15-740/18-740 Computer Architecture Fall 2010, O. Mutlu

Suggested (Sample) Research Project Topics (Fall 2010)
Many of the project topics discussed below are new ideas and are strictly confidential. Please do not distribute this list. If you make strides in any of these topics (and if you write it up well), you will likely be able to publish a good paper in a top computer architecture or systems conference.

While I provide this list for your benefit, I am open to any ideas you might have for a research project. In fact, you are encouraged to do a project that combines computer architecture with your area of expertise/strength (e.g., machine learning, theory, databases, etc). Please get in touch with me to discuss your proposal and ideas early if you are considering doing another architecture-related research project not listed here. I am open to project ideas in compilers, dynamic optimization, operating systems, parallel programming, circuits, and logic design as long as the ideas have interactions with computer architecture. I am also very open to entertaining ideas related to those you have been working on in your existing research areas, as long as you can show strong relationship to computer architecture.

Note that some of the below simply point you to papers that are interesting in my view. You can read/skim the paper, think about its shortcomings, and propose a solution/improvement that can be your project proposal.

1. Memory controller, OS memory manager, and compiler design for Phase Change Memory systems (or Emerging Memory Technologies in general): Handling writes, improving energy efficiency, and providing QoS to different applications. Much recent research has looked into designing main memory systems with Phase Change Memory technology. This technology has two important characteristics: 1) write latency is significantly higher than read latency, 2) writes cause a memory cell to wear out, and each cell has limited endurance. In the presence of these properties, how should a memory controller that controls PCM main memory be designed? In particular, how does such a controller perform prioritization between different threads/applications? Similarly, how does the OS perform mapping on a hybrid PCM/DRAM system? Or how do the applications take advantage of the hybrid PCM/DRAM system? For inspiration and starters, see:
E. Ipek, J. Condit, E. Nightingale, D. Burger, and T. Moscibroda. “Dynamically Replicated Memory: Building Reliable Systems from Nanoscale Resistive Memories”. ASPLOS’10: Intl. Conf. on Arch. Support for Prog. Languages and Operating Systems, Pittsburgh, PA, March 2010.

Moinuddin K. Qureshi, Michele Franceschini and Luis Lastras “Improving Read Performance of Phase Change Memories via Write Cancellation and Write Pausing”. (pdf, slides) Appears in the International Symposium on High Performance Computer Architecture (HPCA) 2010.
G. Dhiman, R. Ayoub, T. Simunic Rosing, "PDRAM: A hybrid PRAM DRAM main memory system," DAC 09.
Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger,
"Architecting Phase Change Memory as a Scalable DRAM Alternative"
Proceedings of the 36th International Symposium on Computer Architecture (ISCA), pages 2-13, Austin, TX, June 2009. Slides (pdf)
Moinuddin K. Qureshi, Viji Srinivasan and Jude A. Rivers . “Scalable High-Performance Main Memory System Using Phase-Change Memory Technology”. (pdf, slides). Appears in the International Symposium on Computer Architecture (ISCA) 2009.

2. Scalable, Simple High-Performance Single-Core Out-of-order Execution Processor Designs: One of the biggest challenges in the design of high performance heterogeneous processors is the design of a single high-performance core that can tolerate memory latency and exploit instruction-level parallelism very well. Unfortunately, simply scaling up the issue width and instruction window size of an out-of-order execution processor leads to a very complex and power hungry design. The goal in this project is to design a high-performance core that obtains the (partial) benefits of out-of-order execution without paying the complexity and power penalty associated with it. You are expected to develop and test ideas.
- What novel techniques can be applied to large OOO machines to deliver performance benefits, while reducing the power consumption? Examples of these solutions evaluated in the past include Run-Ahead and Continual Flow Pipelines.

- For example, you can devise techniques to tolerate memory latency better, or devise mechanisms that exploit control independence (i.e., not throw away work after a mispredicted branch) or multipath execution

- Alternatively, you can devise mechanisms that exploit “regular parallelism” in simple ways, resorting to complex out-of-order execution only when the parallelism in the program is detected to be irregular.

- Or, you can design structures that work “most of the time” and as a result fast and reasonably simple to design, but rely on very slow correction and re-execution structures that work all the time.

- Or, you can design two cores that cooperate together to execute a single instruction stream faster.

- In today’s multi-core CPUs, many resources are fully duplicated from core to core. The elimination of duplicated resources could deliver substantial area and power savings. A similar and equally important topic is how to best share resources within a single core between multiple threads. Are there low cost, scalable approaches to building SMT machines that can efficiently support high numbers of executing threads while preserving the ability to deliver high single-thread performance for single threads?

There are many possible ideas in here, and the development of simple yet very high-performance cores is an exciting research topic. Please talk with me if you are interested and are looking for ideas to explore, or if you have an idea that you would like to run by me for suitability to the project. The following papers are provided for inspiration.

Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-order Processors" Proceedings of the 9th International Symposium on High-Performance Computer Architecture (HPCA), pages 129-140, Anaheim, CA, February 2003. Slides (pdf)
Ronald D. Barnes, Shane Ryoo and Wen-mei W. Hwu. Flea-flicker" Multipass Pipelining: An Alternative to the High-Power Out-of-Order Offense [PDF] in Proceedings of 38th Annual IEEE/ACM International Symposium on Microarchitecture, November 2005.

Andrew Hilton, Santosh Nagarakatte and Amir Roth . “iCFP: Tolerating All-Level Cache Misses in In-Order Processors”. (pdf) 15th International Symposium on High-Performance Computer Architecture, Feb. 15-18, 2009.
Andrew Hilton and Amir Roth. Ginger: Control Independence Using Tag Rewriting. (pdf). 34th International Symposium on Computer Architecture, Jun. 9-13, 2007.

Srikanth T. Srinivasan, Ravi Rajwar, Haitham Akkary, Amit Gandhi, Michael Upton: “Continual flow pipelines”. ASPLOS 2004
Dan Gibson and David A. Wood. “Forwardflow: A Scalable Core for Power-Constrained CMPs”, International Symposium on Computer Architecture (ISCA), June 2010. Talk: ppt
Yasuko Watanabe, John D. Davis, and David A. Wood. “WiDGET: Wisconsin Decoupled Grid Execution Tiles”, International Symposium on Computer Architecture (ISCA), June 2010. Talk: pptx
Huiyang Zhou. “Dual-Core Execution: Building a Highly Scalable Single-Thread Instruction Window”. IEEE PACT 2005
Shailender Chaudhry, Robert Cypher, Magnus Ekman, Martin Karlsson, Anders Landin, Sherman Yip, Håkan Zeffer, Marc Tremblay (Sun Microsystems, Inc.). “Simultaneous Speculative Threading: A Novel Pipeline Architecture Implemented in Sun's ROCK Processor” (Presentation)

3. Improving Data Locality and Energy Efficiency in Multi-Core Systems using Core/Thread Migration. Shared distributed caches are a scalable way of designing many-core systems. Much research has investigated how to attract recently/frequently used data to the core/thread that needs it. However, there is an alternative option: attract the thread(s) that need the data to the cores close by the L2 banks that hold the data. The latter can provide significant improvements especially when many threads share a significant amount of data, by reducing the ping-ponging of shared data between different L2 cache banks or by reducing the replication of shared data. The goal of this project is to design realistic algorithms to accomplish this task. Talk to us for more information.
Devadas Srinivas, Lis Mieszko, Khan Omer. “Instruction Level Execution Migration” (link)
Krishna K. Rangan, Gu-Yeon Wei, David Brooks. “Thread motion: fine-grained power management for multi-core systems”. ISCA 2009

4. Memory system designs to accelerate pointer chasing. Pointer based data structures (linked lists, trees, hash tables) have been critical to the performance of many important applications. One issue with such structures is the latency of memory accesses. Researchers have proposed various methods of prefetching and caching mechanisms to overcome the latency of pointer chasing, yet the power efficiency of such techniques has not been examined. In this research, your goal is to design a comprehensive memory hierarchy to very efficiently chase pointers, while providing very high performance. Some of the ideas that are worth exploring could be:
- Designing an engine that sits very close to memory. Processor ships the template of the pointer chasing code (e.g., search for a key or pattern in a linked data structure) to the engine. The engine automatically searches for the key/pattern and returns the data to the processor. In essence, this is an engine that executes a remote function initiated by the processor on memory. It is better to have this close to the memory so as to not incur the round trip latency of a full memory hierarchy access at every single access to the linked data structure. What are the performance benefits and efficiency of such a structure? How is this structure designed? What is the interface between the processor and the structure?
- Power and energy analysis of different mechanisms to prefetch linked data structures.

- Caching only the used parts of a pointer data structure. How can you identify what is frequently used and what is not?
- Ask me for more topics and references…

Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"Techniques for Bandwidth-Efficient Prefetching of Linked Data Structures in Hybrid Prefetching Systems". HPCA 2009. Slides (ppt)
Yan Solihin, Josep Torrellas, Jaejin Lee. “Using a User-Level Memory Thread for Correlation Prefetching”. ISCA 2002.
Chia-Lin Yang, Alvin R. Lebeck. “Push vs. pull: data movement for linked data structures”. ICS 2000

Onur Mutlu, Hyesoon Kim, and Yale N. Patt, "Address-Value Delta (AVD) Prediction: Increasing the Effectiveness of Runahead Execution by Exploiting Regular Memory Allocation Patterns". MICRO 2005, Slides (ppt) Slides (pdf)
5. Cycle Accounting and Slowdown Estimation in Multi-Core Memory Systems and Interconnects. Understanding how much a thread slows down when it is run together with others compared to when it is run alone is important to account for how well the thread is performing in a shared-resource system. This cycle/slowdown accounting can be used for many purposes, e.g. enforcing slowdown fairness, performing prioritization based on which threads are “doing well,” billing customers based on actual resources used. However, this is a tough task. The goal of this project is to develop mechanisms that estimate the slowdown incurred by threads in multi-core memory systems, including interconnects and memory controllers. SMT processors with realistic memory systems could also be investigated for this project. Some references:
Stijn Eyerman and Lieven Eeckhout . “Per-Thread Cycle Accounting in SMT Processors”. Proceedings of ASPLOS 2009.
Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-Performance Fairness Substrate for Multi-Core Memory Systems", in ASPLOS 2010.

Onur Mutlu and Thomas Moscibroda, "Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors" In MICRO 2007, Slides (ppt)
6. Handling locks with hybrid methods: The impact of contended locks on performance can be reduced by accelerating the thread executing a critical section on a large or specialized core. On the other hand, non-contended locks can be speculatively parallelized by assuming the lock will not be required by another thread. Combining these two ideas has potential to improve parallel program performance at times of both lock contention and no contention. This project is devoted to the design of an architecture that can achieve the best of both worlds very efficiently.

M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshi, and Yale N. Patt,
"Accelerating Critical Section Execution with Asymmetric Multi-Core Architectures" In ASPLOS 2009, Slides (ppt)
Ravi Rajwar, James R. Goodman. “Speculative lock elision: enabling highly concurrent multithreaded execution”. In MICRO 2001.
7. Prioritization policies for multithreaded applications in shared multi-core resources (e.g. caches, on-chip interconnects, main memory). Several recent studies examined how to prioritize among different applications’ requests in on-chip network packet schedulers. However, the question of “How to prioritize between different threads of a single application?” remains. The purpose of this project is to answer this question in a rigorous manner and develop a comprehensive scheduling policy. The policy will be extended to handle multiple multithreaded applications. For inspiration, please see:
Abhishek Bhattacharjee, Margaret Martonosi. "Thread Criticality Predictors for Dynamic Performance, Power, and Resource Management in Chip Multiprocessors”, in ISCA 2009.(pdf)

Q. Cai, J. Gonzalez, R. Rakvic, G. Magklis, P. Chaparro and A. Gonzalez. “Meeting Points: Using Thread Criticality to Adapt Multicore Hardware to Parallel Regions”, in Parallel Architectures and Compilation Techniques (PACT-17), 2008. PDF
Reetuparna Das, Onur Mutlu, Thomas Moscibroda, and Chita R. Das,
"Application-Aware Prioritization Mechanisms for On-Chip Networks", In MICRO 2009. Slides (pptx)
8. Resource management in shared multi-core memory systems for multithreaded applications. Cache, NoC, memory controller, memory management algorithms in many-core systems mainly focused on multiple different applications. The purpose of this project is to design caching, NoC, and memory controller management algorithms that intelligently manage resources between different threads of the same application. The policy will be extended to handle multiple multithreaded applications. For inspiration, please see:
Abhishek Bhattacharjee, Margaret Martonosi. "Thread Criticality Predictors for Dynamic Performance, Power, and Resource Management in Chip Multiprocessors”, in ISCA 2009.(pdf)

Q. Cai, J. Gonzalez, R. Rakvic, G. Magklis, P. Chaparro and A. Gonzalez. “Meeting Points: Using Thread Criticality to Adapt Multicore Hardware to Parallel Regions”, in Parallel Architectures and Compilation Techniques (PACT-17), 2008. PDF
Moinuddin K. Qureshi and Yale N. Patt. Utility-Based Cache Partitioning: A Low-Overhead, High-Performance, Runtime Mechanism to Partition Shared Caches. In MICRO 2006 (pdf, slides).
9. Request prioritization in on-chip networks: prefetches, writebacks, coherence messages, load/store demands, multiple applications, multiple threads. While researchers have investigated how to prioritize requests from different applications in on-chip network packet schedulers, not much research has considered how to prioritize between different types of requests, e.g. prefetches, writebacks, coherence requests, load demand requests, store demand requests (while having multiple threads and multiple applications). The purpose of this project is to understand how a packet scheduler should prioritize between different types of requests and threads. For inspiration, take a look at the following papers:

Reetuparna Das, Onur Mutlu, Thomas Moscibroda, and Chita R. Das,
"Application-Aware Prioritization Mechanisms for On-Chip Networks" , In MICRO 2009. Slides (pptx)
Chang Joo Lee, Onur Mutlu, Veynu Narasiman, and Yale N. Patt, "Prefetch-Aware DRAM Controllers", In MICRO 2008. Slides (ppt)
10. Page migration/management algorithms for hybrid Phase Change Memory + DRAM Systems. If we have two types of memory (PCM, and DRAM), which have different read/write latencies, read/write energy, and wearout mechanisms, how should we dynamically manage virtual memory pages? Can we dynamically keep track of which pages benefit from being in one type of memory vs. the other? Based on this information, what is an algorithm that migrates pages from one type of memory to another? For example, pages that are written to frequently should probably be placed in DRAM instead of PCM. On the other hand, pages that are not latency-critical should likely be placed into PCM. What is a mechanism that achieves a good balance to maximize system throughput or energy-delay product (or some other interesting metric)? For starters:
Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger, "Architecting Phase Change Memory as a Scalable DRAM Alternative". In ISCA 2009. Slides (pdf)
Moinuddin K. Qureshi, Viji Srinivasan and Jude A. Rivers, “Scalable High-Performance Main Memory System Using Phase-Change Memory Technology”. In ISCA 2009 (pdf, slides)

G. Dhiman, R. Ayoub, T. Simunic Rosing, "PDRAM: A hybrid PRAM DRAM main memory system", In DAC 2009.
11. Improving on-chip components using machine learning. Many on-chip components, such as memory controllers, caches, branch predictors, etc make policy decisions to optimize performance. The goal of this project is to take one such component and see if machine learning can be used to improve the policy decisions made by it. You will need to closely understand the component, and find an appropriate machine learning technique to apply to the component's decision making process. For an example and inspiration, see the following papers:
Engin Ipek, Onur Mutlu, José F. Martínez, Rich Caruana: “Self-Optimizing Memory Controllers: A Reinforcement Learning Approach”. ISCA 2008

Joel S. Emer, Nicholas C. Gloy: “A Language for Describing Predictors and Its Application to Automatic Synthesis”. ISCA 1997
12. 3D memory systems: memory controller and cache design. Talk to me. For starters, you can take a look at:
Gabriel H. Loh. “3D-Stacked Memory Architectures for Multi-Core Processors”. In ISCA 2008. (pdf)

Dong Hyuk Woo, Nak Hee Seong, Dean L. Lewis, and Hsien-Hsin S. Lee. "An Optimized 3D-Stacked Memory Architecture by Exploiting Excessive, High-Density TSV Bandwidth". In HPCA 2010. [pdf] [slides]
13. Redesigning DRAM memory: How can we fundamentally redesign memory systems to improve energy efficiency by orders of magnitude? The following papers can get you thinking with small steps:

Aniruddha Udipi, Naveen Muralimanohar, Niladrish Chatterjee, Rajeev Balasubramonian, Al Davis, Norm Jouppi, “Rethinking DRAM Design and Organization for Energy-Constrained Multi-Cores”, In ISCA 2010.
Kshitij Sudan, Niladrish Chatterjee, David Nellans, Manu Awasthi, Rajeev Balasubramonian, Al Davis, “Micro-Pages: Increasing DRAM Efficiency with Locality-Aware Data Placement”. In ASPLOS 2010.
Scott Beamer (UC Berkeley), Chen Sun (MIT), Yong-jin Kwon (UC Berkeley), Ajay Joshi (Boston University), Christopher Batten (Cornell University), Vladimir Stojanovic (MIT), Krste Asanović (UC Berkeley), “Re-Architecting DRAM Memory Systems with Monolithically Integrated Silicon Photonics”. In ISCA 2010.

Moinuddin K. Qureshi, Michele Franceschini, Luis Lastras, John Karidis (IBM Research), “Morphable Memory System: A Robust Architecture for Exploiting Multi-Level Phase Change Memories”. In ISCA 2010.

14. Approximate computing: application analysis and microarchitecture design: Processors are designed to produce correct results. However, not all software algorithms require absolute correctness. For example, when you are watching a video, you might not notice it if a pixel is rendered in a wrong color. Can we take advantage of this fact to relax the design constraints of processors such that we can simplify the design and/or improve performance? For example, can the processor ignore some cache misses and assume that a cache miss always returns some value (without checking the correctness of the returned value)? This would reduce the performance impact of some cache misses because the processor can simply supply a (possibly predicted) data value for that cache miss rather than fetching the needed data from main memory. Similarly, can the processor ignore some dependencies between store and load instructions? This could simplify the design of the load-store queue which ensures that memory dataflow is correctly maintained in a sequential program. As a final example, can the processor ignore some instructions, for example some branch mispredictions? It might be that executing the wrong path produces acceptable output and the processor could save time by not recovering from a branch misprediction? How and when are these aggressive optimizations possible to do?

In this project, you will examine applications and determine the feasibility of the aforementioned (and similar) ideas. The ideal tool for this project is perhaps the Pin dynamic binary instrumentation tool, where you can modify the data values of any memory instruction and examine the output of the program. The following papers could help you get started on this topic (pay attention to the methodology used in these papers – that will come in very handy in doing your research project):

Wang, Fertig, and Patel, “Y-Branches: When You Come to a Fork in the Road, Take It”. In PACT 2004. (pdf)
Li and Yeung, “Application-Level Correctness and its Impact on Fault Tolerance”. In HPCA 2007. (pdf)
 This project is very open ended. You are encouraged to stretch your imagination and think about what aspects of hardware or software can be simplified if you can avoid the “strict correctness” requirement. While I would prefer you to pick an optimization enabled by “relaxed correctness” and examine it in detail (i.e. when is this optimization possible, how should the code be written to make it possible, what are the benefits, what are the downsides, etc), you can examine multiple optimizations (e.g. ignoring both cache misses and memory dependencies) I am open to software versions of this project (i.e. what can you relax in the software if things do not need to be strictly correct) as well, if you can specify the project reasonably well.

15. Integrated design of multi-core shared resources: Modern shared resources (caches, interconnects, memory controllers, DRAM) are designed without consideration for each other. However, making each of these resources aware of each other can enable performance and power opportunities that are not possible by designing each resource without information about any other. Examples include designing cache replacement policies that are aware of interconnect latency or DRAM row buffer latency. Questions include: How can we simplify policies in both the cache and memory controller by making sure these two act in a coordinated manner with each other? How can we perform scheduling on the interconnect to make memory controller’s task easier in providing fairness and performance? Your task is to design such integrated and holistic policies. Take a look at the following papers for problems, inspirations, ideas:
Chang Joo Lee, Veynu Narasiman, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt, "DRAM-Aware Last-Level Cache Writeback: Reducing Write-Caused Interference in Memory Systems". HPS Technical Report, TR-HPS-2010-002, April 2010. (pdf)
George L. Yuan, Ali Bakhoda, Tor M. Aamodt. “Complexity effective memory access scheduling for many-core accelerator architectures”. In MICRO 2009.
Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt. "Fairness via Source Throttling: A Configurable and High-Performance Fairness Substrate for Multi-Core Memory Systems". In ASPLOS 2010. Slides (pdf)
16. On-chip Security (denial of service): Shared resources among threads/cores in a multi-core multi-threaded system presents a vulnerability: if the sharing of resources is left uncontrolled, one thread can deny service to another (or all others) and cause starvation or possibly in severe cases deadlock. In fact, malicious programs can be written to destroy the performance of other programs by exploiting the behavior of controllers controlling access to shared resources. Previous research demonstrated this problem in shared memory controllers (see Moscibroda and Mutlu, USENIX Security 2007), trace caches shared by multiple threads in SMT processors (see Grunwald and Ghiasi, MICRO 2002), and shared power management (see “Heat Stroke” paper by Hasan and Vijaykumar in HPCA 2005). The goal of this project is to demonstrate the possibility and degree of such denial of service attacks in other shared system resources (and hopefully suggest/design techniques to mitigate such attacks) in multi-core and multi-threaded processors. The shared resources you might want to examine include but are not limited to:

· On-chip interconnects (buses, 2D mesh designs, rings)

· Flash memories

· On-chip thermal/power controllers (e.g. thermal management mechanism of shared memory controllers)

· Shared floating-point units?

· Shared controller buffers on other chips (e.g. in a distributed shared memory system like AMD Athlon)

· Shared disk

Your goal is to 1) demonstrate the problem in a cycle-accurate simulator or (preferably) in a real system using microbenchmarks as well as real applications, 2) quantify the degree of the problem (how bad the denial of service can be), 3) describe how malicious applications can be designed, 4) suggest and possibly evaluate ways of solving the problem. In my opinion, examining on-chip interconnects is the most promising, but you might find other resources you are interested in. The following papers could get you started thinking in the right direction:

Moscibroda and Mutlu, “Memory Performance Attacks: Denial of Memory Service in Multi-Core Systems”. USENIX SECURITY 2007. (pdf)
Woo and Lee, “Analyzing Performance Vulnerability due to Resource

Denial­of­Service Attack on Chip Multiprocessors”. CMP-MSI 2007. (pdf)
Grunwald and Ghiasi, “Microarchitectural denial of service: insuring microarchitectural fairness”. In MICRO 2002.

Hasan et al., “Heat Stroke: Power-Density-Based Denial of Service in SMT”. In HPCA 2005. (pdf)
Lee, Ng, and Asanovic, “Globally-Synchronized Frames for Guaranteed Quality-of-Service in On-Chip Networks”. In ISCA 2008. (pdf)
17. Fault tolerance: Architectural techniques for efficiently recovering from detected hardware design bugs: Techniques have been proposed to detect at run-time hardware design bugs that were not caught during the testing of a microprocessor. These techniques all assume that once a bug is detected, some recovery technique can recover from the effects of the bug and place the system into a consistent state. However, specific mechanisms for accomplishing this recovery have not been researched or designed in detail. The goal of this project is to design techniques that enable efficient recovery from the unwanted effects of a processor design bug. The project has three components, any of which can be proposed as independent projects:
· As a first step, rigorously analyze and classify real design bugs to gain insights into their behavior. What makes a bug detectable? What makes it recoverable? What types of bugs should be detected and recovered from? What mechanisms are needed for different types of bugs? Initial analysis of simple logic bugs by Constantinides, Mutlu, and Austin [MICRO 2008] suggests mechanisms for different bug types (e.g., algorithmic vs. logic) should be very different. At the end of your analysis, you might end up with different classes of bugs based on their recoverability.
· Develop new logic that can efficiently recover from the effects of a detected bug. What are the recovery techniques for design bug types? For example, an algorithmic bug might almost always require good reconfiguration support, but some logic bugs can be avoided with simple re-execution.

· A realistic evaluation of both the coverage and performance impact of design bug detection/recovery mechanisms.

This project is a relatively low-level project which will very likely be enhanced by careful and detailed examination of the RTL source code of an open source processor. The experimental methodology can also be significantly enhanced with FPGA implementation of a simple open-source processor and injection of different types of design bugs (I recommend this only if you have previous experience in FPGA implementations – Michael Papamichael and Eric Chung can help you with this). The following papers can help you get started on this problem:

Marc de Kruijf, Shuou Nomura, and Karthikeyan Sankaralingam. “Relax: An Architectural Framework for Software Recovery of Hardware Faults”. In ISCA 2010.

Constantinides, Mutlu, and Austin, “Online Design Bug Detection: RTL Analysis, Flexible Mechanisms, and Evaluation”. In MICRO 2008.(pdf)
Wagner, Bertacco, and Austin, “Using Field-Repairable Control Logic to Correct Design Errors in Microprocessors” IEEE TCAD 2008. (link)
Sarangi, Tiwari, and Torrellas, “Phoenix: Detecting and Recovering from Permanent Processor Design Bugs with Programmable Hardware”. In MICRO 2006. (pdf)
Narayanasamy, Carneal, and Calder, “Patching Processor Design Errors”. In ICCD 2006. (pdf)
Man-Lap Li et al., “Understanding the propagation of hard errors to software and implications for resilient system design”, In ASPLOS 2008. (link)
18. Asymmetric multi-core designs: An asymmetric multi-core system consists of one or more powerful cores augmented with a large number of small cores. Large cores have been proposed to reduce serialization due to the serial portions of programs (think Amdahl’s law) and serialization due to contention in critical sections (see Suleman et al. ASPLOS 2009). The basic idea of the latter work is to execute a critical section in a large core such that the likelihood of another thread waiting for that critical section to complete is reduced. This work did not examine the following:

· When is it profitable to ship a critical section to a large core? Your job is to develop a cost-benefit model that decides whether it is beneficial to ship a critical section to a large core or it is better to execute it on a small core. The cost-benefit model can include dynamically-changing information about the characteristics of critical sections, contention for them, as well as speedup obtained by executing the critical section.

· When is it profitable to execute the “serial bottleneck” on the large core? This is a simpler problem because in the “serial bottleneck” there are no threads running. However, previous work always assumed that it is better to execute the serial bottleneck on the large core. Your task is to challenge this assumption and develop a model for deciding when the serial bottleneck should be shipped to the large core.

· The effect of running multiple applications on the same chip. If multiple applications are running concurrently, then how should the operating system or hardware allocate the large core? What are the decision mechanisms that are needed to optimize overall system throughput while respecting fairness? What happens if one application is executing in a critical section and another is executing its serial bottleneck? How does the hardware decide which application should use the large core? What are the required cost-benefit analyses or heuristics that can efficiently determine the allocation decision to be made by the OS/hardware?

· Very open ended: For what other purposes can a large core be used in an asymmetric multi-core system? If you have ideas and are ready for a more open-ended project, I encourage you to work on this problem. Talk with me if you would like some hints.
Understanding the following papers (especially the first one) would help a lot with this project:

Suleman et al., “Accelerating Critical Section Execution with Asymmetric Multi-Core Architectures”. In ASPLOS 2009. (pdf)
Hill and Marty, “Amdahl’s Law in the Multicore Era”. (pdf)
Suleman et al., “Asymmetric Chip Multiprocessors: Balancing Hardware Efficiency and Programmer Efficiency,” UT-Austin HPS Technical Report, 2007. (pdf)
M. Aater Suleman, Onur Mutlu, Jose A. Joao, Khubaib, and Yale N. Patt.
"Data Marshaling for Multi-core Architectures". In ISCA 2010. Slides (ppt)
19. Temporal and Spatial Streaming in Disks: Temporal and Spatial streaming have been used to accurately prefetch data in memory systems. The key idea in these approaches is to use the fetch of a stream of data blocks as an indicator that a larger stream will need to be fetched in the future. The goal of this project is to examine the feasibility of these approaches within the context of I/O systems and apply it to prefetching disk blocks rather than cache blocks (remember that the latency of a disk access is actually much larger than the latency of a memory access – hence the need for a memory hierarchy). You are expected to analyze and characterize the access behavior of real applications to the disk and develop temporal/spatial streaming (or similarly inspired) techniques to efficiently prefetch disk blocks into the buffer cache before they are needed. Actual disk traces from Windows can be used for this project (talk to me about this). The following papers are required reading if you are interested in this project:

Wenisch et al., “Temporal Streaming of Shared Memory”. In ISCA 2005, (pdf)
Somogyi et al., “Spatial Memory Streaming”. In ISCA 2006, (pdf)
Good characterization of memory streams:

Wenisch et al., “Temporal streams in commercial server applications”. In IISWC 2008, (pdf)
20. Fair/QoS-aware caching in the presence of prefetching: Previous work on fair multi-core caches did not take into account the existence of prefetch requests. They assumed every request was a demand request. This is a shortcoming because most real systems employ aggressive stream or stride-based prefetching which can affect the fairness in shared caches. Your task in this project is to understand the effect of memory prefetching on shared cache fairness. Based on this understanding, you will extend existing fair caching schemes (such as “Utility based cache partitioning, MICRO 2006” or “Fair cache sharing and partitioning, PACT 2004” to take into account prefetching. Alternatively you can devise a new caching scheme from the ground up that takes into account prefetch requests. Some reading that can help:
Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-Overhead, High-Performance, Runtime Mechanism to Partition Shared Caches”, in MICRO 2006, (pdf)
Kim, Chandra, and Solihin, “Fair Cache Sharing and Partitioning in a Chip Multiprocessor Architecture”. In PACT 2004, (pdf)
Chang Joo Lee, Onur Mutlu, Veynu Narasiman, and Yale N. Patt. "Prefetch-Aware DRAM Controllers". In MICRO 2008. Slides (ppt)
21. Improving memory fairness and memory-level parallelism via dynamic physical-to-bank (or virtual-to-physical) address mapping: In the main memory system, programs interfere with each other because the data they need are mapped to the same banks or same channels (see publications on fair memory controllers). One way to reduce these “collisions” among different programs is to detect them dynamically and change the bank mapping of frequently-colliding data elements by adjusting either 1) virtual-to-physical page mappings at the OS layer or 2) physical-to-bank mappings at the memory controller. The purpose of this project is to examine such strategies to reduce unfairness and inter-thread collisions in the memory system as well as to improve intra-thread bank-level parallelism. You will develop algorithms and mechanisms that detect collisions among different threads and dynamically change the mappings such that collisions (bank, channel, or bus) are minimized across the entire memory system. Note that changing a page mapping incurs overhead of data transfer so your mechanism will likely have to take into account this overhead cost of mapping adjustments. You will examine both OS-level and hardware-level (OS-transparent) techniques to perform page migration.
Similar techniques can be employed to improve the performance of a single thread. The memory controller can keep track of bank conflicts incurred by accesses from the same thread. If accesses are serialized too often because they go to the same bank, the memory controller can change the bank mapping of the colliding pages to ensure that accesses to those pages are serviced in parallel. A possibly separate but related project idea is to develop techniques to improve the bank-level parallelism of a single thread.

Manu Awasthi, David Nellans, Kshitij Sudan, Rajeev Balasubramonian, Al Davis. “Handling the Problems and Opportunities Posed by Multiple On-Chip Memory Controllers”. In PACT 2010.
22. Benchmark development (Pointer-intensive Applications): Computer architecture development and research critically depends on the quality of benchmarks. Dhrystone, SPEC, synthetic benchmarks, Livermore Loops, TPC benchmarks, etc have shaped the way in which architectures have evolved (and have been criticized as well). In this project, your task is to develop a modern, pointer-intensive (preferably parallel) benchmark suite that stresses the memory system. The benchmarks you will develop should be realistic and representative (as much as possible) of real workloads. You will characterize the applications, describe the way in which pointer-based data structures are actually used, and suggest techniques to improve their memory system performance based on this characterization. Previously developed pointer-intensive benchmark suite (Olden) mainly consists of very small kernels, which are somewhat outdated. A good new suite developed for pointer-intensive workloads with good characterization (especially of the memory system, data sharing, and branching behavior) and analysis could be made public and possibly used by a large number of researchers. I suggest you start studying the source code as well as publications related to that suite:

Rogers et al., “Supporting dynamic data structures on distributed memory machines”. ACM TOPLAS 1995.

Woo et al., “The SPLASH-2 Programs: Characterization and Methodological Considerations”. In ISCA 1995.

Luk and Mowry, “Compiler-based prefetching for recursive data structures”. In ASPLOS 1996. (pdf)
Mutlu, Kim, Patt, “Address-Value Delta (AVD) Prediction: A Hardware Technique for Efficiently Parallelizing Dependent Cache Misses”. IEEE TC 2006. (pdf)
Bienia et al., “The PARSEC Benchmark Suite: Characterization and Architectural Implications”. In PACT 2008. (pdf)
23. Benchmark development (Artificial Intelligence and Robotics Related Applications): See above (project 12) for motivation. AI and Robotics related programs have not been specifically analyzed in computer architecture or workload characterization research. Your task will be to analyze AI/robotics-related applications and develop/characterize a benchmark suite that represents the important AI/robotics applications in use today. You will also motivate the uses of such applications in real workloads (This motivates the development of your benchmark suite and argues why it is important). Characterization of the applications should be insightful: it should provide insights into the memory, branching, sharing, locking, scaling behavior of applications and provide hints into how to design a system that executes these applications well. Intel’s RMS (Recognition, Mining, and Synthesis) suite contains some AI-flavored kernels, so I would suggest you take a look at that suite. Other publications that would be of interest are:
Woo et al., “The SPLASH-2 Programs: Characterization and Methodological Considerations”. In ISCA 1995.
Bienia et al., “The PARSEC Benchmark Suite: Characterization and Architectural Implications”. In PACT 2008. (pdf)
24. Benchmark development: Your own research domain. Tell me more to get started.
25. Bufferless Interconnection Networks - Implementation: Bufferless routers are a promising way to interconnect cores and caches in an energy- and area-efficient manner. The goal of this project is to design a bufferless (or lightly buffered) pipelined router from scratch on an FPGA and demonstrate its performance, power, and QoS characteristics using traces fed into the implementation (or even real applications). You will design the router pipeline and deal with the timing issues arising from the lack of buffers in routing. The router will be aggressively clocked. Once the basic design is complete, you will extend it with enhancements to improve the performance of the bufferless router (for example, reduce the number of pipeline stages or add a small amount of buffering to improve bandwidth efficiency in the presence of congestion). You will implement both flit-level packet-switched and wormhole-based versions of bufferless routing (as well as any other versions you choose to develop as long as you justify their benefits). The end goal is to demonstrate the feasibility and characteristics of bufferless routing in a 2D-mesh topology. The following publications should get you started:

Thomas Moscibroda and Onur Mutlu, "A Case for Bufferless Routing in On-Chip Networks". In ISCA 2009.Slides (pptx)

Konstantinidou and Snyder, “The Chaos Router”. In IEEE TC 1994, (link)
26. Predictive DRAM row buffer management: Some memory access patterns benefit from keeping the row buffer open, others benefit from keeping it closed (or proactively opening rows). Design a prediction mechanism that more intelligently manages the DRAM row buffers compared to simply using a static (and rigid) open-row or closed-row policy. Your mechanism can proactively determine when a row should be closed; proactively predict which rows should be opened, etc. You can get inspiration from prefetching mechanisms to design your own row-buffer management policy. In your design, you should keep in mind the complex parallelism and locality issues present in the DRAM system. You will also need to examine interactions of your developed row buffer management policy with the scheduling policy of the memory controller (they will very likely not be independent of each other). Your management policy needs to take into account the existence of multiple cores sharing the DRAM banks; however, I would suggest starting with a single core. See memory controller related publications for inspiration and background:

Rixner et al. “Memory Access Scheduling”, ISCA 2000. (pdf)
27. Bufferless Interconnection Networks – Parallel Applications: Previous work on bufferless routing in on-chip networks did not consider parallel applications. Your task in this project is to evaluate the effectiveness of bufferless networks with parallel applications such as SPLASH-2, NAS, and PARSEC benchmarks. Based on your analyses, you will develop new bufferless (or lightly buffered) routing algorithms that can better accommodate the communication properties of shared-memory parallel applications. One important question you might need to answer is: How can a bufferless network efficiently support broadcast/multicast as well as invalidation/coherence traffic?

Thomas Moscibroda and Onur Mutlu, "A Case for Bufferless Routing in On-Chip Networks". In ISCA 2009.Slides (pptx)

28. Transactional memory - intelligent contention management: In transactional memory, if a data conflict is detected between two transactions, usually one of the transactions is aborted, and the other is allowed to continue. This is called contention management. Existing contention management policies usually do not take into account the importance and length of the thread that is executing the transaction. As a result they might make choices that are suboptimal in terms of system throughput as well as QoS. The goal of this project is to design a “thread-aware” contention management policy for transactional memory. The policy is supposed to maximize system thread throughput (how?) while ensuring non-starvation/fairness and being flexible enough to satisfy different QoS requirements (such as thread priorities). You will design both the software and hardware support required to support such a policy. See the following papers for related work:

Scherer and Scott, “Advanced Contention Management for Dynamic Software Transactional Memory”. In PODC 2005. (pdf)
Chafi et al. “A Scalable, Non-blocking Approach to Transactional Memory”. In HPCA 2007. (pdf)
29. Denial of Service via Wearout in Flash and Phase-Change Memory Systems: Flash memory and Phase Change Memory are promising non-volatile memories. Unfortunately, these memories have one shortcoming: the storage cell wears out with each write operation. As a result, over time, the ability of a storage cell to store digital data degrades and diminishes. To improve the lifetime of such memories, flash controller architects have developed techniques called “wear-leveling” which tries to equalize the number of write operations to each memory cell. Many wear-leveling techniques use a level of indirection (between the physical address and the actual bank address) to migrate blocks that have been written to too much. The goal of this project is to design malicious programs that can wear out Flash and PCM memories very quickly by subverting the defense mechanisms used by the wear-leveling techniques. You will study existing wear-leveling techniques and show in a real Flash-based system how to write a program that achieves this purpose. Then, you will develop better and more robust wear-leveling techniques that are not vulnerable to malicious programs that can quickly wearout memories. The problem becomes more severe if PCM memory is used as an alternative to DRAM memory. You will demonstrate the attacks and defenses you develop via simulation of a modern memory system employing PCM memory instead of DRAM as the main memory of the system. Talk to me if you are interested in this project.

Moinuddin K. Qureshi, John Karidis, Michele Franceschini, Viji Srinivasan, Luis Lastras and Bulent Abali. “Enhancing Lifetime and Security of Phase Change Memories via Start-Gap Wear Leveling”. In MICRO 2009 (pdf, slides)

30. Evaluating Unconventional Cores in future Single-Chip Heterogeneous Multicores. Unconventional architectures such as custom logic, FPGAs, and GPGPUs have the potential to achieve much greater scalability than conventional processors in a single-chip heterogeneous multicore. Recent work on modeling and measuring of so-called unconventional cores (U-cores) show significant promise but only focus on a few select applications. In similar spirit to their investigations, identify a new application that exhibit behaviors that weren't covered in their original study (e.g., complex memory access characteristics) and develop tuned implementations (or find existing benchmarks) targeting custom logic, FPGAs, GPGPUs, and multicores. For each implementation, measure the physical power and performance of the application and use their methodology and model to normalize the comparisons. Report on findings and conclusions. This work will require experience with RTL synthesis tools and multithreaded programming for Nvidia/ATI GPUs and Intel CPUs. All hardware (including power measurement harness) will be provided under supervision. Students interested in this project should discuss their ideas with the instructor and Eric Chung.
31. Speeding up serial execution using application-specific hardware. Much work has been done in speeding up the parallel part of applications. Techniques proposed span a wide range from software-only solutions to hardware-based designs. However, the end performance of an application is largely affected by the frequency and the size of its serial parts (i.e. Amdahl's Law). Executing serial sections of code on very aggressive Out-of-Order pipelines partially solves the problem, as the performance attained can be limited by the irregularity of the code or the design of the OoO core. Further increasing the OoO capabilities of the core (i.e. increase the issue queue or the OoO window) doesn't provide any additional benefit. The "Conservation Cores" concept introduces the idea of having one or more specialized components next to a core to "execute" a specific routine very efficiently. While C-Cores focus primarily on reducing energy consumption of serial code, the main focus of this project would be to identify dedicated hardware approaches to accelerate the serial sections of specific applications. One possible approach to acceleration are the application of C-to-Verilog synthesis tools targeting ASICs and/or FPGAs. Students should first identify software applications that merit this approach, and experiment with commercial synthesis tools. The objectives are to quantitatively measure the benefits (if any) of serial hardware acceleration. Students interested in this project should discuss their ideas with the instructor and Eric Chung.
Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia, Vladyslav Bryksin, Jose Lugo-Martinez, Steven Swanson, Michael Bedford Taylor. "Conservation Cores: Reducing the Energy of Mature Computations", In ASPLOS 2010.

32. Other papers that might inspire research ideas:

Daniel Sanchez, Richard Yoo and Christos Kozyrakis (Stanford University). “Flexible Architectural Support for Fine-grain Scheduling”. In ASPLOS 2010.
Abhishek Bhattacharjee and Margaret Martonosi (Princeton University). “Inter-Core Cooperative TLB Prefetchers for Chip Multiprocessors”. In ASPLOS 2010.

Chi-Keung Luk, Intel, Sunpyo Hong, Georgia Tech, Hyesoon Kim. “Qilin: Exploiting Parallelism on Heterogeneous Multiprocessors with Adaptive Mapping”. In MICRO 2009.
Zeshan Chishti, Alaa R. Alameldeen, Chris Wilkerson, Wei Wu, Shih-Lien Lu. “Improving Cache Lifetime Reliability at Ultra-low Voltages”. In MICRO 2009.

Vijay Janapa Reddi, Meeta S. Gupta, Glenn Holloway, Michael D. Smith, Gu-Yeon Wei, and David Brooks. “Voltage Emergency Prediction: A Signature-Based Approach To Reducing Voltage Emergencies”. In HPCA 2009.
Moinuddin K. Qureshi, “Adaptive Spill-Receive for Robust High-Performance Caching in CMPs”, In HPCA 2009.

Hashem Hashemi Najaf-abadi, NC State University, Eric Rotenberg. “Architectural Contesting”, In HPCA 2009

Jiayuan Meng, David Tarjan, Kevin Skadron. “Dynamic warp subdivision for integrated branch and memory divergence tolerance”. In ISCA 2010.
Need more topics?

One way of finding research topics is to read recent interesting papers published in top conferences and critically evaluating them. If you find a shortcoming in a paper that is written on an important problem and have an idea to solve the problem that is left unsolved, feel free to talk to me and the TAs. Some topics you might want to think about or search for are as follows (if you need more detail on any of these topics, talk with me and/or the TAs):

· Applications of machine learning to the design of architectural controllers, e.g.

· Cache replacement and insertion policies

· More efficient and intelligent memory controllers. See the following paper:

· Self-Optimizing Memory Controllers: A Reinforcement Learning Approach (pdf)

· Thread switching policies in fine-grained multithreading systems. See the following paper:

· Dynamic Warp Formation and Scheduling for Efficient GPU Control Flow (pdf)

· Supporting Quality of Service and fairness in machine learning based memory controllers See the following paper:

· Self-Optimizing Memory Controllers: A Reinforcement Learning Approach (pdf)

· Secure architectures and hardware support for security. For example,

· Memory encryption

· Extension of virtual memory mechanisms

· Hardware support for thread scheduling

· In GPU architectures, see the following paper:

Dynamic Warp Formation and Scheduling for Efficient GPU Control Flow (pdf)

· Hard error tolerant architectures

· Architectural support for operating systems

· Shared resource management in multicore and multithreaded systems. Some resources of interest are:

· Caches shared among different cores/threads

· Interconnect shared among different cores/threads

· Processor pipeline shared among different threads in a fine-grained multithreaded or simultaneously multithreaded system

· Cache replacement and insertion techniques

· Memory controllers for 1000-core systems

· Architectural support for garbage collection

How does garbage collection affect memory system performance of the application? What techniques can we design to mitigate the negative effects of garbage collection?

· Memory bandwidth aware cache replacement policies

· Providing QoS guarantees in shared on-chip caches

· Thermal management of the DRAM system

· Topics in transactional memory – a variety of open-ended research problems exist in this area

21

