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riti
al design features of a tra
e 
a
he fet
h engine fora 16-wide issue pro
essor and evaluate their e�e
ts on performan
e. We evaluate pathasso
iativity, partial mat
hing, and ina
tive issue, all of whi
h are straightforward extensionsto the tra
e 
a
he. We examine features su
h as the �ll unit and bran
h predi
tor design.In our �nal analysis, we show that the tra
e 
a
he me
hanism attains a 28% performan
eimprovement over an aggressive single blo
k fet
h me
hanism and a 15% improvement overa sequential multi-blo
k me
hanism.Keywords: high bandwidth fet
h me
hanisms, tra
e 
a
he, instru
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a
he, wide issuema
hines, spe
ulative exe
ution1 Introdu
tionA mi
ropro
essor is 
omposed of three fundamental 
omponents: a means to supplyinstru
tions, a means to supply the data needed by these instru
tions, and a means to pro
essthese instru
tions. For high performan
e, the instru
tions and data must be delivered at highrate to a pro
essing 
ore 
apable of e�e
tively 
onsuming them.



Delivering instru
tions at a high rate is not a straightforward task. Several fa
tors degradefet
h engine performan
e. First, 
a
he misses 
ause the fet
h engine to stall and supplynothing until the miss is resolved. Se
ond, bran
h mispredi
tions 
ause the fet
h engine tosupply instru
tions whi
h will later be dis
arded. Third, 
hanges in 
ontrol 
ow inhibit thefet
h engine from produ
ing a full width of instru
tions. Due to the physi
al stru
ture ofinstru
tion 
a
hes, it is diÆ
ult to fet
h both a taken bran
h and its target in the same 
y
le.Table 1 shows the average number of instru
tions between all bran
hes and between takenbran
hes (i.e., taken 
onditional bran
hes, jumps, subroutine 
alls, returns and traps) for theSPECint95 ben
hmarks. Evident from this table is that if partial fet
hes due to bran
hesare not dealt with, then fet
h bandwidth will be limited to an average limit of 9 instru
tionsper 
y
le. 
mprs g

 go ijpeg li m88k perl vrtx avginsts per bran
h 5.57 5.05 6.63 10.40 4.27 4.35 5.21 6.41 5.99insts per taken bran
h 7.78 8.32 9.85 13.51 6.55 5.28 7.94 9.85 8.64Table 1: Instru
tion run lengths when terminating fet
hes on bran
hes.A straightforward te
hnique for dealing with partial fet
hes is to 
onstru
t an instru
tion
a
he where multiple independent fet
hes 
an be performed ea
h 
y
le. To do this, multipleaddresses are used to index into the instru
tion 
a
he via multiple read ports. After the
a
he lines are read, the requested instru
tions must be properly aligned and merged beforethey are supplied for exe
ution. Su
h a solution adds 
onsiderable logi
 
omplexity in analready 
riti
al exe
ution path of the pro
essor. Either 
y
le time will be a�e
ted or extrapipeline stages will be required.Re
ently proposed, the tra
e 
a
he [20, 11, 22, 19℄ over
omes this bandwidth hurdle with-out requiring ex
essive logi
 
omplexity in the instru
tion delivery path. Like an instru
tion
a
he, the tra
e 
a
he is a

essed using the Program Counter. Unlike an instru
tion 
a
he,2



a tra
e 
a
he line 
ontains instru
tions as they appear in exe
ution order, as opposed tothe stati
 order determined by the 
ompiler. Two adja
ent instru
tions in a tra
e 
a
heline need not be adja
ent in the exe
utable image. A tra
e 
a
he line stores a segment ofthe dynami
 instru
tion stream. By pla
ing logi
ally 
ontiguous instru
tions in physi
ally
ontiguous storage, the tra
e 
a
he is able to supply multiple fet
h blo
ks ea
h 
y
le. A fet
hblo
k roughly 
orresponds to a 
ompiler basi
 blo
k { it is a dynami
 sequen
e of instru
tionsstarting at the 
urrent fet
h address and ending at the next 
ontrol instru
tion.In addition to in
reasing the delivered instru
tion bandwidth by in
reasing the e�e
tivefet
h rate (the average number of 
orre
t instru
tions issued for ea
h fet
h that returns on-path instru
tions), 
a
hing instru
tions as tra
e segments makes repro
essing them easier.Sin
e instru
tions are written into the tra
e 
a
he after being de
oded, de
ode bits are storedalong with ea
h instru
tion minimizing the pro
essing required when it is fet
hed again.In this paper, we evaluate several extensions of the tra
e 
a
he su
h as partial mat
hing,path asso
iativity, and ina
tive issue. We also examine some of the key 
omponents of thetra
e 
a
he fet
h me
hanism su
h as the �ll unit and multiple bran
h predi
tor.2 Related WorkCa
he organizations for simultaneously fet
hing multiple blo
ks have been studied byYeh et al [28℄, Conte et al [4℄ and Sezne
 et al [24℄. By multiporting the instru
tion 
a
heand/or the bran
h target bu�er (BTB) and generating multiple fet
h addresses and bran
hpredi
tions per 
y
le, these s
hemes are able to over
ome the single fet
h blo
k bottlene
k.There are several 
ompile-time approa
hes to solving the fet
h bottlene
k problem. WithBlo
k-Stru
tured ISAs [14, 8℄, superblo
k s
heduling [9℄ and tra
e s
heduling [5, 3℄, the stati
form of the program is organized by the 
ompiler into longer sequential units 
omposed of3



multiple basi
 blo
ks.Melvin and Patt [15℄ dis
uss the performan
e impli
ations of the �ll unit and the idea ofdynami
ally 
ombining fet
h blo
ks into larger \exe
ution atomi
 units" (EAUs) to furtherin
rease the fet
h bandwidth is �rst proposed. In 1994, Peleg and Weiser �led a patent onthe tra
e 
a
he 
on
ept [20℄. A similar 
on
ept was proposed by Johnson [11℄. The 
on
eptwas further investigated by Rotenberg et al [22℄. They presented a thorough 
omparison be-tween the tra
e 
a
he s
heme and several hardware-based high-bandwidth fet
h s
hemes andshowed the advantage of using a tra
e 
a
he, both in performan
e and laten
y. Extensionsand analysis of the tra
e 
a
he me
hanism were proposed by Patel et al [19, 6, 18℄ and tra
e
a
he impli
ations on pro
essor design were presented in [23℄. A similar approa
h to 
a
hingdynami
 instru
tion groups was presented in the DIF 
a
he by Nair and Hopkins [17℄.3 The Tra
e Ca
he Fet
h Me
hanismWe divide the tra
e 
a
he fet
h me
hanism into four major 
omponents: a tra
e 
a
he, a�ll unit, a multiple bran
h predi
tor, and a 
onventional instru
tion 
a
he. The tra
e 
a
heis the main sour
e of instru
tion supply and is �lled with tra
e segments by the �ll unit.The spe
ulative sequen
ing of segments is performed by the multiple bran
h predi
tor. Theinstru
tion 
a
he plays an important but supporting role, handling 
ases when the requiredinstru
tions are not found in the tra
e 
a
he. A high-level diagram of the me
hanism isshown in �gure 1.In this se
tion, we provide the details of a fet
h engine for a 16-wide issue dynami
ally-s
heduled ma
hine. To meet the instru
tion bandwidth demands of this ma
hine, 16 instru
-tions and three 
onditional bran
hes 
an be fet
hed per 
y
le.
4



3.1 The Tra
e Ca
heThe tra
e 
a
he stores segments of the dynami
 instru
tion stream, exploiting the fa
tthat many bran
hes tend to favor one out
ome. If blo
k A is followed by blo
k B whi
h inturn is followed by blo
k C at a parti
ular point in the exe
ution of a program, there is astrong likelihood that they will be exe
uted in that order again. After the �rst time theyare exe
uted in this order, they are stored in the tra
e 
a
he as a single entry. Subsequentfet
hes of blo
k A from the tra
e 
a
he provide blo
ks B and C as well.Figure 2 shows an example of a tra
e 
a
he fet
h 
y
le. A request is made with theaddress of blo
k A. The tra
e 
a
he responds with a hit and drives out the sele
ted segment
omposed of the blo
ks A, B, and C. The predi
tion stru
tures are a

essed 
on
urrentlywith the tra
e 
a
he. At the end of the 
y
le, the segment is mat
hed with the predi
tion.Suppose the predi
tor sele
ts the path ABD. Then only blo
ks A and B are supplied. Blo
kD is requested in the following 
y
le. The 
on
ept of supplying only the mat
hing portionof a tra
e 
a
he line is 
alled partial mat
hing and its impli
ations will be examined inse
tion 5.1.The tra
e 
a
he 
an store segments 
ontaining up to 16 instru
tions, 3 of whi
h maybe 
onditional bran
hes. The line is a

essed by the address of the �rst instru
tion in thesegment. The organization of the tra
e 
a
he is similar to that of a 
onventional instru
tion
a
he, as the lines may be arranged in an asso
iative manner. A hit is determined by a tagmat
h.Ea
h line of the tra
e 
a
he 
ontains:� 16 slots for instru
tions. Instru
tions are stored in de
oded form and o

upy approxi-mately �ve bytes for a typi
al ISA. Up to three bran
hes 
an be stored per line. Ea
hinstru
tion is marked with a two-bit tag indi
ating to whi
h blo
k it belongs.5
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� Four target addresses. With three basi
 blo
ks per segment and the ability to fet
hpartial segments, there are four possible targets to a segment. The four addresses areexpli
itly stored allowing immediate generation of the next fet
h address, even for 
aseswhere only a partial segment mat
hes.� Path information. This �eld en
odes the number and dire
tions of bran
hes in thesegment and in
ludes bits to identify whether a segment ends in a bran
h and whetherthat bran
h is a return from subroutine instru
tion. In the 
ase of a return instru
tion,the return address sta
k provides the next fet
h address.The total size of a line is around 97 bytes for a typi
al ar
hite
ture: 5x16 bytes ofinstru
tions, 4x4 bytes of target addresses, and 1 byte of path information.Instru
tion dependen
ies within a tra
e segment are predetermined before the segmentis stored in the tra
e 
a
he. This additional information allows for minimal de
oding whenthe segment is fet
hed from the tra
e 
a
he. Sour
e operands produ
ed by an instru
tionoutside the segment are expli
itly marked as requiring an external value. Instru
tions whi
hprodu
e a live-out value are marked as requiring a physi
al register. It is important to notethat a 
omplex dependen
y analysis a
ross 16 instru
tions does not need to be performed onsegments fet
hed from the tra
e 
a
he. The 
on
ept of expli
itly marking internal/externalregister values within a basi
 blo
k was �rst des
ribed by Sprangle and Patt [25℄ and lateradapted for use with the tra
e 
a
he by Vajapeyam and Mitra [27℄.Instru
tions within a segment 
an be arranged in an order that permits qui
k issue.Be
ause the dependen
ies within a segment are expli
itly marked, the ordering of instru
tions
arries no signi�
an
e. Instru
tions within the 
a
he line 
an be arranged to mitigate therouting required to forward instru
tions to fun
tional unit reservation stations. Friendlyet al [7℄ examine a s
heme where instru
tions within a segment are ordered to redu
e the
ommuni
ation delays asso
iated with data forwarding a
ross many fun
tional units.7



3.2 The Fill UnitThe �ll unit 
olle
ts instru
tions as they are issued by the pro
essor and 
ombines theminto tra
e segments. Con
eptually, the instru
tions (in units of blo
ks) are lat
hed by the�ll unit in the order they were fet
hed. The �ll unit merges the arriving blo
ks with blo
kslat
hed in previous 
y
les. The merge pro
ess involves 
reating dependen
y information andreordering instru
tions. The pro
ess 
ontinues until the segment be
omes �nalized, at whi
hpoint the segment is written into the tra
e 
a
he.A segment be
omes �nalized when1. it 
ontains 16 instru
tions, or2. it 
ontains 3 
onditional bran
hes, or3. it 
ontains a single indire
t jump, return, or trap instru
tion, or4. merging the in
oming blo
k would result in a segment larger than 16 instru
tions.Rule 1 is implied by the size of the tra
e 
a
he line and rule 2 by the number of predi
tionssupplied per 
y
le by the predi
tor. Be
ause their targets vary, return instru
tions andindire
t jumps 
ause �nalization (rule 3). Un
onditional bran
hes and subroutine 
alls donot a�e
t tra
e segment �nalization.Be
ause blo
ks are being 
ombined in a greedy fashion, there are 
ases where the �llunit stores multiple 
opies of basi
 blo
ks in the tra
e 
a
he. Figure 3 shows a simple loop
omposed of �ve basi
 blo
ks. The �ll unit 
an potentially 
reate �ve di�erent tra
e segments
ontaining portions of this loop, all of whi
h 
an be simultaneously resident in the tra
e 
a
he.This blo
k redundan
y may degrade performan
e of the tra
e 
a
he me
hanism by displa
inguseful lines with redundant information. The tradeo� is between higher bandwidth fromfet
hing larger segments versus lost bandwidth due to in
reased misses in the tra
e 
a
he.8



The problem arises be
ause of blo
ks where several exe
ution paths merge, su
h as blo
k Bin �gure 3.Rule 4 above treats basi
 blo
ks as atomi
 entities. A basi
 blo
k is not split a
ross twosegments unless the blo
k is larger than 16 instru
tions. In addition to exa
erbating theblo
k redundan
y problem, splitting a basi
 blo
k 
reates an additional blo
k that may taxother stru
tures su
h as the bran
h predi
tor. A study of e�e
tive te
hniques for splittingblo
ks was done by Patel et al [18℄.Three out
omes are possible with the arrival of ea
h new blo
k of instru
tions: (1) thearriving blo
k is merged with the un�nalized segment and the new, larger segment is not�nalized. (2) the entire arriving blo
k 
annot be merged with the awaiting segment. Theawaiting segment is �nalized and the arriving blo
k now o

upies the �ll unit. (3) thearriving blo
k is 
ompletely merged with the awaiting segment and the new, larger segmentis �nalized.3.3 The Bran
h Predi
torThe bran
h predi
tor is a 
riti
al 
omponent in a high bandwidth fet
h me
hanism. Tomaintain a high rate of instru
tion supply, the predi
tor needs to make multiple a

uratebran
h predi
tions per 
y
le. In the 
ase of our tra
e 
a
he me
hanism, three predi
tionsper 
y
le are required.Two level adaptive bran
h predi
tion has been demonstrated to a
hieve high predi
tiona

ura
y over a wide set of appli
ations [29℄. In a two level s
heme, the �rst level of historyre
ords the out
omes of the most re
ently exe
uted bran
hes. The se
ond level of history,stored in the pattern history table (PHT), re
ords the most likely out
ome when a parti
ularpattern in the �rst level history is en
ountered. In typi
al s
hemes, the PHT 
onsists ofsaturating two-bit 
ounters. 9



To make three predi
tions per 
y
le, we expand ea
h PHT entry from a single two-bit
ounter into three two-bit 
ounters, with ea
h two-bit 
ounter providing a predi
tion for afet
hed bran
h. Evaluation of this PHT entry organization versus several others is providedin se
tion 5.5.The baseline 
on�guration for the tra
e 
a
he predi
tor uses the gshare s
heme outlinedby M
Farling [13℄. The global bran
h history is XORed with the 
urrent fet
h address,forming an index into the PHT. This hashing better utilizes the PHT and improves predi
tiona

ura
y over other global history based s
hemes.The bran
h predi
tor also 
ontains a return address sta
k to predi
t the target addressesof return instru
tions.3.4 The Instru
tion Ca
heA 
onventional instru
tion 
a
he supports the tra
e 
a
he by supplying instru
tions whenthe tra
e 
a
he does not 
ontain the requested segment. Sin
e hitting in the tra
e 
a
he is thefrequently o

urring 
ase, the supporting i
a
he need not be enhan
ed for higher bandwidth.The i
a
he therefore supplies up to one fet
h blo
k per 
y
le.The instru
tion 
a
he has two read ports to allow adja
ent 
a
he lines to be retrievedea
h 
y
le. By fet
hing two 
a
he lines and realigning instru
tions, the fet
h me
hanismover
omes partial fet
hes due to 
a
he line boundaries.In the 
ase of a tra
e 
a
he miss and an instru
tion 
a
he hit, up to a single basi
 blo
kis supplied at the end of the 
y
le. If both the tra
e 
a
he and instru
tion 
a
he miss, thena request for the missing instru
tion 
a
he line is made to the se
ond level 
a
he. The fet
hme
hanism stalls until the missing line arrives.
10



4 Experimental SetupA pipeline simulator that allows the modeling of wrong path e�e
ts was used as theexperimental model. The simulator was implemented using the SimpleS
alar 2.0 tool suiteand instru
tion set [1℄, whi
h is a superset of the MIPS-IV ISA. In the exe
ution model, allinstru
tions undergo four stages of pro
essing: fet
h, issue, s
hedule, exe
ute. Ea
h stagetakes at least one 
y
le.The baseline fet
h engine, 
apable of supplying up to 16 instru
tions per 
y
le, in
ludesa large 2K entry (approximately 128KB for instru
tion storage), 4-way set asso
iative tra
e
a
he and a 4KB, 4-way instru
tion 
a
he. Ea
h tra
e 
a
he line 
ontains up to 16 instru
-tions, 
ontaining at most three 
onditional bran
hes. To assist in the generation of targetaddresses for fet
hes from the i
a
he, a 1KB bran
h target bu�er (BTB) is in
luded. A 1MBuni�ed se
ond level 
a
he provides instru
tion and data with a laten
y of 8 
y
les in the
ase of �rst level 
a
he misses. The L2 miss laten
y to memory is 50 
y
les. The baselinebran
h predi
tor modeled is a 15-bit version of the gshare predi
tor des
ribed in se
tion 3.3and provides up to three individual 
onditional bran
h predi
tions ea
h 
y
le. The size ofthe pattern history table is �xed at 32K entries 
onsisting of 3 two-bit 
ounters (24KB ofstorage). An ideal return address sta
k is modeled.The exe
ution engine is 
omposed of 16 fun
tional units, ea
h with a 32-entry reservationstation. The fun
tional units are uniform and 
apable of all operations. A 64KB L1 data
a
he was used. The model uses 
he
kpoint repair [10℄ to re
over from bran
h mispredi
tionsand ex
eptions. The exe
ution engine is 
apable of 
reating up to three 
he
kpoints ea
h
y
le, one for ea
h fet
h blo
k supplied. The memory s
heduler waits for addresses tobe generated before s
heduling memory operations. No memory operation 
an bypass astore with an unknown address. Sin
e this study is 
on
erned with the fet
h engine, many
omponents of the exe
ution engine are modeled at very aggressive design points thereby11



redu
ing the potential for the ba
kend to indu
e bottlene
ks whi
h may obs
ure bottlene
ksin the frontend.All experiments were performed on the SPECint95 ben
hmarks and on a ben
hmark suite
onsisting of several 
ommon C appli
ations [26℄. Table 2 lists the number of instru
tionssimulated and the input set, if the input was derived from a standard input set1. Allsimulations were run until 
ompletion (ex
ept li and ijpeg, 500M instru
tions).Ben
hmark Inst Count Input Set
ompress 95M test.ing

 157M jump.igo 151M 2stone9.inijpeg 500M penguin.ppmli 500M train.lspm88ksim 493M dhry.testperl 41M s
rabbl.plvortex 214M vortex.in
hess 119Mghosts
ript (gs) 180Mpgp 322Mplot 284Mpython 220Msim-outorder (ss) 100Mtex 164MTable 2: Ben
hmarks and datasets used. All ben
hmarks, ex
ept li and ijpeg, were simulatedto 
ompletion.1Vortex and go were simulated with abbreviated versions of the SPECint95 test input set. Compress wassimulated on a modi�ed version of the test input with an initial list of 30000 elements.
12



5 Criti
al IssuesIn this se
tion, we use the experimental baseline to evaluate several design enhan
ementsand 
on�gurations of the tra
e 
a
he.5.1 Partial Mat
hingEa
h fet
h 
y
le, the predi
tions made by the bran
h predi
tor are used to sele
t whi
hblo
ks within the a

essed segment will be issued to the exe
ution engine. This pro
ess isreferred to as partial mat
hing [22, 6℄. Alternatively, the tra
e 
a
he 
an be designed tosignal a hit only if all the blo
ks within the sele
ted segment mat
h; otherwise a miss issignaled. Figure 4 shows the performan
e di�eren
e between a tra
e 
a
he that implementspartial mat
hing and one that does not. The average performan
e improvement for theseben
hmarks is 14%.With partial mat
hing, the number of requests that miss both the tra
e 
a
he and smalli
a
he drops signi�
antly be
ause of the more 
exible poli
y for mat
hing valid lines. If thei
a
he were made larger, the relative bene�t with partial mat
hing would be expe
ted todiminish.5.2 Path Asso
iativityPath asso
iativity relaxes the 
onstraint that di�erent segments starting from the samefet
h blo
k 
annot be stored in the tra
e 
a
he at the same time. Path asso
iativity allowssegments ABC and ABD (see �gure 2) to reside 
on
urrently in the 
a
he whereas a non-path asso
iative tra
e 
a
he allows only one segment starting at A to be resident in the tra
e
a
he at any instan
e in time. 13
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The data plotted in Figure 5 indi
ate that path asso
iativity has little e�e
t on theperforman
e of the baseline tra
e 
a
he. Adding path asso
iativity in
reases the number ofsegments that map into a parti
ular set; thus additional misses may o

ur due to in
reasedset 
on
i
ts. Therefore the experiment was 
ondu
ted on a path-asso
iative tra
e 
a
he withset-asso
iativity of 4 and of 8. In both 
ases, the performan
e gain from path-asso
iativityis slight.Path asso
iativity requires extra gates in the tra
e sele
tion logi
 to sele
t the longestmat
hing tra
e segment. It is likely that the line sele
tion time for the path asso
iative 
a
hewill be longer, possibly in
reasing 
a
he 
y
le time.5.3 Ina
tive IssuePartial mat
hing in
reases the number of instru
tions that are issued ea
h 
y
le but itdoes not take advantage of the entire segment of instru
tions fet
hed from the tra
e 
a
he.Blo
ks within the tra
e 
a
he segment whi
h do not mat
h the predi
ted path are dis
arded.As long as the predi
tion is 
orre
t, this does not impa
t the e�e
tive fet
h rate of thepro
essor. If the predi
tion is in
orre
t however, an opportunity to issue a greater numberof 
orre
t instru
tions has been missed.With ina
tive issue [6℄ all blo
ks within a tra
e 
a
he line are issued into the pro
essor
ore whether or not they mat
h the predi
ted path. The blo
ks that do not mat
h thepredi
tion are said to be issued ina
tively. Although these ina
tive instru
tions are renamedand re
eive physi
al registers for their destination values, the 
hanges they make to theregister alias table [10℄ are not 
onsidered valid for subsequent issue 
y
les. Thus instru
tionsalong the predi
ted path view the spe
ulative state of the pro
essor exa
tly as if the ina
tiveblo
ks had not been issued. When the bran
h that ended the last a
tive blo
k resolves,if the predi
tion was 
orre
t, the ina
tive instru
tions are dis
arded. If the predi
tion was15



in
orre
t, the pro
essor has already fet
hed, issued and possibly exe
uted some instru
tionsalong the 
orre
t path.Ina
tive issue redu
es the impa
t of bran
h mispredi
tions. It allows a portion of thebran
h resolution laten
y to be hidden by making some 
orre
t path instru
tions (whi
hfollow a mispredi
ted bran
h) available for pro
essing earlier. When the mispredi
ted bran
hresolves, the re
overy state of the pro
essor is further along the 
orre
t path than it wouldhave been if the ina
tive instru
tions had not been issued.To implement ina
tive issue, modi�
ations must be made to the renaming and re
overystru
tures. Our exe
ution model uses a 
he
kpointed register alias table to maintain boththe ar
hite
tural and spe
ulative state of the pro
essor. The 
hanges needed to implementina
tive issue in
lude adding an a
tive bit to ea
h 
he
kpoint in the table. As the 
he
kpointsare 
reated, this bit is set if the instru
tions in the 
orresponding blo
k are issued a
tively andthe bit is 
leared if the instru
tions are issued ina
tively. The most re
ent a
tive 
he
kpoint isused as the spe
ulative state of the ma
hine when new instru
tions are issued. When a bran
hresolves and is determined to be mispredi
ted, the ina
tive 
he
kpoints immediately followingthe resolved 
he
kpoint be
ome a
tive and all subsequent 
he
kpoints, 
orresponding toinstru
tions along the in
orre
t path, are 
ushed from the pipelines and the instru
tionwindow. The fet
h pro
eeds from the target of the newly a
tivated 
he
kpoint. If the bran
hwas 
orre
tly predi
ted, the ina
tive 
he
kpoints are simply invalidated on
e its out
ome isknown.Figure 6 illustrates the blo
ks issued from a fet
hed 
a
he line by the three di�erentpoli
ies.Figure 7 presents the performan
e bene�ts of ina
tive issue. Over the baseline 
on�g-uration, ina
tive issue o�ers a 17% performan
e boost. However, 
omparing �gure 7 with�gure 4, one 
an noti
e a slight 3% in
rease from ina
tive issue over partial mat
hing. In-16
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a
tive issue is an extension of partial mat
hing, and designed as a hedge against bran
hmispredi
tions. The value of ina
tive issue is greater for less a

urate bran
h predi
tion. Forexample, ina
tive issue is more helpful on programs whi
h are harder on the bran
h predi
toras shown in the boost gained on g

, go, and pgp.5.4 Fill Unit Issues5.4.1 Blo
k Colle
tionThe �ll unit 
olle
ts blo
ks of instru
tions as they are pro
essed and produ
es segmentsto store into the tra
e 
a
he. The �ll unit 
an 
olle
t these blo
ks at any point in thepro
essor pipeline. In this experiment, we determine whether the blo
ks should be 
olle
tedas instru
tions are issued into the instru
tion window or when they are retired.Figure 8 shows that the di�eren
es in performan
e between the two s
hemes are slight.For many ben
hmarks, the spe
ulative segment 
reation is bene�
ial, while for some (g

,go), it degrades performan
e. The �ll unit 
olle
ting instru
tions at issue time providesin
reased traÆ
 to the tra
e 
a
he be
ause segments 
olle
ted while exe
uting on a wrongexe
ution path are also written into the tra
e 
a
he. In some 
ases this generates usefulsegments, but in other 
ases it evi
ts useful segments from the tra
e 
a
he. The baseline
on�guration 
olle
ts blo
ks at retire time.A �ll unit that 
olle
ts at retire time only writes segments from the 
orre
t exe
utionpath to the tra
e 
a
he. However, it su�ers from an in
reased laten
y between the initialfet
h of a blo
k and its 
olle
tion into a segment and subsequent storage into the tra
e 
a
he.This 
an potentially impa
t the �rst few iterations of a tight loop, whi
h will be fet
hed fromthe instru
tion 
a
he until the �rst iteration retires. In the next se
tion we show that thisis not a signi�
ant in
uen
e on performan
e.18



comp gcc go ijpeg li m88k perl vor ch gs pgp plot py ss tex
Benchmarks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

In
st

ru
ct

io
ns

 P
er

 C
yc

le

Baseline
With Inactive Issue

  8%

 28%

 13%

  4%

 17%
 10%

 23%

 14%

 14%
 20%

  8%
 10%

 27%

 42%

 11%

Figure 7: Performan
e of Ina
tive Issue.

comp gcc go ijpeg li m88k perl vor ch gs pgp plot py ss tex
Benchmarks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

In
st

ru
ct

io
ns

 P
er

 C
yc

le

Retire Time (Baseline)
Issue Time

Figure 8: Issue vs. Retire. This plot shows that 
olle
ting instru
tions at issue time is notvery di�erent from 
olle
ting instru
tions at retire time.19



5.4.2 Fill Unit Laten
yAs blo
ks of instru
tions are lat
hed into the �ll unit, some pro
essing is required be-fore the 
omposite segment 
an be written to the tra
e 
a
he. The dependen
ies withinthe arriving blo
k must be re
orded to re
e
t the values produ
ed by the awaiting blo
ks.Possibly, the instru
tions within the segment may need to be reordered so that they 
an bequi
kly routed to fun
tional unit node tables when the segment is refet
hed. To performthese operations, the �ll unit may require several 
y
les.The purpose of this experiment is to determine the sensitivity of the tra
e 
a
he fet
hme
hanism to �ll unit laten
y. Figure 9 shows the results of varying the number of 
y
lesfrom the arrival of the terminal blo
k to the point it is written into the tra
e 
a
he.The results show that a �ll unit with a 10-
y
le laten
y has a negligible loss in performan
eover a single-
y
le �ll unit. There are two reasons for this 
ounter-intuitive behavior. First,the next fet
h of that segment usually does not o

ur within the next 10-
y
les. Se
ond, if itdoes, it 
an be supplied by the i
a
he (whi
h is likely to 
ontain the fet
h blo
k as it re
entlysatis�ed the original request for the blo
k). For some ben
hmarks (e.g., gs), a longer �llunit laten
y results in a slightly higher performan
e. A longer laten
y sometimes delays therepla
ement of a useful tra
e 
a
he segment with a less useful one.5.5 Bran
h Predi
tor IssuesThe multiple bran
h predi
tor is a 
ru
ial element of the tra
e 
a
he fet
h me
hanism. Ifthe tra
e 
a
he is not supported by a predi
tor 
apable of making a

urate predi
tions, gainsin e�e
tive fet
h rate will be o�set by losses from more dis
arded fet
hes, likely resulting ina loss in performan
e.In this se
tion we examine several organizations for the pattern history table (PHT).20



A pattern history table entry 
ontains the most likely bran
h out
ome when a parti
ularpattern is en
ountered in the �rst level history. For our baseline multiple bran
h predi
tor,we are using a pattern history table entry 
omposed of 3 two-bit saturating 
ounters.This entry format was derived as a 
ost-e�e
tive version of the s
heme used in [19, 6℄where a PHT entry is 
omposed of 7 two-bit 
ounters. Figure 10 shows how the seven
ounters are used to supply three predi
tions per 
y
le. The �rst two-bit 
ounter suppliesthe predi
tion for the �rst bran
h and is used to sele
t whi
h of two two-bit 
ounters suppliesthe predi
tion for the se
ond bran
h. Both predi
tions are used to sele
t one of four two-bit
ounters to supply the predi
tion for the third bran
h. All three predi
tions are made witha single a

ess to the PHT.The 
on�gurations evaluated in this experiment in
lude the 7 
ounter s
heme, the 3
ounter s
heme, and a s
heme presented by Menezes et al [16℄ where ea
h PHT entry 
ontainsthe most likely path through a program subgraph 
ontaining 3 bran
hes. In this s
heme,the PHT entries are 4 bits wide: 3 bits to en
ode the likely path (8 paths are possible)and a fourth bit whi
h re
ords the likeliness of this path. Figure 11 shows the performan
e
omparison of the various PHT s
hemes. The size of the predi
tor is kept roughly 
onstant.The 7 
ounter s
heme uses 14 bits of history and requires 32KB of storage, the 3 
ounters
heme uses 15 bits of history and requires 24KB of storage, the likely path s
heme uses 16bits of history and requires 32KB of storage.In general, the 3 
ounter s
heme slightly outperforms the other two s
hemes. It outper-forms the 7 
ounter s
heme be
ause of better utilization: many 
ounters within an entry inthe 7 
ounter s
heme are likely to go unused be
ause of the prevalen
e of biased bran
hes.The 3 
ounter s
heme outperforms the likely path s
heme be
ause of more hysteresis.
21
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y is not a major in
uen
e on performan
e.
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ond and B2 is for the third.
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5.6 Comparison to an Aggressive Single Blo
k Me
hanismThe experiments thus far have evaluated various design options for the tra
e 
a
he fet
hme
hanism. We provide a 
omparison of the enhan
es tra
e 
a
he to the 
urrent dominantte
hniques for fet
h engine design. Rotenberg et al. [22℄ presented a thorough 
omparisonof the tra
e 
a
he's performan
e on the SPECint92 and IBS ben
hmarks to a few of thehardware-based multiple blo
k fet
h te
hniques mentioned in se
tion 2. Here we present a
omparison of our baseline 
on�guration with a aggressive single blo
k fet
h me
hanism andan i
a
he 
apable of fet
hing up to the �rst taken bran
h.The 
omponents of the single fet
h blo
k me
hanism are approximately the same sizeand a

ess 
omplexity as the tra
e 
a
he 
ounterparts in the baseline 
on�guration. Thesingle blo
k me
hanism 
onsists of a single 
y
le, 128KB, 4-way set asso
iative instru
tion
a
he 
apable of fet
hing two 
onse
utive 
a
he lines and supplying up to 16 instru
tions oruntil the �rst 
ontrol 
ow instru
tion ea
h 
y
le. The next fet
h address is generated withan 8KB bran
h target bu�er. The single bran
h predi
tor is a hybrid predi
tor, 
onsistingof two 
omponents: a 15-bit PAs predi
tor and a 15-bit gshare predi
tor. The sele
tionbetween the 
omponents is done by a 15-bit gshare-style sele
tor. Combining a per-addresspredi
tor with a gshare predi
tor has been shown to be an e�e
tive way of boosting predi
tora

ura
y [13, 2℄. This fet
h me
hanism is similar to the one used on the Alpha 21264 [12℄.We also 
ompare the tra
e 
a
he to a me
hanism where the instru
tion 
a
he is 
apableof supplying a sequential stream of instru
tions beyond 
onditional bran
hes whi
h are pre-di
ted to be not taken. This 
on�guration requires the use of a multiple bran
h predi
tor(up to three bran
hes 
an be fet
hed) and therefore does not bene�t from the high predi
-tion a

ura
y attainable with the hybrid predi
tor. We 
all this s
heme the sequential blo
ki
a
he.Figure 12 displays the experimental results. The tra
e 
a
he outperforms both s
hemes23



for most ben
hmarks. Listed on the graph are the per
entage in
reases over the single blo
ki
a
he s
heme. On average, the tra
e 
a
he delivers a performan
e improvement of 28% overthe single blo
k i
a
he and a 15% improvement over the sequential blo
k i
a
he.The large boost in performan
e of the tra
e 
a
he me
hanism 
omes from a signi�
antin
rease in average e�e
tive fet
h rate | the average number of instru
tions delivered peron-path fet
h. Our experimental results show (not presented here) that this rate doubleswith a tra
e 
a
he over the single blo
k i
a
he.While the in
reased fet
h rate improves the performan
e of the tra
e 
a
he me
hanism,the losses due to bran
h mispredi
tions and, to a lesser extent, 
a
he misses degrade per-forman
e. Our experimental data indi
ates that the 
onditional bran
h mispredi
tion ratedrops from 6.6% with the tra
e 
a
he to 5.5% with the single blo
k i
a
he.6 Con
lusionsIn this paper we have examined some of the 
riti
al design parameters of the tra
e 
a
hefet
h me
hanism. The tra
e 
a
he supplies multiple fet
h blo
ks of instru
tions ea
h 
y
leby storing logi
ally 
ontiguous instru
tion sequen
es in physi
ally 
ontiguous storage.We have demonstrated that the ability to partially mat
h a tra
e segment provides an av-erage 14% performan
e boost over a 
on�guration whi
h requires a 
omplete mat
h. Ina
tiveissue is a hedge against bran
h mispredi
tions and yields 17% improvement over the baselineand is parti
ularly helpful on ben
hmarks whi
h su�er from poor predi
tion a

ura
y.We have also demonstrated that tra
e 
reation 
an be done spe
ulatively with no degra-dation in performan
e. Creating tra
es spe
ulatively at issue time may allow for for simplerimplementations. In addition, the laten
y in 
reating tra
es has negligible e�e
ts on perfor-man
e. 24
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When 
ompared with an aggressive single blo
k fet
h i
a
he, the tra
e 
a
he attains anaverage performan
e in
rease of 28% and attains a 15% improvement over a sequential blo
ki
a
he. Mu
h of this performan
e in
rease 
omes from the in
rease in e�e
tive fet
h rate,whi
h is twi
e that of the single blo
k engine.Be
ause it is a low-
omplexity te
hnique for delivering high instru
tion bandwidth, thetra
e 
a
he will be an important 
omponent of future mi
ropro
essors [21℄. There remainmany important issues whi
h need resolving. We are 
urrently fo
using on quantifying andredu
ing instru
tion redundan
y in the tra
e 
a
he and on developing te
hniques for 
reatinglonger tra
e segments.7 A
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