provides best performance fairness trade-off

 Dynamic clustering outperforms previous algorithms

 Guarantees sufficient bandwidth for “light” threads

 Shares remaining bandwidth among “heavy” threads

 Example workload with 10 memory-intensive threads

 FHM offers best performance & good fairness

 “Sub-Row Interleaving” memory mapping exposes both Bank-Level Parallelism and Row Buffer Locality

 Switches banks every 4 cache-blocks

 Improves Performance and Fairness

 For all memory scheduling algorithms

 Validated DRAM timing against cycle-accurate model
 DRAM: DDR2-667  /   CPU: 3.33 GHz
Within 10% of timing-accurate simulator DRAMSim

 Novel memory scheduling algorithm (FHM)

 Outperforms current state-of-the-art algorithms

 Considers thread BLP and RBL in addition to MPKI

 4% higher weighted speedup

 32% lower maximum slowdown

 Sub-Row Interleaving memory mapping scheme

 Exposes Bank-Level Parallelism & Row-Buffer Locality 

 Improves performance across all scheduling algorithms

1

Clustering and Shuffling2

Sub-Row Interleaving3 Validating DRAM Timing4

0

2

4

6

8

10

12

PAR-BS ATLAS FHM

W
e

ig
h

te
d

 S
p

e
e
d

u
p

 
M

a
x
im

u
m

 S
lo

w
d

o
w

n

Weighted Speedup -
WS (higher is better)

Maximum Slowdown -
MS (lower is better)

5.00

6.00

7.00

8.00

9.00

10.00

ATLAS Round-Robin

W
e

ig
h

te
d

 S
p

e
e
d

u
p

 
M

a
x
im

u
m

 S
lo

w
d

o
w

n

WS

MS

7.20

7.60

8.00

8.40

8.80

9.20

PAR-BS ATLAS Static MPKI

WS

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

PAR-BS ATLAS Static MPKI

MS

0.00

2.00

4.00

6.00

8.00

10.00

ATLAS Good Partition

WS

MS

0.00

5.00

10.00

15.00

20.00

ATLAS Bad Partition

WS

MS

7

8

9

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12 14 16 18

W
e
ig

h
te

d
 S

p
e
e

d
u

p

M
a
x
im

u
m

 S
lo

w
d

o
w

n

# of threads in cluster

MS

WS

7.5

8

8.5

9

9.5

10

PAR-BS ATLAS FHM

WS WS w/ Sub-Row Interleaving

3

4

5

6

7

8

PAR-BS ATLAS NICE

MS MS w/ Sub-Row Interleaving

0

50

100

150

200

250

300

350

400

450

simulated actual simulated actual simulated actual

Row-buffer hit latency Row-buffer open latency Row-buffer miss latency

C
y
c

le
s

Fairness

P
e

rf
o

rm
an

ce

ATLAS

PAR-BS

FHM

Limits 

Performance Fair
Good Performance

Very unfair

Very Unfair

Best Performance-

Fairness Trade-Off

0

1

2

3

4

5

6

7

8

9

10

PAR-BS ATLAS FHM

W
e
ig

h
te

d
  

S
p

e
e
d

u
p

M
a
x
im

u
m

 S
lo

w
d

o
w

n

WS

MS

FHM


