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ABSTRACT

In this paper, we examine some critical design features of a trace cache fetch engine for
a 16-wide issue processor and evaluate their effects on performance. We evaluate path
associativity, partial matching, and inactive issue, all of which are straightforward extensions
to the trace cache. We examine features such as the fill unit and branch predictor design.
In our final analysis, we show that the trace cache mechanism attains a 28% performance
improvement over an aggressive single block fetch mechanism and a 15% improvement over
a sequential multi-block mechanism.

Keywords: high bandwidth fetch mechanisms, trace cache, instruction cache, wide issue
machines, speculative execution

1 Introduction

A microprocessor is composed of three fundamental components: a means to supply
instructions, a means to supply the data needed by these instructions, and a means to process
these instructions. For high performance, the instructions and data must be delivered at high

rate to a processing core capable of effectively consuming them.



Delivering instructions at a high rate is not a straightforward task. Several factors degrade
fetch engine performance. First, cache misses cause the fetch engine to stall and supply
nothing until the miss is resolved. Second, branch mispredictions cause the fetch engine to
supply instructions which will later be discarded. Third, changes in control flow inhibit the
fetch engine from producing a full width of instructions. Due to the physical structure of

instruction caches, it is difficult to fetch both a taken branch and its target in the same cycle.

Table 1 shows the average number of instructions between all branches and between taken
branches (i.e., taken conditional branches, jumps, subroutine calls, returns and traps) for the
SPECint95 benchmarks. Evident from this table is that if partial fetches due to branches
are not dealt with, then fetch bandwidth will be limited to an average limit of 9 instructions

per cycle.

‘ H cmprs ‘ gce ‘ go ‘ ijpeg ‘ li ‘ m88k ‘ perl ‘ vrtx ‘ avg ‘
insts per branch 5.57 5.05 ] 6.63 | 10.40 | 4.27 | 4.35 | 5.21 | 6.41 | 5.99
insts per taken branch || 7.78 8.3219.85 | 13.51 | 6.55 | 5.28 | 7.94]9.85 | 8.64

Table 1: Instruction run lengths when terminating fetches on branches.

A straightforward technique for dealing with partial fetches is to construct an instruction
cache where multiple independent fetches can be performed each cycle. To do this, multiple
addresses are used to index into the instruction cache via multiple read ports. After the
cache lines are read, the requested instructions must be properly aligned and merged before
they are supplied for execution. Such a solution adds considerable logic complexity in an
already critical execution path of the processor. Either cycle time will be affected or extra

pipeline stages will be required.

Recently proposed, the trace cache [20, 11, 22, 19] overcomes this bandwidth hurdle with-
out requiring excessive logic complexity in the instruction delivery path. Like an instruction

cache, the trace cache is accessed using the Program Counter. Unlike an instruction cache,



a trace cache line contains instructions as they appear in execution order, as opposed to
the static order determined by the compiler. Two adjacent instructions in a trace cache
line need not be adjacent in the executable image. A trace cache line stores a segment of
the dynamic instruction stream. By placing logically contiguous instructions in physically
contiguous storage, the trace cache is able to supply multiple fetch blocks each cycle. A fetch
block roughly corresponds to a compiler basic block — it is a dynamic sequence of instructions

starting at the current fetch address and ending at the next control instruction.

In addition to increasing the delivered instruction bandwidth by increasing the effective
fetch rate (the average number of correct instructions issued for each fetch that returns on-
path instructions), caching instructions as trace segments makes reprocessing them easier.
Since instructions are written into the trace cache after being decoded, decode bits are stored

along with each instruction minimizing the processing required when it is fetched again.

In this paper, we evaluate several extensions of the trace cache such as partial matching,
path associativity, and inactive issue. We also examine some of the key components of the

trace cache fetch mechanism such as the fill unit and multiple branch predictor.

2 Related Work

Cache organizations for simultaneously fetching multiple blocks have been studied by
Yeh et al [28], Conte et al [4] and Seznec et al [24]. By multiporting the instruction cache
and/or the branch target buffer (BTB) and generating multiple fetch addresses and branch

predictions per cycle, these schemes are able to overcome the single fetch block bottleneck.

There are several compile-time approaches to solving the fetch bottleneck problem. With
Block-Structured ISAs [14, 8], superblock scheduling [9] and trace scheduling [5, 3], the static

form of the program is organized by the compiler into longer sequential units composed of



multiple basic blocks.

Melvin and Patt [15] discuss the performance implications of the fill unit and the idea of
dynamically combining fetch blocks into larger “execution atomic units” (EAUs) to further
increase the fetch bandwidth is first proposed. In 1994, Peleg and Weiser filed a patent on
the trace cache concept [20]. A similar concept was proposed by Johnson [11]. The concept
was further investigated by Rotenberg et al [22]. They presented a thorough comparison be-
tween the trace cache scheme and several hardware-based high-bandwidth fetch schemes and
showed the advantage of using a trace cache, both in performance and latency. Extensions
and analysis of the trace cache mechanism were proposed by Patel et al [19, 6, 18] and trace
cache implications on processor design were presented in [23]. A similar approach to caching

dynamic instruction groups was presented in the DIF cache by Nair and Hopkins [17].

3 The Trace Cache Fetch Mechanism

We divide the trace cache fetch mechanism into four major components: a trace cache, a
fill unit, a multiple branch predictor, and a conventional instruction cache. The trace cache
is the main source of instruction supply and is filled with trace segments by the fill unit.
The speculative sequencing of segments is performed by the multiple branch predictor. The
instruction cache plays an important but supporting role, handling cases when the required
instructions are not found in the trace cache. A high-level diagram of the mechanism is

shown in figure 1.

In this section, we provide the details of a fetch engine for a 16-wide issue dynamically-
scheduled machine. To meet the instruction bandwidth demands of this machine, 16 instruc-

tions and three conditional branches can be fetched per cycle.



3.1 The Trace Cache

The trace cache stores segments of the dynamic instruction stream, exploiting the fact
that many branches tend to favor one outcome. If block A is followed by block B which in
turn is followed by block C at a particular point in the execution of a program, there is a
strong likelihood that they will be executed in that order again. After the first time they
are executed in this order, they are stored in the trace cache as a single entry. Subsequent

fetches of block A from the trace cache provide blocks B and C as well.

Figure 2 shows an example of a trace cache fetch cycle. A request is made with the
address of block A. The trace cache responds with a hit and drives out the selected segment
composed of the blocks A, B, and C. The prediction structures are accessed concurrently
with the trace cache. At the end of the cycle, the segment is matched with the prediction.
Suppose the predictor selects the path ABD. Then only blocks A and B are supplied. Block
D is requested in the following cycle. The concept of supplying only the matching portion
of a trace cache line is called partial matching and its implications will be examined in

section 5.1.

The trace cache can store segments containing up to 16 instructions, 3 of which may
be conditional branches. The line is accessed by the address of the first instruction in the
segment. The organization of the trace cache is similar to that of a conventional instruction
cache, as the lines may be arranged in an associative manner. A hit is determined by a tag

match.

Each line of the trace cache contains:

e 16 slots for instructions. Instructions are stored in decoded form and occupy approxi-
mately five bytes for a typical ISA. Up to three branches can be stored per line. Each

instruction is marked with a two-bit tag indicating to which block it belongs.
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trace cache only contains ABC. AB is supplied.



e Four target addresses. With three basic blocks per segment and the ability to fetch
partial segments, there are four possible targets to a segment. The four addresses are
explicitly stored allowing immediate generation of the next fetch address, even for cases

where only a partial segment matches.

e Path information. This field encodes the number and directions of branches in the
segment and includes bits to identify whether a segment ends in a branch and whether
that branch is a return from subroutine instruction. In the case of a return instruction,

the return address stack provides the next fetch address.

The total size of a line is around 97 bytes for a typical architecture: 5x16 bytes of

instructions, 4x4 bytes of target addresses, and 1 byte of path information.

Instruction dependencies within a trace segment are predetermined before the segment
is stored in the trace cache. This additional information allows for minimal decoding when
the segment is fetched from the trace cache. Source operands produced by an instruction
outside the segment are explicitly marked as requiring an external value. Instructions which
produce a live-out value are marked as requiring a physical register. It is important to note
that a complex dependency analysis across 16 instructions does not need to be performed on
segments fetched from the trace cache. The concept of explicitly marking internal /external
register values within a basic block was first described by Sprangle and Patt [25] and later

adapted for use with the trace cache by Vajapeyam and Mitra [27].

Instructions within a segment can be arranged in an order that permits quick issue.
Because the dependencies within a segment are explicitly marked, the ordering of instructions
carries no significance. Instructions within the cache line can be arranged to mitigate the
routing required to forward instructions to functional unit reservation stations. Friendly
et al [7] examine a scheme where instructions within a segment are ordered to reduce the

communication delays associated with data forwarding across many functional units.
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3.2 The Fill Unit

The fill unit collects instructions as they are issued by the processor and combines them
into trace segments. Conceptually, the instructions (in units of blocks) are latched by the
fill unit in the order they were fetched. The fill unit merges the arriving blocks with blocks
latched in previous cycles. The merge process involves creating dependency information and
reordering instructions. The process continues until the segment becomes finalized, at which

point the segment is written into the trace cache.

A segment becomes finalized when

1. it contains 16 instructions, or
2. it contains 3 conditional branches, or
3. it contains a single indirect jump, return, or trap instruction, or

4. merging the incoming block would result in a segment larger than 16 instructions.

Rule 1 is implied by the size of the trace cache line and rule 2 by the number of predictions
supplied per cycle by the predictor. Because their targets vary, return instructions and
indirect jumps cause finalization (rule 3). Unconditional branches and subroutine calls do

not affect trace segment finalization.

Because blocks are being combined in a greedy fashion, there are cases where the fill
unit stores multiple copies of basic blocks in the trace cache. Figure 3 shows a simple loop
composed of five basic blocks. The fill unit can potentially create five different trace segments
containing portions of this loop, all of which can be simultaneously resident in the trace cache.
This block redundancy may degrade performance of the trace cache mechanism by displacing
useful lines with redundant information. The tradeoff is between higher bandwidth from

fetching larger segments versus lost bandwidth due to increased misses in the trace cache.



The problem arises because of blocks where several execution paths merge, such as block B

in figure 3.

Rule 4 above treats basic blocks as atomic entities. A basic block is not split across two
segments unless the block is larger than 16 instructions. In addition to exacerbating the
block redundancy problem, splitting a basic block creates an additional block that may tax
other structures such as the branch predictor. A study of effective techniques for splitting

blocks was done by Patel et al [18].

Three outcomes are possible with the arrival of each new block of instructions: (1) the
arriving block is merged with the unfinalized segment and the new, larger segment is not
finalized. (2) the entire arriving block cannot be merged with the awaiting segment. The
awaiting segment is finalized and the arriving block now occupies the fill unit. (3) the
arriving block is completely merged with the awaiting segment and the new, larger segment

is finalized.

3.3 The Branch Predictor

The branch predictor is a critical component in a high bandwidth fetch mechanism. To
maintain a high rate of instruction supply, the predictor needs to make multiple accurate
branch predictions per cycle. In the case of our trace cache mechanism, three predictions

per cycle are required.

Two level adaptive branch prediction has been demonstrated to achieve high prediction
accuracy over a wide set of applications [29]. In a two level scheme, the first level of history
records the outcomes of the most recently executed branches. The second level of history,
stored in the pattern history table (PHT), records the most likely outcome when a particular
pattern in the first level history is encountered. In typical schemes, the PHT consists of

saturating two-bit counters.



To make three predictions per cycle, we expand each PHT entry from a single two-bit
counter into three two-bit counters, with each two-bit counter providing a prediction for a
fetched branch. Evaluation of this PHT entry organization versus several others is provided

in section 5.5.

The baseline configuration for the trace cache predictor uses the gshare scheme outlined
by McFarling [13]. The global branch history is XORed with the current fetch address,
forming an index into the PHT. This hashing better utilizes the PHT and improves prediction

accuracy over other global history based schemes.

The branch predictor also contains a return address stack to predict the target addresses

of return instructions.

3.4 The Instruction Cache

A conventional instruction cache supports the trace cache by supplying instructions when
the trace cache does not contain the requested segment. Since hitting in the trace cache is the
frequently occurring case, the supporting icache need not be enhanced for higher bandwidth.

The icache therefore supplies up to one fetch block per cycle.

The instruction cache has two read ports to allow adjacent cache lines to be retrieved
each cycle. By fetching two cache lines and realigning instructions, the fetch mechanism

overcomes partial fetches due to cache line boundaries.

In the case of a trace cache miss and an instruction cache hit, up to a single basic block
is supplied at the end of the cycle. If both the trace cache and instruction cache miss, then
a request for the missing instruction cache line is made to the second level cache. The fetch

mechanism stalls until the missing line arrives.

10



4 Experimental Setup

A pipeline simulator that allows the modeling of wrong path effects was used as the
experimental model. The simulator was implemented using the SimpleScalar 2.0 tool suite
and instruction set [1], which is a superset of the MIPS-IV ISA. In the execution model, all
instructions undergo four stages of processing: fetch, issue, schedule, execute. Each stage

takes at least one cycle.

The baseline fetch engine, capable of supplying up to 16 instructions per cycle, includes
a large 2K entry (approximately 128KB for instruction storage), 4-way set associative trace
cache and a 4KB, 4-way instruction cache. Each trace cache line contains up to 16 instruc-
tions, containing at most three conditional branches. To assist in the generation of target
addresses for fetches from the icache, a 1KB branch target buffer (BTB) is included. A 1MB
unified second level cache provides instruction and data with a latency of 8 cycles in the
case of first level cache misses. The L2 miss latency to memory is 50 cycles. The baseline
branch predictor modeled is a 15-bit version of the gshare predictor described in section 3.3
and provides up to three individual conditional branch predictions each cycle. The size of
the pattern history table is fixed at 32K entries consisting of 3 two-bit counters (24KB of

storage). An ideal return address stack is modeled.

The execution engine is composed of 16 functional units, each with a 32-entry reservation
station. The functional units are uniform and capable of all operations. A 64KB L1 data
cache was used. The model uses checkpoint repair [10] to recover from branch mispredictions
and exceptions. The execution engine is capable of creating up to three checkpoints each
cycle, one for each fetch block supplied. The memory scheduler waits for addresses to
be generated before scheduling memory operations. No memory operation can bypass a
store with an unknown address. Since this study is concerned with the fetch engine, many

components of the execution engine are modeled at very aggressive design points thereby
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reducing the potential for the backend to induce bottlenecks which may obscure bottlenecks

in the frontend.

All experiments were performed on the SPECint95 benchmarks and on a benchmark suite
consisting of several common C applications [26]. Table 2 lists the number of instructions
simulated and the input set, if the input was derived from a standard input set!. All

simulations were run until completion (except li and ijpeg, 500M instructions).

Benchmark ‘ Inst Count ‘ Input Set ‘
compress 95M test.in

gee 157M jump.i

go 151M 2stone9.in
ijpeg 500M penguin.ppm
li 500M train.lsp
m88ksim 493M dhry.test
perl 41M scrabbl.pl
vortex 214M vortex.in
chess 119M

ghostscript (gs) | 180M

pegp 322M

plot 284M

python 220M

sim-outorder (ss) | 100M

tex 164M

Table 2: Benchmarks and datasets used. All benchmarks, except li and ijpeg, were simulated
to completion.

Vortex and go were simulated with abbreviated versions of the SPECint95 test input set. Compress was

simulated on a modified version of the test input with an initial list of 30000 elements.

12



5 Critical Issues

In this section, we use the experimental baseline to evaluate several design enhancements

and configurations of the trace cache.

5.1 Partial Matching

Each fetch cycle, the predictions made by the branch predictor are used to select which
blocks within the accessed segment will be issued to the execution engine. This process is
referred to as partial matching [22, 6]. Alternatively, the trace cache can be designed to
signal a hit only if all the blocks within the selected segment match; otherwise a miss is
signaled. Figure 4 shows the performance difference between a trace cache that implements

partial matching and one that does not. The average performance improvement for these

benchmarks is 14%.

With partial matching, the number of requests that miss both the trace cache and small
icache drops significantly because of the more flexible policy for matching valid lines. If the
icache were made larger, the relative benefit with partial matching would be expected to

diminish.

5.2 Path Associativity

Path associativity relaxes the constraint that different segments starting from the same
fetch block cannot be stored in the trace cache at the same time. Path associativity allows
segments ABC and ABD (see figure 2) to reside concurrently in the cache whereas a non-
path associative trace cache allows only one segment starting at A to be resident in the trace

cache at any instance in time.
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Figure 3: If the fill unit is able to create three-block segments for this path through a loop,
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Figure 4: Partial Matching. The performance difference between a trace cache that partially

matches segments and one that does not is around 14%
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The data plotted in Figure 5 indicate that path associativity has little effect on the
performance of the baseline trace cache. Adding path associativity increases the number of
segments that map into a particular set; thus additional misses may occur due to increased
set conflicts. Therefore the experiment was conducted on a path-associative trace cache with
set-associativity of 4 and of 8. In both cases, the performance gain from path-associativity

is slight.

Path associativity requires extra gates in the trace selection logic to select the longest
matching trace segment. It is likely that the line selection time for the path associative cache

will be longer, possibly increasing cache cycle time.

5.3 Inactive Issue

Partial matching increases the number of instructions that are issued each cycle but it
does not take advantage of the entire segment of instructions fetched from the trace cache.
Blocks within the trace cache segment which do not match the predicted path are discarded.
As long as the prediction is correct, this does not impact the effective fetch rate of the
processor. If the prediction is incorrect however, an opportunity to issue a greater number

of correct instructions has been missed.

With inactive issue [6] all blocks within a trace cache line are issued into the processor
core whether or not they match the predicted path. The blocks that do not match the
prediction are said to be issued inactively. Although these inactive instructions are renamed
and receive physical registers for their destination values, the changes they make to the
register alias table [10] are not considered valid for subsequent issue cycles. Thus instructions
along the predicted path view the speculative state of the processor exactly as if the inactive
blocks had not been issued. When the branch that ended the last active block resolves,

if the prediction was correct, the inactive instructions are discarded. If the prediction was
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incorrect, the processor has already fetched, issued and possibly executed some instructions

along the correct path.

Inactive issue reduces the impact of branch mispredictions. It allows a portion of the
branch resolution latency to be hidden by making some correct path instructions (which
follow a mispredicted branch) available for processing earlier. When the mispredicted branch
resolves, the recovery state of the processor is further along the correct path than it would

have been if the inactive instructions had not been issued.

To implement inactive issue, modifications must be made to the renaming and recovery
structures. Our execution model uses a checkpointed register alias table to maintain both
the architectural and speculative state of the processor. The changes needed to implement
inactive issue include adding an active bit to each checkpoint in the table. As the checkpoints
are created, this bit is set if the instructions in the corresponding block are issued actively and
the bit is cleared if the instructions are issued inactively. The most recent active checkpoint is
used as the speculative state of the machine when new instructions are issued. When a branch
resolves and is determined to be mispredicted, the inactive checkpoints immediately following
the resolved checkpoint become active and all subsequent checkpoints, corresponding to
instructions along the incorrect path, are flushed from the pipelines and the instruction
window. The fetch proceeds from the target of the newly activated checkpoint. If the branch
was correctly predicted, the inactive checkpoints are simply invalidated once its outcome is

known.

Figure 6 illustrates the blocks issued from a fetched cache line by the three different

policies.

Figure 7 presents the performance benefits of inactive issue. Over the baseline config-
uration, inactive issue offers a 17% performance boost. However, comparing figure 7 with

figure 4, one can notice a slight 3% increase from inactive issue over partial matching. In-
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active issue is an extension of partial matching, and designed as a hedge against branch
mispredictions. The value of inactive issue is greater for less accurate branch prediction. For
example, inactive issue is more helpful on programs which are harder on the branch predictor

as shown in the boost gained on gcc, go, and pgp.

5.4 Fill Unit Issues

5.4.1 Block Collection

The fill unit collects blocks of instructions as they are processed and produces segments
to store into the trace cache. The fill unit can collect these blocks at any point in the
processor pipeline. In this experiment, we determine whether the blocks should be collected

as instructions are issued into the instruction window or when they are retired.

Figure 8 shows that the differences in performance between the two schemes are slight.
For many benchmarks, the speculative segment creation is beneficial, while for some (gcc,
go), it degrades performance. The fill unit collecting instructions at issue time provides
increased traffic to the trace cache because segments collected while executing on a wrong
execution path are also written into the trace cache. In some cases this generates useful
segments, but in other cases it evicts useful segments from the trace cache. The baseline

configuration collects blocks at retire time.

A fill unit that collects at retire time only writes segments from the correct execution
path to the trace cache. However, it suffers from an increased latency between the initial
fetch of a block and its collection into a segment and subsequent storage into the trace cache.
This can potentially impact the first few iterations of a tight loop, which will be fetched from
the instruction cache until the first iteration retires. In the next section we show that this

is not a significant influence on performance.
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5.4.2 Fill Unit Latency

As blocks of instructions are latched into the fill unit, some processing is required be-
fore the composite segment can be written to the trace cache. The dependencies within
the arriving block must be recorded to reflect the values produced by the awaiting blocks.
Possibly, the instructions within the segment may need to be reordered so that they can be
quickly routed to functional unit node tables when the segment is refetched. To perform

these operations, the fill unit may require several cycles.

The purpose of this experiment is to determine the sensitivity of the trace cache fetch
mechanism to fill unit latency. Figure 9 shows the results of varying the number of cycles

from the arrival of the terminal block to the point it is written into the trace cache.

The results show that a fill unit with a 10-cycle latency has a negligible loss in performance
over a single-cycle fill unit. There are two reasons for this counter-intuitive behavior. First,
the next fetch of that segment usually does not occur within the next 10-cycles. Second, if it
does, it can be supplied by the icache (which is likely to contain the fetch block as it recently
satisfied the original request for the block). For some benchmarks (e.g., gs), a longer fill
unit latency results in a slightly higher performance. A longer latency sometimes delays the

replacement of a useful trace cache segment with a less useful one.

5.5 Branch Predictor Issues

The multiple branch predictor is a crucial element of the trace cache fetch mechanism. If
the trace cache is not supported by a predictor capable of making accurate predictions, gains
in effective fetch rate will be offset by losses from more discarded fetches, likely resulting in

a loss in performance.

In this section we examine several organizations for the pattern history table (PHT).

20



A pattern history table entry contains the most likely branch outcome when a particular
pattern is encountered in the first level history. For our baseline multiple branch predictor,

we are using a pattern history table entry composed of 3 two-bit saturating counters.

This entry format was derived as a cost-effective version of the scheme used in [19, 6]
where a PHT entry is composed of 7 two-bit counters. Figure 10 shows how the seven
counters are used to supply three predictions per cycle. The first two-bit counter supplies
the prediction for the first branch and is used to select which of two two-bit counters supplies
the prediction for the second branch. Both predictions are used to select one of four two-bit
counters to supply the prediction for the third branch. All three predictions are made with

a single access to the PHT.

The configurations evaluated in this experiment include the 7 counter scheme, the 3
counter scheme, and a scheme presented by Menezes et al [16] where each PHT entry contains
the most likely path through a program subgraph containing 3 branches. In this scheme,
the PHT entries are 4 bits wide: 3 bits to encode the likely path (8 paths are possible)
and a fourth bit which records the likeliness of this path. Figure 11 shows the performance
comparison of the various PHT schemes. The size of the predictor is kept roughly constant.
The 7 counter scheme uses 14 bits of history and requires 32KB of storage, the 3 counter
scheme uses 15 bits of history and requires 24KB of storage, the likely path scheme uses 16

bits of history and requires 32KB of storage.

In general, the 3 counter scheme slightly outperforms the other two schemes. It outper-
forms the 7 counter scheme because of better utilization: many counters within an entry in
the 7 counter scheme are likely to go unused because of the prevalence of biased branches.

The 3 counter scheme outperforms the likely path scheme because of more hysteresis.
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5.6 Comparison to an Aggressive Single Block Mechanism

The experiments thus far have evaluated various design options for the trace cache fetch
mechanism. We provide a comparison of the enhances trace cache to the current dominant
techniques for fetch engine design. Rotenberg et al. [22] presented a thorough comparison
of the trace cache’s performance on the SPECint92 and IBS benchmarks to a few of the
hardware-based multiple block fetch techniques mentioned in section 2. Here we present a
comparison of our baseline configuration with a aggressive single block fetch mechanism and

an icache capable of fetching up to the first taken branch.

The components of the single fetch block mechanism are approximately the same size
and access complexity as the trace cache counterparts in the baseline configuration. The
single block mechanism consists of a single cycle, 128KB, 4-way set associative instruction
cache capable of fetching two consecutive cache lines and supplying up to 16 instructions or
until the first control flow instruction each cycle. The next fetch address is generated with
an 8KB branch target buffer. The single branch predictor is a hybrid predictor, consisting
of two components: a 15-bit PAs predictor and a 15-bit gshare predictor. The selection
between the components is done by a 15-bit gshare-style selector. Combining a per-address
predictor with a gshare predictor has been shown to be an effective way of boosting predictor

accuracy [13, 2]. This fetch mechanism is similar to the one used on the Alpha 21264 [12].

We also compare the trace cache to a mechanism where the instruction cache is capable
of supplying a sequential stream of instructions beyond conditional branches which are pre-
dicted to be not taken. This configuration requires the use of a multiple branch predictor
(up to three branches can be fetched) and therefore does not benefit from the high predic-
tion accuracy attainable with the hybrid predictor. We call this scheme the sequential block

icache.

Figure 12 displays the experimental results. The trace cache outperforms both schemes
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for most benchmarks. Listed on the graph are the percentage increases over the single block
icache scheme. On average, the trace cache delivers a performance improvement of 28% over

the single block icache and a 15% improvement over the sequential block icache.

The large boost in performance of the trace cache mechanism comes from a significant
increase in average effective fetch rate — the average number of instructions delivered per
on-path fetch. Our experimental results show (not presented here) that this rate doubles

with a trace cache over the single block icache.

While the increased fetch rate improves the performance of the trace cache mechanism,
the losses due to branch mispredictions and, to a lesser extent, cache misses degrade per-
formance. Our experimental data indicates that the conditional branch misprediction rate

drops from 6.6% with the trace cache to 5.5% with the single block icache.

6 Conclusions

In this paper we have examined some of the critical design parameters of the trace cache
fetch mechanism. The trace cache supplies multiple fetch blocks of instructions each cycle

by storing logically contiguous instruction sequences in physically contiguous storage.

We have demonstrated that the ability to partially match a trace segment provides an av-
erage 14% performance boost over a configuration which requires a complete match. Inactive
issue is a hedge against branch mispredictions and yields 17% improvement over the baseline

and is particularly helpful on benchmarks which suffer from poor prediction accuracy.

We have also demonstrated that trace creation can be done speculatively with no degra-
dation in performance. Creating traces speculatively at issue time may allow for for simpler
implementations. In addition, the latency in creating traces has negligible effects on perfor-

mance.
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When compared with an aggressive single block fetch icache, the trace cache attains an
average performance increase of 28% and attains a 15% improvement over a sequential block
icache. Much of this performance increase comes from the increase in effective fetch rate,

which is twice that of the single block engine.

Because it is a low-complexity technique for delivering high instruction bandwidth, the
trace cache will be an important component of future microprocessors [21]. There remain
many important issues which need resolving. We are currently focusing on quantifying and
reducing instruction redundancy in the trace cache and on developing techniques for creating

longer trace segments.
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