
Evaluation of Design Options for the Trae CaheFeth MehanismSanjay Jeram Patel, Daniel Holmes Friendly, andYale N. Patt Fellow, IEEEAdvaned Computer Arhiteture LaboratoryDepartment of Eletrial Engineering and Computer SieneThe University of MihiganAnn Arbor, MI 48109-2122fsanjayp, ites, pattg�ees.umih.eduTel: (313) 936-0404Fax: (313) 763-4617ABSTRACTIn this paper, we examine some ritial design features of a trae ahe feth engine fora 16-wide issue proessor and evaluate their e�ets on performane. We evaluate pathassoiativity, partial mathing, and inative issue, all of whih are straightforward extensionsto the trae ahe. We examine features suh as the �ll unit and branh preditor design.In our �nal analysis, we show that the trae ahe mehanism attains a 28% performaneimprovement over an aggressive single blok feth mehanism and a 15% improvement overa sequential multi-blok mehanism.Keywords: high bandwidth feth mehanisms, trae ahe, instrution ahe, wide issuemahines, speulative exeution1 IntrodutionA miroproessor is omposed of three fundamental omponents: a means to supplyinstrutions, a means to supply the data needed by these instrutions, and a means to proessthese instrutions. For high performane, the instrutions and data must be delivered at highrate to a proessing ore apable of e�etively onsuming them.

Delivering instrutions at a high rate is not a straightforward task. Several fators degradefeth engine performane. First, ahe misses ause the feth engine to stall and supplynothing until the miss is resolved. Seond, branh mispreditions ause the feth engine tosupply instrutions whih will later be disarded. Third, hanges in ontrol ow inhibit thefeth engine from produing a full width of instrutions. Due to the physial struture ofinstrution ahes, it is diÆult to feth both a taken branh and its target in the same yle.Table 1 shows the average number of instrutions between all branhes and between takenbranhes (i.e., taken onditional branhes, jumps, subroutine alls, returns and traps) for theSPECint95 benhmarks. Evident from this table is that if partial fethes due to branhesare not dealt with, then feth bandwidth will be limited to an average limit of 9 instrutionsper yle. mprs g go ijpeg li m88k perl vrtx avginsts per branh 5.57 5.05 6.63 10.40 4.27 4.35 5.21 6.41 5.99insts per taken branh 7.78 8.32 9.85 13.51 6.55 5.28 7.94 9.85 8.64Table 1: Instrution run lengths when terminating fethes on branhes.A straightforward tehnique for dealing with partial fethes is to onstrut an instrutionahe where multiple independent fethes an be performed eah yle. To do this, multipleaddresses are used to index into the instrution ahe via multiple read ports. After theahe lines are read, the requested instrutions must be properly aligned and merged beforethey are supplied for exeution. Suh a solution adds onsiderable logi omplexity in analready ritial exeution path of the proessor. Either yle time will be a�eted or extrapipeline stages will be required.Reently proposed, the trae ahe [20, 11, 22, 19℄ overomes this bandwidth hurdle with-out requiring exessive logi omplexity in the instrution delivery path. Like an instrutionahe, the trae ahe is aessed using the Program Counter. Unlike an instrution ahe,2

a trae ahe line ontains instrutions as they appear in exeution order, as opposed tothe stati order determined by the ompiler. Two adjaent instrutions in a trae aheline need not be adjaent in the exeutable image. A trae ahe line stores a segment ofthe dynami instrution stream. By plaing logially ontiguous instrutions in physiallyontiguous storage, the trae ahe is able to supply multiple feth bloks eah yle. A fethblok roughly orresponds to a ompiler basi blok { it is a dynami sequene of instrutionsstarting at the urrent feth address and ending at the next ontrol instrution.In addition to inreasing the delivered instrution bandwidth by inreasing the e�etivefeth rate (the average number of orret instrutions issued for eah feth that returns on-path instrutions), ahing instrutions as trae segments makes reproessing them easier.Sine instrutions are written into the trae ahe after being deoded, deode bits are storedalong with eah instrution minimizing the proessing required when it is fethed again.In this paper, we evaluate several extensions of the trae ahe suh as partial mathing,path assoiativity, and inative issue. We also examine some of the key omponents of thetrae ahe feth mehanism suh as the �ll unit and multiple branh preditor.2 Related WorkCahe organizations for simultaneously fething multiple bloks have been studied byYeh et al [28℄, Conte et al [4℄ and Sezne et al [24℄. By multiporting the instrution aheand/or the branh target bu�er (BTB) and generating multiple feth addresses and branhpreditions per yle, these shemes are able to overome the single feth blok bottlenek.There are several ompile-time approahes to solving the feth bottlenek problem. WithBlok-Strutured ISAs [14, 8℄, superblok sheduling [9℄ and trae sheduling [5, 3℄, the statiform of the program is organized by the ompiler into longer sequential units omposed of3

multiple basi bloks.Melvin and Patt [15℄ disuss the performane impliations of the �ll unit and the idea ofdynamially ombining feth bloks into larger \exeution atomi units" (EAUs) to furtherinrease the feth bandwidth is �rst proposed. In 1994, Peleg and Weiser �led a patent onthe trae ahe onept [20℄. A similar onept was proposed by Johnson [11℄. The oneptwas further investigated by Rotenberg et al [22℄. They presented a thorough omparison be-tween the trae ahe sheme and several hardware-based high-bandwidth feth shemes andshowed the advantage of using a trae ahe, both in performane and lateny. Extensionsand analysis of the trae ahe mehanism were proposed by Patel et al [19, 6, 18℄ and traeahe impliations on proessor design were presented in [23℄. A similar approah to ahingdynami instrution groups was presented in the DIF ahe by Nair and Hopkins [17℄.3 The Trae Cahe Feth MehanismWe divide the trae ahe feth mehanism into four major omponents: a trae ahe, a�ll unit, a multiple branh preditor, and a onventional instrution ahe. The trae aheis the main soure of instrution supply and is �lled with trae segments by the �ll unit.The speulative sequening of segments is performed by the multiple branh preditor. Theinstrution ahe plays an important but supporting role, handling ases when the requiredinstrutions are not found in the trae ahe. A high-level diagram of the mehanism isshown in �gure 1.In this setion, we provide the details of a feth engine for a 16-wide issue dynamially-sheduled mahine. To meet the instrution bandwidth demands of this mahine, 16 instru-tions and three onditional branhes an be fethed per yle.
4

3.1 The Trae CaheThe trae ahe stores segments of the dynami instrution stream, exploiting the fatthat many branhes tend to favor one outome. If blok A is followed by blok B whih inturn is followed by blok C at a partiular point in the exeution of a program, there is astrong likelihood that they will be exeuted in that order again. After the �rst time theyare exeuted in this order, they are stored in the trae ahe as a single entry. Subsequentfethes of blok A from the trae ahe provide bloks B and C as well.Figure 2 shows an example of a trae ahe feth yle. A request is made with theaddress of blok A. The trae ahe responds with a hit and drives out the seleted segmentomposed of the bloks A, B, and C. The predition strutures are aessed onurrentlywith the trae ahe. At the end of the yle, the segment is mathed with the predition.Suppose the preditor selets the path ABD. Then only bloks A and B are supplied. BlokD is requested in the following yle. The onept of supplying only the mathing portionof a trae ahe line is alled partial mathing and its impliations will be examined insetion 5.1.The trae ahe an store segments ontaining up to 16 instrutions, 3 of whih maybe onditional branhes. The line is aessed by the address of the �rst instrution in thesegment. The organization of the trae ahe is similar to that of a onventional instrutionahe, as the lines may be arranged in an assoiative manner. A hit is determined by a tagmath.Eah line of the trae ahe ontains:� 16 slots for instrutions. Instrutions are stored in deoded form and oupy approxi-mately �ve bytes for a typial ISA. Up to three branhes an be stored per line. Eahinstrution is marked with a two-bit tag indiating to whih blok it belongs.5

Multiple
Trace Cache

Decoder

Selection Logic

Register Rename

HPS Execution Core

Fill
Unit

Path

Branch
Predictor

Instruction
Cache

L2

Unified

Cache

Fetch Address

Next Fetch Address

Figure 1: The trae ahe feth mehanism.
Address of A

A B C

A

B

CD

NT T

T

Multiple

BA

Predictor
Branch

T/NT/T

Trace Cache

Selection Logic

Figure 2: The trae ahe and branh preditor are indexed with the address of blok A.The inset �gure shows the ontrol ow from blok A. The preditor selets path ABD. Thetrae ahe only ontains ABC. AB is supplied.6

� Four target addresses. With three basi bloks per segment and the ability to fethpartial segments, there are four possible targets to a segment. The four addresses areexpliitly stored allowing immediate generation of the next feth address, even for aseswhere only a partial segment mathes.� Path information. This �eld enodes the number and diretions of branhes in thesegment and inludes bits to identify whether a segment ends in a branh and whetherthat branh is a return from subroutine instrution. In the ase of a return instrution,the return address stak provides the next feth address.The total size of a line is around 97 bytes for a typial arhiteture: 5x16 bytes ofinstrutions, 4x4 bytes of target addresses, and 1 byte of path information.Instrution dependenies within a trae segment are predetermined before the segmentis stored in the trae ahe. This additional information allows for minimal deoding whenthe segment is fethed from the trae ahe. Soure operands produed by an instrutionoutside the segment are expliitly marked as requiring an external value. Instrutions whihprodue a live-out value are marked as requiring a physial register. It is important to notethat a omplex dependeny analysis aross 16 instrutions does not need to be performed onsegments fethed from the trae ahe. The onept of expliitly marking internal/externalregister values within a basi blok was �rst desribed by Sprangle and Patt [25℄ and lateradapted for use with the trae ahe by Vajapeyam and Mitra [27℄.Instrutions within a segment an be arranged in an order that permits quik issue.Beause the dependenies within a segment are expliitly marked, the ordering of instrutionsarries no signi�ane. Instrutions within the ahe line an be arranged to mitigate therouting required to forward instrutions to funtional unit reservation stations. Friendlyet al [7℄ examine a sheme where instrutions within a segment are ordered to redue theommuniation delays assoiated with data forwarding aross many funtional units.7

3.2 The Fill UnitThe �ll unit ollets instrutions as they are issued by the proessor and ombines theminto trae segments. Coneptually, the instrutions (in units of bloks) are lathed by the�ll unit in the order they were fethed. The �ll unit merges the arriving bloks with blokslathed in previous yles. The merge proess involves reating dependeny information andreordering instrutions. The proess ontinues until the segment beomes �nalized, at whihpoint the segment is written into the trae ahe.A segment beomes �nalized when1. it ontains 16 instrutions, or2. it ontains 3 onditional branhes, or3. it ontains a single indiret jump, return, or trap instrution, or4. merging the inoming blok would result in a segment larger than 16 instrutions.Rule 1 is implied by the size of the trae ahe line and rule 2 by the number of preditionssupplied per yle by the preditor. Beause their targets vary, return instrutions andindiret jumps ause �nalization (rule 3). Unonditional branhes and subroutine alls donot a�et trae segment �nalization.Beause bloks are being ombined in a greedy fashion, there are ases where the �llunit stores multiple opies of basi bloks in the trae ahe. Figure 3 shows a simple loopomposed of �ve basi bloks. The �ll unit an potentially reate �ve di�erent trae segmentsontaining portions of this loop, all of whih an be simultaneously resident in the trae ahe.This blok redundany may degrade performane of the trae ahe mehanism by displainguseful lines with redundant information. The tradeo� is between higher bandwidth fromfething larger segments versus lost bandwidth due to inreased misses in the trae ahe.8

The problem arises beause of bloks where several exeution paths merge, suh as blok Bin �gure 3.Rule 4 above treats basi bloks as atomi entities. A basi blok is not split aross twosegments unless the blok is larger than 16 instrutions. In addition to exaerbating theblok redundany problem, splitting a basi blok reates an additional blok that may taxother strutures suh as the branh preditor. A study of e�etive tehniques for splittingbloks was done by Patel et al [18℄.Three outomes are possible with the arrival of eah new blok of instrutions: (1) thearriving blok is merged with the un�nalized segment and the new, larger segment is not�nalized. (2) the entire arriving blok annot be merged with the awaiting segment. Theawaiting segment is �nalized and the arriving blok now oupies the �ll unit. (3) thearriving blok is ompletely merged with the awaiting segment and the new, larger segmentis �nalized.3.3 The Branh PreditorThe branh preditor is a ritial omponent in a high bandwidth feth mehanism. Tomaintain a high rate of instrution supply, the preditor needs to make multiple auratebranh preditions per yle. In the ase of our trae ahe mehanism, three preditionsper yle are required.Two level adaptive branh predition has been demonstrated to ahieve high preditionauray over a wide set of appliations [29℄. In a two level sheme, the �rst level of historyreords the outomes of the most reently exeuted branhes. The seond level of history,stored in the pattern history table (PHT), reords the most likely outome when a partiularpattern in the �rst level history is enountered. In typial shemes, the PHT onsists ofsaturating two-bit ounters. 9

To make three preditions per yle, we expand eah PHT entry from a single two-bitounter into three two-bit ounters, with eah two-bit ounter providing a predition for afethed branh. Evaluation of this PHT entry organization versus several others is providedin setion 5.5.The baseline on�guration for the trae ahe preditor uses the gshare sheme outlinedby MFarling [13℄. The global branh history is XORed with the urrent feth address,forming an index into the PHT. This hashing better utilizes the PHT and improves preditionauray over other global history based shemes.The branh preditor also ontains a return address stak to predit the target addressesof return instrutions.3.4 The Instrution CaheA onventional instrution ahe supports the trae ahe by supplying instrutions whenthe trae ahe does not ontain the requested segment. Sine hitting in the trae ahe is thefrequently ourring ase, the supporting iahe need not be enhaned for higher bandwidth.The iahe therefore supplies up to one feth blok per yle.The instrution ahe has two read ports to allow adjaent ahe lines to be retrievedeah yle. By fething two ahe lines and realigning instrutions, the feth mehanismoveromes partial fethes due to ahe line boundaries.In the ase of a trae ahe miss and an instrution ahe hit, up to a single basi blokis supplied at the end of the yle. If both the trae ahe and instrution ahe miss, thena request for the missing instrution ahe line is made to the seond level ahe. The fethmehanism stalls until the missing line arrives.
10

4 Experimental SetupA pipeline simulator that allows the modeling of wrong path e�ets was used as theexperimental model. The simulator was implemented using the SimpleSalar 2.0 tool suiteand instrution set [1℄, whih is a superset of the MIPS-IV ISA. In the exeution model, allinstrutions undergo four stages of proessing: feth, issue, shedule, exeute. Eah stagetakes at least one yle.The baseline feth engine, apable of supplying up to 16 instrutions per yle, inludesa large 2K entry (approximately 128KB for instrution storage), 4-way set assoiative traeahe and a 4KB, 4-way instrution ahe. Eah trae ahe line ontains up to 16 instru-tions, ontaining at most three onditional branhes. To assist in the generation of targetaddresses for fethes from the iahe, a 1KB branh target bu�er (BTB) is inluded. A 1MBuni�ed seond level ahe provides instrution and data with a lateny of 8 yles in thease of �rst level ahe misses. The L2 miss lateny to memory is 50 yles. The baselinebranh preditor modeled is a 15-bit version of the gshare preditor desribed in setion 3.3and provides up to three individual onditional branh preditions eah yle. The size ofthe pattern history table is �xed at 32K entries onsisting of 3 two-bit ounters (24KB ofstorage). An ideal return address stak is modeled.The exeution engine is omposed of 16 funtional units, eah with a 32-entry reservationstation. The funtional units are uniform and apable of all operations. A 64KB L1 dataahe was used. The model uses hekpoint repair [10℄ to reover from branh mispreditionsand exeptions. The exeution engine is apable of reating up to three hekpoints eahyle, one for eah feth blok supplied. The memory sheduler waits for addresses tobe generated before sheduling memory operations. No memory operation an bypass astore with an unknown address. Sine this study is onerned with the feth engine, manyomponents of the exeution engine are modeled at very aggressive design points thereby11

reduing the potential for the bakend to indue bottleneks whih may obsure bottleneksin the frontend.All experiments were performed on the SPECint95 benhmarks and on a benhmark suiteonsisting of several ommon C appliations [26℄. Table 2 lists the number of instrutionssimulated and the input set, if the input was derived from a standard input set1. Allsimulations were run until ompletion (exept li and ijpeg, 500M instrutions).Benhmark Inst Count Input Setompress 95M test.ing 157M jump.igo 151M 2stone9.inijpeg 500M penguin.ppmli 500M train.lspm88ksim 493M dhry.testperl 41M srabbl.plvortex 214M vortex.inhess 119Mghostsript (gs) 180Mpgp 322Mplot 284Mpython 220Msim-outorder (ss) 100Mtex 164MTable 2: Benhmarks and datasets used. All benhmarks, exept li and ijpeg, were simulatedto ompletion.1Vortex and go were simulated with abbreviated versions of the SPECint95 test input set. Compress wassimulated on a modi�ed version of the test input with an initial list of 30000 elements.
12

5 Critial IssuesIn this setion, we use the experimental baseline to evaluate several design enhanementsand on�gurations of the trae ahe.5.1 Partial MathingEah feth yle, the preditions made by the branh preditor are used to selet whihbloks within the aessed segment will be issued to the exeution engine. This proess isreferred to as partial mathing [22, 6℄. Alternatively, the trae ahe an be designed tosignal a hit only if all the bloks within the seleted segment math; otherwise a miss issignaled. Figure 4 shows the performane di�erene between a trae ahe that implementspartial mathing and one that does not. The average performane improvement for thesebenhmarks is 14%.With partial mathing, the number of requests that miss both the trae ahe and smalliahe drops signi�antly beause of the more exible poliy for mathing valid lines. If theiahe were made larger, the relative bene�t with partial mathing would be expeted todiminish.5.2 Path AssoiativityPath assoiativity relaxes the onstraint that di�erent segments starting from the samefeth blok annot be stored in the trae ahe at the same time. Path assoiativity allowssegments ABC and ABD (see �gure 2) to reside onurrently in the ahe whereas a non-path assoiative trae ahe allows only one segment starting at A to be resident in the traeahe at any instane in time. 13

Possible segments

ABC

DEB

CDE

BCD

EBC

A

B

C

D

EFigure 3: If the �ll unit is able to reate three-blok segments for this path through a loop,then all �ve possible segments will be reated and stored in the trae ahe.

comp gcc go ijpeg li m88k perl vor ch gs pgp plot py ss tex
Benchmarks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

In
st

ru
ct

io
ns

 P
er

 C
yc

le

Baseline
With Partial Matching

 7%

 20%

 6%

 1%

 16%

 10%

 23%

 14%

 11%
 15%

 2%

 11%
 24%

 38%

 9%

Figure 4: Partial Mathing. The performane di�erene between a trae ahe that partiallymathes segments and one that does not is around 14%
14

The data plotted in Figure 5 indiate that path assoiativity has little e�et on theperformane of the baseline trae ahe. Adding path assoiativity inreases the number ofsegments that map into a partiular set; thus additional misses may our due to inreasedset onits. Therefore the experiment was onduted on a path-assoiative trae ahe withset-assoiativity of 4 and of 8. In both ases, the performane gain from path-assoiativityis slight.Path assoiativity requires extra gates in the trae seletion logi to selet the longestmathing trae segment. It is likely that the line seletion time for the path assoiative ahewill be longer, possibly inreasing ahe yle time.5.3 Inative IssuePartial mathing inreases the number of instrutions that are issued eah yle but itdoes not take advantage of the entire segment of instrutions fethed from the trae ahe.Bloks within the trae ahe segment whih do not math the predited path are disarded.As long as the predition is orret, this does not impat the e�etive feth rate of theproessor. If the predition is inorret however, an opportunity to issue a greater numberof orret instrutions has been missed.With inative issue [6℄ all bloks within a trae ahe line are issued into the proessorore whether or not they math the predited path. The bloks that do not math thepredition are said to be issued inatively. Although these inative instrutions are renamedand reeive physial registers for their destination values, the hanges they make to theregister alias table [10℄ are not onsidered valid for subsequent issue yles. Thus instrutionsalong the predited path view the speulative state of the proessor exatly as if the inativebloks had not been issued. When the branh that ended the last ative blok resolves,if the predition was orret, the inative instrutions are disarded. If the predition was15

inorret, the proessor has already fethed, issued and possibly exeuted some instrutionsalong the orret path.Inative issue redues the impat of branh mispreditions. It allows a portion of thebranh resolution lateny to be hidden by making some orret path instrutions (whihfollow a mispredited branh) available for proessing earlier. When the mispredited branhresolves, the reovery state of the proessor is further along the orret path than it wouldhave been if the inative instrutions had not been issued.To implement inative issue, modi�ations must be made to the renaming and reoverystrutures. Our exeution model uses a hekpointed register alias table to maintain boththe arhitetural and speulative state of the proessor. The hanges needed to implementinative issue inlude adding an ative bit to eah hekpoint in the table. As the hekpointsare reated, this bit is set if the instrutions in the orresponding blok are issued atively andthe bit is leared if the instrutions are issued inatively. The most reent ative hekpoint isused as the speulative state of the mahine when new instrutions are issued. When a branhresolves and is determined to be mispredited, the inative hekpoints immediately followingthe resolved hekpoint beome ative and all subsequent hekpoints, orresponding toinstrutions along the inorret path, are ushed from the pipelines and the instrutionwindow. The feth proeeds from the target of the newly ativated hekpoint. If the branhwas orretly predited, the inative hekpoints are simply invalidated one its outome isknown.Figure 6 illustrates the bloks issued from a fethed ahe line by the three di�erentpoliies.Figure 7 presents the performane bene�ts of inative issue. Over the baseline on�g-uration, inative issue o�ers a 17% performane boost. However, omparing �gure 7 with�gure 4, one an notie a slight 3% inrease from inative issue over partial mathing. In-16

comp gcc go ijpeg li m88k perl vor ch gs pgp plot py ss tex
Benchmarks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

In
st

ru
ct

io
ns

 P
er

 C
yc

le

Baseline
With Path Assoc/4-way
With Path Assoc/8-way

Figure 5: Performane of Path Assoiativity.
A

B

C D

Predicted path: ABC
Fetched segment: ABD

Partial matching: AB
No partial matching: miss

Inactive Issue: AB (active) D(inactive)

Figure 6: An example of the di�erent issue poliies.
17

ative issue is an extension of partial mathing, and designed as a hedge against branhmispreditions. The value of inative issue is greater for less aurate branh predition. Forexample, inative issue is more helpful on programs whih are harder on the branh preditoras shown in the boost gained on g, go, and pgp.5.4 Fill Unit Issues5.4.1 Blok ColletionThe �ll unit ollets bloks of instrutions as they are proessed and produes segmentsto store into the trae ahe. The �ll unit an ollet these bloks at any point in theproessor pipeline. In this experiment, we determine whether the bloks should be olletedas instrutions are issued into the instrution window or when they are retired.Figure 8 shows that the di�erenes in performane between the two shemes are slight.For many benhmarks, the speulative segment reation is bene�ial, while for some (g,go), it degrades performane. The �ll unit olleting instrutions at issue time providesinreased traÆ to the trae ahe beause segments olleted while exeuting on a wrongexeution path are also written into the trae ahe. In some ases this generates usefulsegments, but in other ases it evits useful segments from the trae ahe. The baselineon�guration ollets bloks at retire time.A �ll unit that ollets at retire time only writes segments from the orret exeutionpath to the trae ahe. However, it su�ers from an inreased lateny between the initialfeth of a blok and its olletion into a segment and subsequent storage into the trae ahe.This an potentially impat the �rst few iterations of a tight loop, whih will be fethed fromthe instrution ahe until the �rst iteration retires. In the next setion we show that thisis not a signi�ant inuene on performane.18

comp gcc go ijpeg li m88k perl vor ch gs pgp plot py ss tex
Benchmarks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

In
st

ru
ct

io
ns

 P
er

 C
yc

le

Baseline
With Inactive Issue

 8%

 28%

 13%

 4%

 17%
 10%

 23%

 14%

 14%
 20%

 8%
 10%

 27%

 42%

 11%

Figure 7: Performane of Inative Issue.

comp gcc go ijpeg li m88k perl vor ch gs pgp plot py ss tex
Benchmarks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

In
st

ru
ct

io
ns

 P
er

 C
yc

le

Retire Time (Baseline)
Issue Time

Figure 8: Issue vs. Retire. This plot shows that olleting instrutions at issue time is notvery di�erent from olleting instrutions at retire time.19

5.4.2 Fill Unit LatenyAs bloks of instrutions are lathed into the �ll unit, some proessing is required be-fore the omposite segment an be written to the trae ahe. The dependenies withinthe arriving blok must be reorded to reet the values produed by the awaiting bloks.Possibly, the instrutions within the segment may need to be reordered so that they an bequikly routed to funtional unit node tables when the segment is refethed. To performthese operations, the �ll unit may require several yles.The purpose of this experiment is to determine the sensitivity of the trae ahe fethmehanism to �ll unit lateny. Figure 9 shows the results of varying the number of ylesfrom the arrival of the terminal blok to the point it is written into the trae ahe.The results show that a �ll unit with a 10-yle lateny has a negligible loss in performaneover a single-yle �ll unit. There are two reasons for this ounter-intuitive behavior. First,the next feth of that segment usually does not our within the next 10-yles. Seond, if itdoes, it an be supplied by the iahe (whih is likely to ontain the feth blok as it reentlysatis�ed the original request for the blok). For some benhmarks (e.g., gs), a longer �llunit lateny results in a slightly higher performane. A longer lateny sometimes delays thereplaement of a useful trae ahe segment with a less useful one.5.5 Branh Preditor IssuesThe multiple branh preditor is a ruial element of the trae ahe feth mehanism. Ifthe trae ahe is not supported by a preditor apable of making aurate preditions, gainsin e�etive feth rate will be o�set by losses from more disarded fethes, likely resulting ina loss in performane.In this setion we examine several organizations for the pattern history table (PHT).20

A pattern history table entry ontains the most likely branh outome when a partiularpattern is enountered in the �rst level history. For our baseline multiple branh preditor,we are using a pattern history table entry omposed of 3 two-bit saturating ounters.This entry format was derived as a ost-e�etive version of the sheme used in [19, 6℄where a PHT entry is omposed of 7 two-bit ounters. Figure 10 shows how the sevenounters are used to supply three preditions per yle. The �rst two-bit ounter suppliesthe predition for the �rst branh and is used to selet whih of two two-bit ounters suppliesthe predition for the seond branh. Both preditions are used to selet one of four two-bitounters to supply the predition for the third branh. All three preditions are made witha single aess to the PHT.The on�gurations evaluated in this experiment inlude the 7 ounter sheme, the 3ounter sheme, and a sheme presented by Menezes et al [16℄ where eah PHT entry ontainsthe most likely path through a program subgraph ontaining 3 branhes. In this sheme,the PHT entries are 4 bits wide: 3 bits to enode the likely path (8 paths are possible)and a fourth bit whih reords the likeliness of this path. Figure 11 shows the performaneomparison of the various PHT shemes. The size of the preditor is kept roughly onstant.The 7 ounter sheme uses 14 bits of history and requires 32KB of storage, the 3 ountersheme uses 15 bits of history and requires 24KB of storage, the likely path sheme uses 16bits of history and requires 32KB of storage.In general, the 3 ounter sheme slightly outperforms the other two shemes. It outper-forms the 7 ounter sheme beause of better utilization: many ounters within an entry inthe 7 ounter sheme are likely to go unused beause of the prevalene of biased branhes.The 3 ounter sheme outperforms the likely path sheme beause of more hysteresis.
21

comp gcc go ijpeg li m88k perl vor ch gs pgp plot py ss tex
Benchmarks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

In
st

ru
ct

io
ns

 P
er

 C
yc

le

1 cycle (Baseline)
2 cycles
3 cycles
10 cycles

Figure 9: Fill Unit Lateny is not a major inuene on performane.

B0 B1 B2

2-bit counterfrom pattern history table

Figure 10: Seven two-bit ounters are used to provide three preditions. B0 is the preditionfor the �rst branh, B1 is the predition of the seond and B2 is for the third.
22

5.6 Comparison to an Aggressive Single Blok MehanismThe experiments thus far have evaluated various design options for the trae ahe fethmehanism. We provide a omparison of the enhanes trae ahe to the urrent dominanttehniques for feth engine design. Rotenberg et al. [22℄ presented a thorough omparisonof the trae ahe's performane on the SPECint92 and IBS benhmarks to a few of thehardware-based multiple blok feth tehniques mentioned in setion 2. Here we present aomparison of our baseline on�guration with a aggressive single blok feth mehanism andan iahe apable of fething up to the �rst taken branh.The omponents of the single feth blok mehanism are approximately the same sizeand aess omplexity as the trae ahe ounterparts in the baseline on�guration. Thesingle blok mehanism onsists of a single yle, 128KB, 4-way set assoiative instrutionahe apable of fething two onseutive ahe lines and supplying up to 16 instrutions oruntil the �rst ontrol ow instrution eah yle. The next feth address is generated withan 8KB branh target bu�er. The single branh preditor is a hybrid preditor, onsistingof two omponents: a 15-bit PAs preditor and a 15-bit gshare preditor. The seletionbetween the omponents is done by a 15-bit gshare-style seletor. Combining a per-addresspreditor with a gshare preditor has been shown to be an e�etive way of boosting preditorauray [13, 2℄. This feth mehanism is similar to the one used on the Alpha 21264 [12℄.We also ompare the trae ahe to a mehanism where the instrution ahe is apableof supplying a sequential stream of instrutions beyond onditional branhes whih are pre-dited to be not taken. This on�guration requires the use of a multiple branh preditor(up to three branhes an be fethed) and therefore does not bene�t from the high predi-tion auray attainable with the hybrid preditor. We all this sheme the sequential blokiahe.Figure 12 displays the experimental results. The trae ahe outperforms both shemes23

for most benhmarks. Listed on the graph are the perentage inreases over the single blokiahe sheme. On average, the trae ahe delivers a performane improvement of 28% overthe single blok iahe and a 15% improvement over the sequential blok iahe.The large boost in performane of the trae ahe mehanism omes from a signi�antinrease in average e�etive feth rate | the average number of instrutions delivered peron-path feth. Our experimental results show (not presented here) that this rate doubleswith a trae ahe over the single blok iahe.While the inreased feth rate improves the performane of the trae ahe mehanism,the losses due to branh mispreditions and, to a lesser extent, ahe misses degrade per-formane. Our experimental data indiates that the onditional branh mispredition ratedrops from 6.6% with the trae ahe to 5.5% with the single blok iahe.6 ConlusionsIn this paper we have examined some of the ritial design parameters of the trae ahefeth mehanism. The trae ahe supplies multiple feth bloks of instrutions eah yleby storing logially ontiguous instrution sequenes in physially ontiguous storage.We have demonstrated that the ability to partially math a trae segment provides an av-erage 14% performane boost over a on�guration whih requires a omplete math. Inativeissue is a hedge against branh mispreditions and yields 17% improvement over the baselineand is partiularly helpful on benhmarks whih su�er from poor predition auray.We have also demonstrated that trae reation an be done speulatively with no degra-dation in performane. Creating traes speulatively at issue time may allow for for simplerimplementations. In addition, the lateny in reating traes has negligible e�ets on perfor-mane. 24

comp gcc go ijpeg li m88k perl vor ch gs pgp plot py ss tex
Benchmarks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

In
st

ru
ct

io
ns

 P
er

 C
yc

le
3 Counters (Baseline)
7 Counters
Likely Path

Figure 11: Evaluation of various pattern history table entry on�gurations.

comp gcc go ijpeg li m88k perl vor ch gs pgp plot py ss tex
Benchmarks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

In
st

ru
ct

io
ns

 P
er

 C
yc

le

Single Block ICache
Sequential Block ICache
Trace Cache w/Inactive Issue

 16%

 24%

 10%

 25%

 49%
 46%

 27%

 39%

 33%
 39%

 9%
 21%

 23%

 39%

 25%

Figure 12: The performane of the baseline trae ahe feth mehanism against two iahefeth shemes. 25

When ompared with an aggressive single blok feth iahe, the trae ahe attains anaverage performane inrease of 28% and attains a 15% improvement over a sequential blokiahe. Muh of this performane inrease omes from the inrease in e�etive feth rate,whih is twie that of the single blok engine.Beause it is a low-omplexity tehnique for delivering high instrution bandwidth, thetrae ahe will be an important omponent of future miroproessors [21℄. There remainmany important issues whih need resolving. We are urrently fousing on quantifying andreduing instrution redundany in the trae ahe and on developing tehniques for reatinglonger trae segments.7 AknowledgementsWe would like to thank several other members of the HPS researh group, Rob Chappell,Marius Evers, Peter Kim, Paul Raunas, Jared Stark, and several of its alumni, in partiularMike Shebanow. We would like to thank our orporate sponsors | Intel, HAL, and NCR| for funding our work.Referenes[1℄ D. Burger, T. Austin, and S. Bennett, \Evaluating future miroproessors: The simplesalartool set," Tehnial Report 1308, University of Wisonsin - Madison Tehnial Report, July1996.[2℄ P.-Y. Chang, E. Hao, T.-Y. Yeh, and Y. N. Patt, \Branh lassi�ation: A new mehanismfor improving branh preditor performane," in Proeedings of the 27th Annual ACM/IEEEInternational Symposium on Miroarhiteture, pp. 22{31, 1994.26

[3℄ R. P. Colwell, R. P. Nix, J. J. O'Donnell, D. B. Papworth, and P. K. Rodman, \A VLIWarhiteture for a trae sheduling ompiler," IEEE Transations on Computers, vol. 37, no.8, pp. 967{979, August 1988.[4℄ T. M. Conte, K. N. Menezes, P. M. Mills, and B. A. Patel, \Optimization of instrution fethmehanisms for high issue rates," in Proeedings of the 22nd Annual International Symposiumon Computer Arhiteture, 1995.[5℄ J. A. Fisher, \Trae sheduling: A tehnique for global miroode ompation," IEEE Trans-ations on Computers, vol. C-30, no. 7, pp. 478{490, July 1981.[6℄ D. H. Friendly, S. J. Patel, and Y. N. Patt, \Alternative feth and issue tehniques from thetrae ahe feth mehanism," in Proeedings of the 30th Annual ACM/IEEE InternationalSymposium on Miroarhiteture, 1997.[7℄ D. H. Friendly, S. J. Patel, and Y. N. Patt, \Putting the �ll unit to work: Dynami opti-mizations for trae ahe miroproessors," in Proeedings of the 30th Annual ACM/IEEEInternational Symposium on Miroarhiteture, 1997.[8℄ E. Hao, P.-Y. Chang, M. Evers, and Y. N. Patt, \Inreasing the instrution feth rate viablok-strutured instrution set arhitetures," in Proeedings of the 29th Annual ACM/IEEEInternational Symposium on Miroarhiteture, 1996.[9℄ W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bringmann,R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery,\The superblok: An e�etive tehnique for VLIW and supersalar ompilation," Journal ofSuperomputing, vol. 7, no. 9-50, , 1993.[10℄ W. W. Hwu and Y. N. Patt, \Chekpoint repair for out-of-order exeution mahines," inProeedings of the 14th Annual International Symposium on Computer Arhiteture, pp. 18{26, 1987. 27

[11℄ J. D. Johnson, \Expansion ahes for supersalar miroproessors," Tehnial Report CSL-TR-94-630, Stanford University, Palo Alto CA, June 1994.[12℄ J. Keller, The 21264: A Supersalar Alpha Proessor with Out-of-Order Exeution, DigitalEquipment Corporation, Hudson, MA, Otober 1996.[13℄ S. MFarling, \Combining branh preditors," Tehnial Report TN-36, Digital Western Re-searh Laboratory, June 1993.[14℄ S. Melvin and Y. Patt, \Enhaning instrution sheduling with a blok-strutured ISA," In-ternational Journal on Parallel Proessing, 1994.[15℄ S. W. Melvin and Y. N. Patt, \Performane bene�ts of large exeution atomi units in dy-namially sheduled mahines," in Proeedings of Superomputing '89, pp. 427{432, 1989.[16℄ K. N. Menezes, S. W. Sathaye, and T. M. Conte, \Path predition for high issue-rate pro-essors," in Proeedings of the 1997 ACM/IEEE Conferene on Parallel Arhitetures andCompilation Tehniques, 1997.[17℄ R. Nair and M. E. Hopkins, \Exploiting instrution level parallelism in proessors by ahingsheduled groups," in Proeedings of the 24th Annual International Symposium on ComputerArhiteture, pp. 13{25, 1997.[18℄ S. J. Patel, M. Evers, and Y. N. Patt, \Improving trae ahe e�etiveness with branhpromotion and trae paking," in Proeedings of the 25th Annual International Symposium onComputer Arhiteture, 1998.[19℄ S. J. Patel, D. H. Friendly, and Y. N. Patt, \Critial issues regarding the trae ahe fethmehanism," Tehnial Report CSE-TR-335-97, University of Mihigan Tehnial Report, May1997.[20℄ A. Peleg and U. Weiser. Dynami Flow Instrution Cahe Memory Organized Around TraeSegments Independant of Virtual Address Line. U.S. Patent Number 5,381,533, 1994.28

[21℄ F. Pollak, Desription of the intel miroproessor roadmap, Press brie�ng, Otober 1998.[22℄ E. Rotenberg, S. Bennett, and J. E. Smith, \Trae ahe: a low lateny approah to highbandwidth instrution fething," in Proeedings of the 29th Annual ACM/IEEE InternationalSymposium on Miroarhiteture, 1996.[23℄ E. Rotenberg, Q. Jaobsen, Y. Sazeides, and J. E. Smith, \Trae proessors," in Proeedingsof the 30th Annual ACM/IEEE International Symposium on Miroarhiteture, 1997.[24℄ A. Sezne, S. Jourdan, P. Sainrat, and P. Mihaud, \Multiple-blok ahead branh preditors,"in Proeedings of the 7th International Conferene on Arhitetural Support for ProgrammingLanguages and Operating Systems, 1996.[25℄ E. Sprangle and Y. Patt, \Failitating supersalar proessing via a ombined stati/dynamiregister renaming sheme," in Proeedings of the 27th Annual ACM/IEEE International Sym-posium on Miroarhiteture, pp. 143{147, 1994.[26℄ J. Stark, P. Raunas, and Y. N. Patt, \Reduing the performane impat of instrution ahemisses by writing instrutions into the reservation stations out-of-order," in Proeedings of the30th Annual ACM/IEEE International Symposium on Miroarhiteture, pp. 34 { 43, 1997.[27℄ S. Vajapeyam and T. Mitra, \Improving supersalar instrution dispath and issue by exploit-ing dynami ode sequenes," in Proeedings of the 24th Annual International Symposium onComputer Arhiteture, pp. 1{12, 1997.[28℄ T.-Y. Yeh, D. Marr, and Y. N. Patt, \Inreasing the instrution feth rate via multiple branhpredition and branh address ahe," in Proeedings of the International Conferene on Su-peromputing, pp. 67{76, 1993.[29℄ T.-Y. Yeh and Y. N. Patt, \Two-level adaptive branh predition," in Proeedings of the 24thAnnual ACM/IEEE International Symposium on Miroarhiteture, pp. 51{61, 1991.
29

Sanjay J. Patel is urrently a PhD andidate in Computer Siene and Engineering atthe University of Mihigan, Ann Arbor. He is investigating tehniques for high bandwidthinstrution supply for proessors in the era of 100M and 1B transistors. His researh inter-est inlude trae ahes, branh predition, memory bandwidth issues, and the performanesimulation of miroarhitetures. He reeived a MS from the University of Mihigan and hasworked for Digital Equipment Corporation.Dan Friendly is a PhD andidate in omputer siene and engineering at the Universityof Mihigan. His researh interests inlude high bandwidth feth mehanisms, supersalar ar-hitetures, and speulative exeution tehniques. He reeived a BA in Amerian soial issuesfrom Maalester College and an MS in omputer siene from the University of Mihigan.Yale N. Patt is Professor of Eletrial Engineering and Computer Siene at the Uni-versity of Mihigan, where he teahes undergraduate and graduate ourses in omputer ar-hiteture, and direts the PhD researh of nine graduate students in omputer arhiteture,high-performane proessor design, and omputer systems implementation. Patt earned hisBS from Northeastern University and his MS and PhD from Stanford University, all ineletrial engineering. He reeived the 1995 IEEE Emanuel R. Piore Award and the 1996ACM/IEEE Ekert-Mauhly Award. He is a Fellow of the IEEE.

30

