. ?§%1‘f151’ (; N “L;91*WLaanv

“PRELIMINARY DISCUSSION OF THE LOGICAL
DESIGN OF AN ELECTRONIC COMPUTING INSTRUMENT

by
Arthur W.:Eggks

Herman H. Goldstine
John :von Neumann

:

‘ W
M
R 7y

PREFACE TO FIRST EDITION

This report has been prepared in accordance with the terms of Contract
W-36-034-CRD-7481 between the Research and Development Service, Ordnance Department,
U. S. Army and the Institute for Advanced Study. It is intended as the first of two
papers dealing with some aspects of the overall logical considerations arising in '
connection with electronic computing machines. An attempt is made to give in this,
the first half of the report, a general picture of the type of instrument now under
consideration and in the second half a study of how actual mathematical problems can
be coded, i.e., prepared in the language the machine can understand.

It is the present intention to issue from time to time reports covering
the various phases of the project. These papers will appear whenever it is felt
sufficient work has been done on a given aspect, either logical or experimental to
Justify its being reported.

The authors also wish to express their thanks to Dr. John Tukey, of
Princeton University, for many valuable discussions and suggestions.. ’

Arthur W. Burks
Herman H. Goldstine
John von Neumann

The Institute for Advanced Study
28 June 1946

PREFACE TO SECOND EDITION

In this edition the sections dealing with the arithmetic organ have been
considerably expanded and a more complete account of the arithmetic processes given. In
addition certain sections have been brought up to date in the light of engipeering
advances made in our laboratory. .

Arthur W. Burks
Herman H. Goldstine
John. von Neumann

The Institute for Advanced Study
2 September 1947

ALPHABETIC LIST OF ABBREVIATIONS AND
SPECIAL TERMINI

Accumulator

Addition (binary)
Arithmetic Register

Binary Arithmetic (examples)
Complement, Complementation
Control g
Control Counter

Control Register

Division (binary)

Not restoring Divisi m
Restoring Division

Floating Binary Point
Function Table Register
Memory Location Number
Multiplication (binary)
Round-Of f

Selectron Register

Substitution Order

Partial Substitution Order
Total Substitutim Order

Subtraction (binary)

Transfer Order

Conditional .Transfer Order
Uncanditional Transfer Order

Word

Symbol

First occurrence or
discussion

8 8

pp- 9, 12
9-11
13
26-29
12

31
31

2326

23
23

23, 37-38
31

13-19
19-22
7, 13
36

11-13
31-32

TABLE OF CONTENTS

Preface to First Edition

PRreface to Second Edition

Alphabetic List of Abbreviations and Special‘Termini

1.0 Principal Components of the Machine
1.1

Pt b et
s . s

QN W N

Introduction

Storage and execution of orders

Use of one memary organ for both orders and numbers
The Control

The Arithmetic Organ

Input and Output Organs

2.0 First Remarks on the Memory

2

.1

Intr aduction

2.2 Memory requirements of various types of problems

2

.3

Size of memory

8.0 First Remarks on the Control and Code

LWWWWwww

.1
.2
.3
.4
.
.6
N

Introduction

Arithmetic orders

Memory substitution orders
Transfer of orders to the Control
Shifting the Control
Input-output orders

Conclusion

4.0 The Memory Organ

Lt st ek et ok a
OO e WA

Types of memory

Choice of Selectron for memoty

Choice of parallel representatiom of numbers
Switching Selectrms in parallel
Requirements of wire memory

Library of wires

Making and reading wires

Visual indication of results

Selectr o Register

Page

-

B bR WWWWW W RNN N e

NN NN O

TABLE OF CONTENTS (cont'd)

‘5.0 The Arithmetic Organ

Hwi-is&'stbmha\b:kwhu

I RV R N R R N R R R N T

"W

Introduction

Choice of binary system

Floating binary point

Choice of built-in arithmetic operations

The Accumilator and addition

Average length of carry sequences

The binary point, negative numbers and subtraction
Multiplication ' '

The binary point and multiplication

Complement corrections for multiplication
Multiplication in static and dynamic Accumulators
Round-off procedures

Addition with the floating binary point

‘Division :

Examples

6.0 The Control

oo o oo o
o e o

Introduction

Switching the memory

Decoding orders

Transfer of orders to the Control
Synchronized Control circuits
Orders for the internal operations

6.6.1 .Addition

6.6.2 Register transfers

6.6.3 Multiplication

6.6.4 Division

6.6.5 Memay substitution

6.6.6 Shift of Control

6.6.7 Unit shifts and the floating binary point

Timing circuits
Input-output orders

6.8.1 Wire orders

6.8.2 Binary decimal converaien
6.8.3 Viewing tubes

6.8.4 Input-output equipment
6.8.5 Finish signal

Table I: Summary of orders for the internal operations.

PRELIMINARY DISCUSSION OF THE LOGICAL DESIGN OF
AN ELECTRONIC COMPUTING INSTRUMENT

L8 Prifcipal Comg@mtsﬁpf) the:Machine,

1.1 Inasmuch as the completed device will be a general-purpose computing
machine it should contain certain main organs relating to arithmetic, memory-storage,
control and connection with the human operator. It is intended that the machine be fully
automatic in character, i.e., independent of the human operator after the computation
starts. A fuller discussion of the implications of this remark will be given in 3 below.

1.2 It is evident that the machine must be capable of storing in some
manner not only the digital information needed in a given computation such as boundary
_values, tables of functions (such as the equation of state of a fluid) and also the inter-
mediate results of the computation (which may be wanted for varying lengths of time), but
also the instructions which govern the actual routine to be performed on the numerical data.
In a special-purpose machine these instructions are an integral part of the device and
constitute a part of its design structure. For an all-purpose machine it must be possible
to instruct the device to carry out any whatsoever computation that can be formulated in
numerical terms. Hence there must be some organ capable of storing these program orders.
There must, moreover, be a unit which can understand these instructions and erder their
execution.

1.3 Conceptually we have discussed above two different forms of memory:
Storage of nvmbers and storage.of orders. If, however, the orders to the machine are
reduced to a numerical code and if:the machine can in some:fashion distinguish a number
from an order, the memory organ can be used to-store both numbers and orders. The coding
of orders into numeric form is discussed in 6.3 below.

_ 1.4 If the memory for orders is merely a storage organ-there must exist
an organ which can automatically execute the orders stored in the memory. We shall call
this organ the Control. :

1.5 Inasmuch as the device is to be a computing machine there must be an
arithmetic organ in it which can perform certain of the elementary arithmetic operationms.
There will be, therefore, a:unit capable-of adding, subtracting, multiplying and dividing.
It will be seen in 6.6 below, that it can also perform additional operationssthat occur
quite frequently. ‘

The operations that the machine will view as elementary are clearly those
which are wired into thé:machine. To illustrate,.the operation of multiplication could
be eliminated from the device as an elementary process if one were willing to view it as
a properly ordered series of additions. Similar remarks apply to division. In general,
the inner economy of the arithmetic unit is determined by a compromise between the desire
for speed of operation -- a non-elementary operation will generally take a long time to
perform since it is constituted of a series of orders given by the Control -- and the
desire for simplicity, or cheapness, of the machine.

1.6 Lastly there must exist devices, the input and output organ, whereby
the human operator and the machine can commmicate with each other. This organ will be
seen in 4.5 below, where it.is discussed, to constitute a secondary form of automatic
memory.

-2-

2.9 First Remarks on the Memory .

2.1 It is clear that the size of the memory is a critical:cms'iderationfin
the design of a satisfactory general-purpose computing machine. We proceed:to discuss what
quantities the memory should store for various types of computations.

2.2 | In the:solution of partial differential equations the storage.require- ;
ments are likely to:be quite:extensive.. In general, one must remember not only the: initial
and:boundary conditions and.any arbitrary functions that _enter the problem but:also:an:ex-
tensive number of intermediate.results;

a) - For equations of parabelic. or hyperbelic.type:in:two:independent variables
the integration process:is-essentially a double:induction: To:find the values of the depen-
dent variables at time 't + At one integrates with- respect. t'.o x: from.one :boundary to the other
by utilizing the data at time t as: if they were coeff1c1ents which: ccnt.ribute to defining the
problem of this integrationm.

(

Not only must the:memory:have sufficient room to'store:these'intermediate data
but there must be provisions:whereby these:data:can later be removed,:i.e., at the end of
the (t + At) cycle, and replaced:by the corresponding data. for the {t + 2At) cyecle. This
proceéss of removing data from the: memory and. of replacing them with:new: information must,
of course,:be dane quite autamatically under the direction of the Control.

'b) For tetal differential equations the memory: requirements are clearly
similar to, but smaller:than, those:discussed:ina) above.

c) Problems that are solved: by iterative procedures:such as:systems of
linear equations or elliptic partml differential equations, treated:by.relaxation tech-
niques, may be expected to require quiteextensive:memory:capacity. The:memory requirement
for such problems is apparently much greater than for those problems in a) above in which
_one needs only to store information corresponding to the instantaneous value of one variable
(t in a) abave), while now entire solutions (covering all values of all variables) must:be
stored. This apparent discrepancy: in magnitudes:can, however,'be somewhat overcome:by the
use of technlques which permit-the use of much coarser integration:meshes in: this case,
than in the cases under a). :

2.3 It is reaéonable at this time to build a:machine that can conveniently
handle problems several orders of magnitude more complex than are now handled by existing
machines, electronic or electro-mechanical. We consequently plan on a fully automatic
electronic storage facility of:about- 4,000 pumbers of 40:binary digits each. This corres-
ponds to a precision ‘of 2°*°as.9-° 10722, . j.e. , of about 12 decimals. We believe that
this memory capacity exceeds the:capacities.required for.most priblems that one.deals with
at present:by a factor of about 10. The precision is also:safely hipher than what is
required for the great majority of present day problems. In.addition, we propose we have
a subsidiary memory, which.is also.fully automatic,. of: much larger. capacity on some medium
such as magnetic wire or tape .

-3-

3.0 First Remarks on the Control and Cade .

3.1 It is easy to see by formal-legical methods, that there exist codes
that are in abstracto adequate to control and cause the execution of any sequence o opera-
tions which are individually available in the machine and which are, in their entirety,
conceivable by the pr dlem planner. The really decisive considerations from the present
point of view, in seleeting a code, are more of a practical nature: Simplicity of the
equipment demanded by the code, and the clarity of its application to the actually important
problems together with the speed of its handling of those prablems. It would take us much
too far afield to discuss these questions at all generally or from first principles. We will
therefore restrict ourselves to analyzing only the type of code which we now envisage: for our
machine. : ‘

3.2 There must certainly be instructions for performing the fundamental
arithmetic operations. The spec1f1cat1ms for these orders will not be completely g1ven
until the arithmetic unit is described in a little more detail.

3.3 It must be possible to transfer data from the memory to the arith-
metic organ and back again. In transferring information from the arithmetic organ back
into the memory there are two types we must distinguish: Transfers of numbers.as such and
transfers of numbers which are parts of orders. The first case is quite obvious and needs
no further explication. The second case is more subtle and serves to illustrate the gener-
ality and simplicity of the system. Consider, by way of illustration, the problem of -
interpolation in the system. Let us suppose that we have formulated the necessary instruc -
tions far performing:an interpolation of arder n in a sequence of data. The exact location
in the memory of the (n + 1) quantities that bracket the desired functional value is, of
course, a function of the argument. This argument probably is found as the result of a
computation in the machine. We thus need an order which can substitute a number into a
given order -- in the case of interpolation the location of the argument or the group of
arguments that is nearest in our table to the desired value. By means of such an order
the results of a computation can be introduced into the instructions governing that or a
different computation. This makes it possible for a sequence of instructions to be used
with different sets of numbers located in different parts of the memory.

To summarize, transfers into the memory will be of two sorts: Total substi-
tutions, whereby the quantity previously stored is cleared out and replaced by a new
number. Partial substitutions in which that part of an order containing a memory location-
number -- we assume the varioms positions in the memory are enumerated serially.by memory
location-numbers -- 1is replaced by a new memory location-number.

3.4 It is clear that one must be able to get numbers from.any part of. the
memory at any time. The treatment in the case of orders can, however, be more methodical
_since one can at least partially arrange the control instructions.in a linear sequence.
Consequently the Control will be so constructed that it will normally proceed from place n
in the memory to place (n + 1) for.its next instruction.

3.5 The utility of an automatic computer lies in the possibility of using
a given sequence of instructims repeatedly, the number of times it is iterated being
either preassigned or dependent upon the results of the computation. When the iteration is
completed a different sequence of arders is to be followed, so we must, in most cases, give
two parallel trains of orders preceded by an instruction as to which routine is to be
followed. This choice can be made to depend upon the sign of a number (zero being reckoned
as plus for machine purpcses). Consequently we intr dduce an order (the conditional transfer
order) which wi 11, depending on the sign of a given number, cause the proper one of two
routines to be executed.

4

Frequently two parallel trains of orders terminate in a common routine.
It is desirable, therefore, to order the control in either case to proceed to the
‘beginning point of the common routine. This unconditional transfer can be achieved
either by the artificial use of a conditional transfer or by the introduction of an
explicit order for such a transfer.

3.6 Finally we need orders:which will: integrate the input-output
devices with the machine. These are discussed briefly in 6.8,

3.7 We proceed now to a more detailed discussion of the machine.
Inasmuch as our experience has shown that the moment one chooses a given component as
the elementary memory unit one has also more or less: determined upon much of the balance
of the machine, we start by a consideration of the memory organ. In attempting an expo-
sition of a highly integrated device like a computing machine we do not find it possible,
however, to give an exhaustive discussion of each organ before completing its description.
It is only in the final block diagrams that anything approaching a complete unit can be
achieved.

The time units to be used in what follows will be

1p =1 microsecond = 10::seconds,
1l m=1millisecond = 10~ seconds,

4.0 The Memory Organ.

4,1 Ideally one would desire an indefinitely large memary capacity such
that any particular aggregate of 40 binary digits, or word (cf. 2.3), would be immediately
available -- i.e., in a time which is somewhat or considerably shorter than the operation
time of a fast electronic multiplier. This may be assumed to be practical at the level of
about 100 microseconds. Hence the availability time for a ward in the memory should be 5
to 50 microseconds. It is equally desirable that words may be replaced with new words at
about the same rate. It does not seem possible physically to achieve such a capacity.

We are therefore forced to recognize the possibility of construwcting a hierarchy of
memories, each of which has greater capacity than the preceding but which is less quickly
accessible.

The most common forms of starage in electrical circuits are the flip-flop
or trigger circuit, the gas tube, and the electro-mechanical relay. To achieve a memory
of n wards would, of course, require about 40 n such elements, exclusive of the switching
elements. We saw earlier (cf. 2.2) that a fast memory of several thousand words is not at
all unreasonable for an all-purpose instrument.. Hence, about 10" flip-flops or analogous
elements would be required! This would, of course, be entirely impractical.

We must therefore seek out some more fundamental method of storing electri-
cal information than has been suggested above. One criterion for such a storage medium is
that the individual storage organs, which accamodate only one binary digit each, should
not be macroscopic components, but rather microscopic elements of some suitable organ.
They would then, of course, not be identified and switched to by the usual macroscopic
wire .connections, but by some functional procedure in manipulating that organ.

One device which displays this property to a marked degree is the
iconoscope tube. In its conventional form it possesses a linear resolution of about
me part in 500 . is would*carrespond to a (two-dimensional) memory capacity of
500 % 500 =2.5 * 10 X One is accordingly led to consider the possibility of storing

electrical charges on a dielectric plate inside a cathode-ray tube. Effectively such a
tube is nothing more than a myriad of electrical capacitors which can be connected into
. the circuit by means of an eléctron beam.

Actually the above mentioned high resolution and concomitant memory capa-
city are only realistic under the conditions of television-image storage, which are much
less exigent in respect to the reliability of individual markings than what one can accept
in the storage for a computer. In this latter case resolutions of one part in 20 to 100,
i.e. memory capacities of 400 to 10,000 would seem to be more reasonable in terms of
equipment built essentially along familiar lines.

At the present time the Princeton Laboratories of the Radio Corporation of
America are engaged in the development of a storage tube, the Selectron, of the type we
have mentioned above. This tube is also planned to have a non-amplitude-sensitive switch-
ing system whereby the electron beam can be directed to a given spot on the plate within
a quite small fraction of a millisecond. Inasmuch as the storage tube is the key compo-
nent of the machine envisaged in this report we are extremely fortunate in having secured
the cooperation of the RCA group in this as well as in various other developments.

An alternate form of rapid memory organ is the acoustic feed-back delay

line described in various reports on the EDVAC. (This is an electronic computing machine
"being developed for the Ordnance Department, U.S. Army, by the University of Pennsylvania,
Moore School of Electrical Engineering.) Inasmuch as that device has been so clearly
reported in those papers we give no further discussion. There are still other physical
and chemical properties of matter in the presence of electrons or photons that might be
considered but since none is yet beyond the early discussion stage-we shall not make -
further mention of them.

4.2 We shall accordingly assume throughout the balance of this report
that the Selectron is the modus for storage of words at electronic speeds. As now
planned this tube will have a capacity of 212 = 4,096%%4,000 binary digits. To achieve
a total electronic storage of about 4,000 words we propose to use 40 Selectrons, thereby
achieving a memory of 2!2 words of 40 binary digits each. (Cf. again 2.3.)

4,3 There are two possible means for storing a particular word in the
Selectron Memory -- or in fact in either a delay line memory or in a storage tube with
amplitude-sensitive deflection. One method is to store the entire word in a given tube
and then to get the word out by picking out its respect1ve digits in a serial fashion.
The other method is to store in correspondlng places in each of the 40 tubes one digit .
of the word. To get a word from the memory in this scheme requires, then, one switching
mechanism to which all 40 tubes are connected in parallel. Such a switching scheme seems
to us to be simpler than the technique needed in the serial system and is, of course, 40
times faster. We accordingly adopt the parallel procedure and thus are led to consider
a so-called parallel machine, as contrasted with the serial principles being considered
for the EDVAC. (In the EDVAC the peculiar characteristics of the acoustic delay line,
‘as well as various other considerations, seem to justify a serial procedure. For more
details cf, the reports referred to in 4.1.) The essential difference between these two
systems lles in the method of performing an addition; In a parallel machine all corres-
ponding pairs of digits are added simultaneously, whereas in a serial one these pairs
are added serially in time. '

4.4 To summarize, we assume that the fast electronic memory consists of
40 Selectrons which are: switched in parallel by a common switching arrangementl. The inputs
of the switch are controlled. by the Control.

4.5 Inasmuch as a great many highly important classes of problems require
a far greater total memory than 212 words, we now consider the next stage. in our storage
hierarchy. Although the solution of partial differential equations frequently involves the
manipulation of many thousands of words, these data are generally required only in blocks
which are well within the 212 capacity of the electronic memory. Our second form of storage
must therefore be a medium which feeds these blocks af words to the electronic memary. It
should be cantrolled by the Control of the computer and is thus an integral part of the
system, not requiring human. intervention.

There are evidently two distinct problams raised above. One can choose a
given medium for st arage such as teletype tapes, magnetic wire or tapes, movie film or
similar media. There still remains the problem of automatic integration of this storage
medium with the machine. This integration is achieved' logically by introducing appro-
priate orders into the code which can instruct the machine to read or write on the medium,
or to meve it by a given amount or to a place with given characteristics. We discuss this
questia a little more fully in 6.8,

Let ‘us return now to the question of what properties the secondary storage
medium should have. It clearly should be able to store information for periods of time
long enough so that only a few percent of the total computing time is spent in re-register-
ing information that; is "fading" off. It is certainly desirable, although not imperative,
that informatia can be erased and replaced by new data. The medium should be such that
it can.be controlled, i.e., moved forward and backward, automatically. This consideration
makes certain media, such.as punched cards, undesirable. While cards can, of cairse, be
printed or read by appropriate orders from some machine, they are not well adapted to
problems in which the output data are fed directly back.into the machine, and are required
in a sequence which is non-monotone. with respect to the order of the cards. The medium
should be capable of remembering very large numbers of data at a much smaller price than
electronic devices. It must be fast enough so that, even when it has to be used fre-
quently in a problem, a large percentage of the total solution time is not spent in
getting data into and out of this medium and achieving the desired positioning on it. If
this condition is not reascmably well met, the advantages of the high electronic speeds
of the machine will be largely lost.

Both light- or electron-sensitive film and magnetic wires or tapes, whose
.motions are contrdled by servo-mechanisms integrated with the Control, would seem to
fulfill our needs reasonably well. We have tentatively decided to use magnetic wires
since we have achieved reliable« performance with them at pulse rates of the order of
25,000 per second and beyand. In a subsequent paper (Part III.in this series) we discuss
a few problems to show the overall efficiency of this system using such wires.

4.6 Lastly our memary hierarchy requires a vast quantity of dead
st @age, i.e., storage not integrated with the machine. This storage requirement may
be satisfied by a library of wires that can be introduced into the machine when desired
and at that time become automatically controlled. Thus our dead stoarage really is noth-
ing but an extension of our sec mdary st aage medium. It differs from the latter only in
its availability to the machine.

4.7 We impose one additional requirement on our, secondary memory. It
must’be possible for a human to put words onto the wire or other substance used and to
read the words put on by the machine. In this manner the human can control the machine’s
functims. It is now clear that the secondary storage medium is really nothing other
than a part of our input-output system, cf. 6.8.4 for a description of a mechanism for
achieving this.

4.8 There is another highly important part of the input-output which we
merely mention at this time, namely, some mechanism for viewing graphically the results
of a given computation. This can, of course, be achieved by a Selectron-like tube which
causes its screen to fluoresce when data are put on it by an electron beam.

4.9 For definiteness in the subsequent discussions we assume that asso-
ciated with the output of each Selectron is a flip-flop. This assemblage of 40 flip-
flops we term the Selectron Register.

5.0 The Arithmetic Organ.

5.1 In this chapter we discuss the features we now consider desirable
foy the arithmetic part of our machine. We give our tentative conclusions as to which
of the "arithmetic operations should be built into the machine and which should be
programmed. Finally, a schematic of the arithmetic unit is described.

5.2 In a discussion of the arithmetical organs of: a computing machine
one is naturally led to a consideration of the number system to be adopted. . In spite
of the longstanding tradition of building digital machines in the decimal system, we
feel strongly in favor of the binary system for our device. Our fundamental unit of
memary is naturally adapted to the binary system since we. do not attempt to measure
- gradatims of charge at a particular pomt in the Selectron but are content to distin-
guish two states. The flip-flop again is truly a binary device. On magnetic wires or
tapes and in acoustic delay line memories e is also content. to recognize the presence
or absence 6f a pulse or (if a carrier frequency is used) of a pulse train, or of the
sign of a pulse. (We will not discuss here the ternary possibilities of a positive-ar-
negative- ar-no pulse system and their relationship to questions of reliability and check-
ing, nor the very interesting possibilities of carrier frequency modulation.) Hence if
one contemplates using a decimal system with ‘either the Iconoscope or delay-line memory
one is foarced into a binary coding of the decimal system -- each decimal digit being
represented, by at least a tetrad of binary digits. Thus an accuracy of ten decimal
digits requires at least 40 binary digits. In a true binary representation of numbers,
however, about 33 digits suffice to achieve a precision of 1010, The use of the binary
system is therefore somewhat mare economical of equipment than is the decimal.

The main virtue of the binary system as agamst the decimal is, hawewer; -
the greater simplicity and speed with which the elementary operations can be performed.
To illustrate, consider multiplicatim by repeated addition. In binary multiplication
the product of a particular digit of the multiplier by the multiplicand is either the
multiplicand or null according as the multiplier-digit is 1 or 0. In the decimal system,
however, this product has ten pessiblé values between null and nine times the multiplicand,
inclusive. Of course, a decimal number has only logio2~.3 times as many digits as a
binary number of the same accuracy, but even so multiplication in the decimal system is
considerably lager than in the binary system. One can accelerate decimal multiplication
by complicating the circuits, but.this fact is irrelevant to the point just made since
binary multiplication can likewise be accelerated by adding to the equipment. Similar
remarks may be made about the other operations.

-8-

An additional point that deserves emphasis is this: An important part of the
machine is not arithmetical, but logical in nature. Now logics. being a yes-no system, is
fundamentally binary. Therefore a binary arrangement of the arithmetical organs contributes
very significantly towards producing a more homogenous machine, which can be better integrated
and is more efficient.

The one disadvantage of the binary system from the human point of view is the’
caversion problem. Since, however, it is completely known how: to convert numbers from one
base to another and since this conversion can be effected solely by the use of the usual
arithmetic processes there is no reason why the computer itself cannot carry out this con-
version. It might be argued that this is a time consuming operation. This, however, is not
the case. (Cf. 9.6 and 9.7 of Part IL. Part II is a repart issued under the title,"Planning
and Coding of Problems for an Electronic Computing Instrument".) Indeed a general-purpose
computer, used as a scientific research tool, is called upon to do a very great number of
multiplications upon a relatively small amount of input data, and hence the time consumed
~in the decimal to binary conversion is only a trivial percent of the total computing time.

A similar remark is applicable to the output data.

In the preceeding discussion we have tacitly assumed the desirability of
introducing and withdrawing data in the decimal system. We feel, however, that the base
10 may not even be a permanent feature in a scientific instrument and consequently will
prabably attempt to train ourselves to use numbers base 2 or 8 or 16.. The reason for the
bases 8 or 16 is this: Since 8 and 16 are powers of 2 the conversion to binary is trivial;
since both are about of the size of 10, they violate many of our habits less badly than
base 2, (Cf. Part II, 9.4.)

5.3 Several of the digital computers being built or planned in this
country and England are to contain a so-called "flmating decimal point". This is a mech-
anism for expressing each word as a characteristic and a mantissa -- e.g., 123.45 would
be carried in the machine as (0.12345, 03), where the 3 is the exponent of 10 associated
with the number. There appear to be two major purposes in a "floating" decimal point
system both of which arise from the fact that the number of digits in a word is a constant,
fixed by design consideratims for each particular machine. The first of these purposes
is to retain in a sum or product as many significant digits as possible and the second of
these is to free the human operator from the burden of estimating and inserting into a
problem "scale factors" -- multiplicative constants which serve to keep numbers within the
limits of the machine.

There is, of course, no denying the fact that human time is cmsumed in
arranging for the introduction of suitable scale factors. We only argue that the time
so consumed is a very small percentage of the total time we will spend in preparing an
interesting prclem fa our machine. The first advantage of the floating point is, we
feel, somewhat illusory. In order to have such a floating point one must waste memory
capacity which could otherwise be used for carrying more digits per word. It would
therefore seem to us not at-all clear whether the modest advantages of a floating binary
point offset the less of memory capacity and the increased complexity of the arithmetic
and centrol circuits.

There are ce’rgainly some problems within the scope of our device which
. - -4
really require more than 2 precision. To handle such problems we wish to plan in
terms of words, whose lengths are some fixed integral multiple of 40, and program the
machine in such a manner as to give the corresponding aggregates of 40 digit words the
proper treatment. We must then consider an addition or multiplication as a complex

-9.

operation programmed from a number of primitive additions or multiplications (cf. Chapter
XX, Part II). There would seem to be considerable extra difficulties in the way of such
a procedure in an instrument with a flcating binary point.

The reader may remark upon our alternate spells of radicalism and conser-
vatism in deciding upon various possible features for our mechanism. We hope, however,
that he will agree on closer inspection, that we are guided by a consistent and sound
principle in judging the merits of any idea. We wish to incorporate into the machine --
in the foam of circuits -- only such logical cmcepts as are either necessary to have a
complete system or highly convenient because of the frequency with which. they ccur and
the influence they exert in the relevant mathematical situations.

5.4 On the basis of this criterion we definitely wish to build into
the machine circuits which will enable it to form the binary sum of two 40 digit numbers.
We make this decision not because addition is a logically basic notion but rather because
it would slow the mechanism as well as the operator d om enormously if each addition were
programmed out of the mare simple operations of "and", "or", and "not”. The same is true
for the subtraction. Similarly we reject the desire to fam products by programming them
out of additins, the detailed motivation being very much the same as in the case of addi-
tion and subtraction. The cases for division and square-rooting are much less clear.

It is well known that the reciprocal of a number a:can be formed to any
desired accuracy by iterative schemes. One such scheme c msists of improving an estimate
X by forming X' = 2X - aX?. Thus the new error 1 - aX’ is (1 - aX)2, which is the square
of the error in the preceding estimate. We notice that in the famation of X', there are
two bongfide multiplicatims -- we do not c msider multiplication by 2 as & true product
since we will have a facility for shifting right or left in one or two pulse times. If
then we somehow could guess 1/a to a precision of 2%, 6 multiplications -- 3 iterations --
would suffice to give a final result good to 2°*°. Accordingly a small table of 2* entries
coyld be used to get the initial estimate of 1/a. In this way a reciprocal 1/a could be
formed in 6 multiplication times, and hence a quotient b/a in 7 multiplication times.
Accardingly we see that the question of building a divider is really a function of how
fast it can be made to operate compared to the iterative method sketched above: In order
tq justify its existence, a divider must perf am a division in a good deal less than 7
multiplication times. We have however cmceived a divider which is much faster than these
7 multiplication times and therefore feel Jjustified in building it, especially since the
amount of equipment needed above the requirements of the multiplier is not important.

It is, of course, also possible go handle square roots by iterative
techniques. In fact, if X is our estimate of a’’, then X’ = }(X + a/X) is a better
estimate. We see that this scheme involves one division per iteration. As will be
seen helow in our more detailed examination of the arithmetic argan we do not include
4 square-rooter in our plans because such a device would involve more equipment than
we feel is desirable in a first model. (Concerning the iterative method of square-
rocting, cf. 810 in Part II.)

5.5 The first part of our arithmetic agan requires little discussion

at this point. It should be a parallel starage organ which can receive a number and add
it to the one already in it, which is also able to clear its cpntents and which can trans-
mit what it contains. We will call such an organ an Accumulator. It is quite conventional
in principle in past and present c mputing machines of the most varied types. (E.g.: Desk
miltipliers, standard IBM counters, more modern relay machines, the ENIAC.) There are, of
course, numer ais ways to build such a binary accumulator. We distinguish two broad types
of such devices: Static and dynamic or pulse-type accumulators. These will be discussed
in 5.11, but it is first necessary to make a few remarks codcerning the arithmetic of

-10-

binary addition. In a parallel accumulator, the first step in an additim is to add each
digit of the addend to the c aresponding digit of the augend. The second step is to per-
form the carries, and this must be d me in sequence since a carry may produce a carry.. In
the worst case, 39 carries will occur. Clearly it is inefficient to allow 39 times as much
time for the second step (performing the carries) as for the first step (adding the digits).
Hence either the carries must be accelerated, or use must be made of the average number of
carries or both. '

5.6 We go to show that fa a sum of binary words, each of length n, the
length of the largest carry sequence is on the average not in excess of ?log n. Let pn(v)
designate the probability that a carry sequence is of length v or greater in the sum of
two binary words of length n. Then clearly pn(v) - pn(v+1) is the prabability that the
largest carry sequence is of length exactly v and the weighted average
a, = §$=0 v . [pn(v) - pn(v+1)] is the average length of such carry. Note that

20 [p,(v) - p (v+1)] = 1 since p,(v) =0 if v >n. From these it is easily inferred

that ay = 3.y p (v). We now proceed to show that p (v) £ Min (1, (n-v+1) / 2vtly,

Observe first that pn-(v) = pn_l(v) + [1-[‘:}:_‘,“)] [.'2v+1, if v £n. Indeed:
pn(v) is the probability that the sum o two n-digit numbers cmtains a carry sequence of
length 2 v. This probability obtains by adding the probabilities o two mutually exclusive
alternatives: First: Even the n-1 first digits of the two numbers by themselves contain
a carry sequence of length 2 v. This has the probability p;_j(v). Second: The n-1 first.
digits of the two numbers by themselves do not contain a carry sequence of length 2 ¥. In
this case any carry sequence of length 2 v in the total numbers (of length n) must end with
the last digits of the total sequence. Hence these must form the combination 1, 1. The
next -v-1 digits must propagate the carry, hence each of these must form the cambinatiam
},0 or 0,1, (The cambinations 1,1 and 0,0 do not propagate a carry.) The probability of
the combination 1,1 is %, that one of the alternative combinatjons 1,0 or 0,1 is %. The
total probability of this sequence is therefore %(%)V-"= Y. The remaining n-v digits
must not contain a carry sequence of length 2 v. This has the probability 1'pn-v(V)°
Thus the probability of the secad case is '[l-pn (v)]‘/-2V+ . Combining these two cases,
the desired relation p (v) = p _3(v) + [1-pn_1(vﬁ»/ gvtl obtains,. The observation that
p,{v) = 0 if v > n is trivial. '

. We see with the help of the formulas proved above that pn(v) - pn_l(v) is
always < 1/2V+1, and hence that the sum 22. [p;(v) - p; 1(v)] = p (+) is not in excess
of (n-v+1)/2¥*1 since. there are n-vtl terms. in the sum; since, moreover, each p (v) is a
probability, it is not greater than 1. Hence we have p (v) < Min 1, (n_-v'fl)/zv."'l].

: Finglly we turp to the question of getting an upper baund m a = X7 p,(v).
Ch wse K so that $n £ 2% Then 4

. - 25=1 p () + z‘:; p(¥) < z’v‘.; 1+ n 9l g1+ /K

This last expression is clearlk iinear in n in the interval 2K £n.g 2K+1, and it is K
for n=2K and = K+l forn= 2", ie. it is =2log n at bcth ends of this interval.

Since the function ?log n is everywhere cmcave from bel v, it follows that our expression
is £'%log n throughout this interval. Thus a, €' %log n. This holds for all K, i.e. for
all n, and it is the inequality which we wanted to prove.

-11-

For our case n=40 we have a?'nél log240~5.3, i.e. an average length of
about 5 for the longest carry sequence. e actual value of a4 is 4.62.)

5.7 Having discussed the addition, we can now go on to the subtraction.
It is c mvenient to discuss at this point our treatment of megative numbers, and in
order to do that right, it is desirable to make some observations about the treatment of
numbers in general.

Our numbers are 40 digit aggregates, the left-most digit being the sign
digit, and the other digits genuine binary digits, with positional values 27%,27%,...,
(going from left to right). Our accumulator wiMl, however, treat the sign digit, too, as
a binary digit with the positional value 2° -- at least when it functions as an adder.
For numbers between 0 and 1 this is clearly all right., The left-most digit will then be
0, and if O at ®his place is taken to represent a + sign, then the nunber is correctly
expressed with its sign and 39 binary digits.

2-39

Let us now consider one or more unrestricted 40 binary digit numbers.
The Accumulator will add them, with the digit-adding and the carrying mechanisms function-
ing normally and identically in all 40 positions. There is one reservation, however: If
a carry originates in the left-most position, then it has nowhere to go from there (there
being no further positions to the left), it is "lost". This means, of course, that the
addend and the augend, both numbers between 0 and 2, produced a sum exceeding 2, and the
accumulator, being unable to express a digit with a positional value 2!, which would now
be necessary, omitted 2. I.e. the sum was formed correctly, excepting a possible error
2. 1If several such additions are performed in succession, then the ultimate error may
be any integer multiple of 2. I.e. the accumulator is an adder which allows errors that
are integer multiples of 2 -- it is an adder mddulo 2.

It should be noted that our c mvention of placing the binary point imme-
diately to the right of the left-most digit has nothing to do with the structure of the
adder. In order to make this point clearer wé proceed to discuss the possibilities of
positioning the binary point in somewhat more detail.

We begin by enumerating the 40 digits of our numbers (words) from left to
right. In doing this we use an index h =1, ..., 40. Now we might have placed the
binary point just as well between digits j and j*l, j= 0, 1, ..., 40, Note, that j=0
carrespads to the position at the extreme left (there is no digit h = j = 0); j=40
corresponds to the position at the extreme right (there is no position h = j+l = 41);
and j=1 corresponds to our above choice. Whatever our choice .of j, it does not affect
the correctness of the Accumulator’s addition. (This is equally true for subtraction,
cf. below, but not fa mult1p}1cation and division, cf. 5.8.) Indeed, we have nerelY‘
muluphed all numbers by 2J°* (as against our previous convention), and such a "change
of scale" has no effect on addition (and subtraction). However, now the accumulator is
an adder which allows errors that are integer multiples of 2) -- it is an adder modulo 2/,
We mention this because it is occasionally convenient to think in terms of a convention
which places the binary point at the right end of the digital aggregate. Then j#40, our
numbers are integers, and the accumulator is an adder modulo 24°. We must emphasize,
however, that all of this, i.e. all attributions of values to j, are purely convention --
i.e. it is solely the mathematician’s interpretation of the functioning of the machine --
and nct a physical feature of the machine. This convention will necessitate measures
that have to be made effective by actual physical features of the machine -- i.e. the
convention will became a physical and engineering reality -- only when we come to the
argans of multiplication.

-12-

We will use the convention j=1, i.e. our numbers lie in 0 and 2 and the
accumulator adds modulo 2.

This being so, these numbers between 0 and 2 can be used to represent all
numbers modulo 2: Any real number x agrees modulo 2 with one and only number X between
0 and 2 --or, to be quite precise: 0 £ X < 2. Since our addition functions modulo 2,
we see that the accumulator may be used to represent and to add numbers modulo 2.

This determines the representation of negative numbers: If x < 0, then we
have to find the unique integer multiple of 2, 2s (s = 1, 2, ...) such that 0 £ X< 2
for X = x +2s (i.e. -2s £ x < 2(1-3)), and represent x by the digitalization of X.

In this way, however, the sign digit character of the left-most digit is
lost: It can be 0 or 1 for both x 2 0 and x < 0, hence 0 in the left-most position can
no longer be associated with the + sign of x. This may seem a bad deficiency of the
system, but it is easy to remedy -- at least to an extent which suffices for our purposes.
This is done as follows:

We will usually work with numbers x between-1 and 1 -- or, to be quite
precise: -1 £ x < 1. Now the X with 0 £ X <2, which differs from x by an integer
multiple of 2, behaves as follows: If x 2 0, then 0 £ x < 1, hence X = x, and so
0 <X <1, the left-most digit of ¥ is 0. If x < 0, then -1 ¢ x < 0, hence ¥ = x*2,
and so 1 £ X < 2, the left-most digit of X is 1, Thus the left-most digit (of X) is
now a precise equivalent of the sign (of x): 0 corresponds to + and 1 to -.

Summing up:

The Accumulator may be taken to represent all real numbers modulo 2, and
it adds them modulo 2. If x lies between-1 and 1 (precisely: -1. < x < 1) -- as it will
in almost all of our uses of the machine -- then the left-most digit represents the sign:
0is +and 1 is -.

Consider now a negative number: x with-1 $x< 0. Put x=-y, 0<y g1
Then we digitalize x by representing it as x + 2 =.2.y =1 + (1-y). I.e. the left-most
(sign) digit of x = -y is, as it should be, 1, and the remaining 39 digits are those of
the complement of y = -x =|x|, i.e. those of 1-y. Thus we have been led to the familiar
representation of negative numbers by complementation.

The connection between the digits of x and those of -x is now easily
S . .
formulated, for any x 3 0. Indeed, -x is equivalent to

2-x = (24 - 27%9) %) 42799 = (202 271x) +2°°° | (This digit index i = 1, ...,39
i=

is related to our previous digit index h = 1, ..., 40 by i = h-1. Actually it is best to

treat i as if its domain included the additional value i = 0 -- indeed i = O then corres-

ponds to h = 1, i.e. to the sign digit. In any case i expresses the positional value of

the digiz to which it refers more simply than h does: This positional value is

27t =27 h-1) Note, that if we had positioned the binary point more generally between

J and j*l, as discussed further above, this positional value would have been 2°'1"J’,

We now have, as pointed out previously, j = 1.)

-13-

Hence its digits obtain by subtracting every digit of x from 1 -- by complementing each
digit, i.e. by replacing 0 by 1 and 1 by 0 -- and then adding 1 in the right-most
position (and effecting all the carries that this may cause). (Note how the left-most
digit, interpreted as a sign digit, gets inverted by this procedure, as it should be.)

A subtraction x-y is therefore performed by the Accumlator, A, as follows:
Form x +y), where y’ has a digit 0 or 1 where y has a digit 1 or 0, respectively, and then
add 1 in the right-most position. The last operation can be performed by injecting a:
carry into the right-most stage of A -- since this stage can never receive a carry from
any other source (there being no further positions to the right).

5.8 In the light of 5.7 multiplication requires special care, because
here the entire modulo 2 procedure breaks down. Indeed, assume that we want to compute
a product xy, and that we had to change one of the factors, say x, by an integer multiple
of 2, say by 2. Then the product‘(x+2)y obtains, and this differs from the desired xy by
2y.. 2y, however, will not in general be an integer multiple of 2, since y is not in
general an integer.

We will therefore begin our discussion of the multiplication by eliminating
all such difficulties, and assume that both factors x, y lie between 0 and 1. Or, to be
quite precise: 0 £x,<1, 0 gy <1,

To effect such a multiplication we first send the multiplier x into a
reg1ster AR, the Arithmetic Register, which is essentially just a set of 40 fl1p-flops
.whese characteristics will be discussed below. We place the multiplicand y in the
Selectron Register, SR, (cf. 4.9) and use the Accumlator, A, to form and store the
partial praducts. We propose to multiply the entire multiplicand by the successive
digits of the multiplier in a serial fashion. There are, of course, two possible ways
this can be done: We either can start with the digit in the lowest position -- position
273% __ or in the highest position -- position 2! -- and proceed successively to the
left or right, respectively. There are a few advantages from air point of view to start-
ing with the right-most digit of the multiplier. We therefore describe that scheme.

The multiplication takes place in 39 steps, whlch correspond to the 39
(non-sign) digits of the multiplier x = 0, 51, E'z,..., g = (0. &1 &2 .. . &s9), enu-
merated backwards: Ean,. .t gz, &1. Assume that the k- 1 first steps (k 1,..., 39)
have already taken place, 1nvolvmg mulughcation of the multiplicand y with t.he k-1
last digits of the multiplier: E36,..., 41_k; and that we are now at the k-th step,
involving multiplication with the k-th last digit: 540-;‘.- Assume furthermore, that A
now contains the quantity py_j, the result of the k-1 first steps. (This is the k-1-st
partial product. For k =1 clearly pg = 0.)" We now form 2p " Pt Eao-ky, i.e.

' = 0 for a0k = 0
™) 2 " k-1t K Vi
1

=y for ‘ﬁo-k

That is, we do nothing or add y, accord.ing to whether 54}0.-1(=0 or 1. We can then form
Py by halving 2Pk"

- 14°)

Note that the addition of (*) produces no carry beyond the 2° position,
i.e. the sign digit: 0 £p, <1 is true for h = 0, and if it is true for h = k-1, then
(*) extends it to h=k also, since 0 £y, < 1. Hence the sum in (*) is 2 0 and <2, and
no carries beyond the 2° positim arise.

Hence p, obtains from 2p, by a simple right shift, which is combined with
filling in the sign digit (that is freed by this shift) with a 0. This right shift is
effected by an electronic shifter that is part of A.

Now

Peg = 271 (27%(27%(... (27t Eaey + Easy) ...) + &ay) + &ay) = :gl 2-1 giy = xy.

Thus this process produces the product xy, as desired. Note, that this xy is the exact
product of x and y.

Since x and y are 39 digit binaries, their exact product xy is a 78 digit
binary (we disregard the sign digit thr aighout). However, A will mly hold 39 of these.
These are clearly the left 39 digits of xy. The right 39 digits of xy are dropped from
A-one by one in the course of the 39 steps, or to be more specific, of the 39 right
shifts. We will see later that these right 39 digits of xy should and will also be
conserved (cf. the end of this section and the end of 5.12, as well as 6.6.3). The
left 39 digits, which remain in A, should also be rounded off, but we will not discuss
this matter here (cf. loc. cit, above and 9.9, Part II).

To complete the general picture of our multiplication technique we must
consider how we sense the respective digits of our multiplier. There are two schemes
which come to me’s mind in this connection. One is to have a gate tube associated with
each flip-flop of AR in such a fashion that this gate is open if a digit is 1 and closed
if it is null. We would then need a 39 stage counter to act as a switch which would
successively stimulate these gate tubes to react. A more efficient scheme is to build
into AR a shifter circuit which enables AR to be shifted one stage to the right each
time A is shifted and to sense the value of the digit in the right-most flip-flop of AR.
The shifter itself requires one gate tube per stage. We need in addition a cammter to
count out the 39 steps of the multiplication, but this can be achieved by a six stage
binary counter. Thus the latter is more ec momical of tubes and has me additi mal
virtue from our point of view which we discuss in the next paragraph.

The choice of 40 digits to a word (including the sign) is probably
adequate fa most computational problems but situations certainly might arise when we
desire higher precisim, i.e. words of greater length. A trivial illustration of this
would be the computation of 7 to more places than are now known (abait 700 decimals.
i.e. about 2,300 binaries). More important instances are the solutions of N linear
equations in N variables for large values of N. The extra precisim becomes probably
necessary when N exceeds a limit somewhere between 20 and 40. A justification of this
estimate has to be based on a detailed theory of numerical matrix inversion which will
be given in a subsequent report. It is theref ae desirable to be able to handle numbers
of 3% digits and sign by means o program instructiams. One way to achieve this end is
to use k words to represent a 3% digit number with sign. (In this way 39 digits in each
40 digit word are used, but all sign digits, excepting the first one, are apparently
wasted, cf. however the treatment of dauble precision numbers in Chapter IX, Part II.)
It is, of course, necessary in this case to instruct the machine to perf am the elemen-
tary operations of arithmetics in a manner that conforms with this interpretation of

-15-

of k-word complexes as single numbers. (Cf. 9.8 - 9.10, Part II.) In order to be able
to treat numbers in this manner, it is desirable to keep not 39 digits in a product, but
18: this is discussed in mae detail in 6.6.3 below. To accomplish this end (conserving
78 product digits) we connect, via our shifter circuit, the right-most digit. of A with
the left-most non-sign digit of AR. Thus, when in the process of multiplication a shift
is ordered, the last digit of A is transferred into the place in AR made vacant when the
multiplier was shifted.

: 5.9 To conclude our discussion of the multiplication of positive numbers,
we note this:

As described thus far, the multiplier forms the 78 digit product, xy, for
a 39 digit multiplier x and a 39 digit multiplicand y. We assumed x 2 0, y 2 0 and there-
fore had xy 2 0, and we will only depart from these assumptions in 5.10. In addition to .
these, however, we also assumed x <1, y <1, i.e. that x, y have their binary points
both immediately right of the sign d181t, wlnch implied the same for xy. One might
question the necessity of these additional assumptions.

Prima facie they may seem mere conventions, which affect only the mathe-
matician’s interpretation of the functiming of the machine, and not a physical feature
of the machine. (Cf. the corresponding situation in addition and subtraction, in 5.7.)
Indeed: If x had its binary point between digits j and j+l1 from the left (cf. the dis-
cussim of 5.7 dealing with this j, it also applies to k below), and y between k and
k+l, then air above method of multiplication would still give the correct result xy,
provided that the position of the binary peint in xy is appropriately assigned.
Specifically: Let the binary paint of xy be between digits &£ and 4+1. x has the
binary point between digits j and j+l, and its sign digit is 0, hence its range is
0 £x<2)°* . Similarly y has the range 0 £ y < 2k-1" and xy has the range 0 <y
Now t.he ranges of x and y imply that the range of xy is necessarily 0 £ xy < 2j-1 gk-1 =
= 23*%k-2, Hence & = j*k-1. Thus it might seem that our actual pos1t1onmg of the binary
point -- immediately right of the sign digit, i.e. j=k=1 -- is still a mere conventian.

211

It is theref @e important to realize that this is not so: The choices of
J and k actually correspond to very real, physical, engineering decisions. The reas m
for this is as follows: It is desirable to base the running of the machine on a sole,
consistent mathematical interpretatim. It is therefore desirable that all arithmetical -
erations be perf amed with an identically cmceived positioning of the binary poiat in
A. Applying this principle to x and y gives j = k. Hence the position of the binary
point for xy is given by j+k-1 = 2j-1. If this is to be the same as for x,and y, then
2j-1 = 3, i.e. j = 1 ensues -- that is our above positioning of the binary point imme-
diately right of the sign digit.

There is one possible escape: To place into A not the left 39 digits of
xy (not counting the sign digit 0), but the digits j to j+38 fram the left. Indeed,
in this way the position of the binary point of xy will be (2j-1) - (j-1) = j, the same
as for x and y.

1

This procedure means that we drop the left j-1 and right 40-j digits of
xy and hold the middle 39 in A. Note, that positieming of the binary point means that
x <2)7%, y <2371 and xy can only be yséd if xy < 2", Now the assumptions secure
only xy < 22372, Hence xy must be 2J°% times smaller than it might be. This is just
the thing which would be secured by the vanishing of the left j-1 digits shat we had to
drop fran A, as shown above.

-16-

If we wanted to use such a procedure, with those dropped left j-1 digits
really existing, i.e. with j # 1, then we would have to make physical arrangements far
their conservation elsewhere. Also the general mathematical planning for the machine
would be definitely camplicated, due to the physical fact that A now holds a rather
arbitrarily picked middle stretch of 39 digits from among the 78 digits of xy. Alter-
natively, we might fail to make such arrangements, but this would necessitate to see to
it in the mathematical planning of each problem, that all pralucts turn out to be 2J°?
times smaller than their a priori maxima. Such an observance is not at all impossibie,
indeed similar things are unavoidable for the other operations. (E.g. with a factor 2
in addition [of positives] or subtraction [of opposite sign quantities]. Cf. also the
remarks in the first part d+5.12, dealing with keeping "within range".) However, it
involves a loss of significant digits, and the choice j=1 makes it unnecessary in
multiplication. :

We will therefare make our choice j=1, i.e. the positioning of the
binary p dnt immediately right of the sign digit, binding for all that follows.

5.10 We now pass to the case where the multiplier x and the multiplicand
y may have either sign + or -, i.e. any combination of these signs.

. It would not do simply to extend the method of 5.8 to include the sign
digits of x and y also: Indeed, we assume -1 S x <1, -1y €1, and the multiplication
progedure in question is definitely based on the 2 0 interpretations of x and y. Hence -
if x <0, then it is really using x*2, and if y <0, then it is really using y+*2. Hence
far x <0, y 2 0 it forms (x*2)y = xy +2y; for x 2 0, y <0 it forms x(y+2) = xy + 2x;
for x <0, y <0, it fams (x*2) (y*2) = xy + 2x * 2y+ 4; or since things may be taken
modulo 2, xy + 2x + 2y. Hence c arection terms -2y, -2x vould be needed for x <0, y <0,
respectively, (either or both). :

This would be a possible procedure, but there is one difficulty: As xy
is formed, the 39 digits of the multiplier x are gradually lost from AR, to be replaced
by the right 39 digits of xy. (Cf. the discussion at the end of 5.8.) Unless we are
willing to build an additimal 40 stage register to hold x, therefore, x will not be
available at the end of the multiplication. Hence we cannct use it in the correction
-2x.of xy, which becomes necessary for y < 0.

Thus the case x < 0°can be handled along thg above lines, but not the case
y <0,

It is nevertheless possible to develop an adequate procedure, and we now
proceed to do this. Throughout this pr cedure we will maintain the assumpti as -1 £ x <1,
-1 £y €1. We praeed in several successive steps.

First: Assume that the corrections necessitated by the possibility of
y < 0 have been taken care of. We permit therefore y % 0. We will consider the correc-
ti s necessitated by the possibility of x <0,

Let us disregard the sign digit of x, which is 1, i.e. replace it by 0.
Then x goees over into x’ = x-1 and as -1 £ x < 0, this x’ will actually behave like
(x-1) +2 = x + 1. Hence our multiplication procedure will prauce x’y = (x+l)y = xy*ty,
and therefore a correction -y is needed at the end. (Note that we did not use the sign
digit of x in the caventional-way. Had we done so, then a correction -2y would have
been necessary, as seen abovel.)

-17-

We see therefore: Consider x % 0. Perform first all necessary steps for
forming x’'y (y % 0), without yet reaching the sign digit of x (i.e. treating x as if it
were 2 0). When the time arrives at which the digit &o of x has to become effective --
i.e. immediately after &; became effective, after 39 shifts (cf. the discussion near the
end of 5.8) -- at which time A contains, say, P (this corresponds to the pse of 5.8),
then form ‘

oll
{)
o)
pto
(o))
o
o
I
=

=1

[}
sl
[
~<
[
Lo
I\
o
1

This 3 is xy. (Note the difference between this last step, forming T, and the 39
preceeding steps in 5.8, forming pi, p2, ...,pse.)

Second: Having disposed of thg possibility x < 0, we may now assume x 2 0.
With this assumption we have to treat all y 3 0. Since y 2 0 bring us back entirely to
the familiar case of 5.8, we need to consider the case y < 0 only.

_ Let y’ be the number that obtains by disregarding the sign digit of y, which
is 1, i.e. by replacing it by 0. Again y’ acts not like y-1, but like (y-1)+2 = y + 1.
Hence the multiplication procedure of 5.8 will produce xy’ = x(y+1) = xy + x, and there-
fore a correction -x is needed. (Note, that, quite similarly to what we saw in the first
case above, the suppression of the sign digit of y replaced the previously recognized
correction -2x by the present one -x.) As we observed earlier, this correction -x cannot -
be applied at the end to the completed xy' since at that time x is no longer available.
Hence we must apply the correction -x digitwise, subtracting every digit at the time when
it is last found in AR, and in a way that makes it effective with the proper positional

value.
)

Third: Consider then x-= 0, &, &2,..., €30 = (.1 &2 ... E30). The 39
digits &1 ,..., &sp of x are lost in the course of the 39 shifts of the multiplication
procedure of 5.8, going from right to left. Thus the operation No. k+l (k=0, 1,..., 38,
cf. 5.8) finds &g9.) in the right-most stage of AR, uses it, and then loses it through
its cancluding right shift (of both A and AR). After this step 39-(k+l) ‘= 38-k further
steps, i.e. shifts follow, hence before its own concluding shift there are still 39-k
shifts to come. Hence the positional values are 280K times higher than they will be at
the end. Eag-k should ?ppeag at the end, in the correcting term -x, with the sign - and
the positional value 2°'2°-k) Hence we may inject it during the step k + 1 (before its
shift) with the sign - and the positional value 1. I.e. -Esg.k‘in the sign digit.

This, however, is inadmissible. Indeed, -Eg¢-)k might cause carries (if
&se.i = 1), which would have nowhere to go from the sign digit (there being no further
positions to the left). This error is atrits origin an integer multiple of 2, but the
39-k subsequent shifts reduce its positional value 2397k times, hence it might contri-
bute to the end result any integer multiple of 2~ re-k) __ and this is a genuine error.

Let us therefore add 1-&g0.) to the sign digit, i.e. 0 or 1 if &aq._) is
1 or 0, respectively. We will show further below, that with this procedure there arise
no carries of the inadmissible kind. Taking this momentarily for granted, let us see

what the total effect is. We are correcting not by -x but by 2?31 2-1.x = 1-273%9,
5=

-18-

Hence a final correction by -1 + 272® is needed. Since this is done at the end (after
all shifts), it may be taken modulo 2. I.e. we must add 1 # 2729 j.e. 1 in each of

the two extreme positions. Adding 1 in the right-most position has the same effect as
in the discussion at the end of 5.7 (dealing with the subtraction): It is equivalent

to injecting a carry into the right-most stage of A. Adding 1 in the left-most position,
i.e. to the sign digit, produces a 1, since that digit was necessarily 0. (Indeed, the
last operation ended in a shift, thus freeing the sign digit, cf. below.))

Fourth: Let us now consider the question of the carries that may arise
in the 39 steps of the process described above. In order to do this, let us describe
the k-th step (k = 1,..., 39), which is a variant of the k-th step described for a
positive multiplication in 5.8, in the same way in which we described the original k-th
step loc. cit. I.e. let us see what the formula (*) of 5.8 has become. It is clearly

2pp “ Pl t (1 - Eao-k) +8aa ¥, dee. .

, , =1 for &40k = 0
(**) 2p T Pkl Yo : Yk

y' for &40 = 1

-

That is, we add 1 (y’s sign digit) or y’ (y without its sign digit), according to whether
E40.x = 0 or 1. Then pi should obtain from 2p, again by halving.

Now the addition of (**) produces no carries beyond the 2° position, as we
asserted earlier, for the same reason as the addition of (*) in 5.8. We can argue in the
same way as there: 0 < py <1 is true for h = 0, and if it is true for h = k-1, then *)
extends it to h = k also, since 0 £ yk < 1. Hence the sum in (**) is 2 0 and < 2, and
no carries beyond the 2° position arise.

Fifth: 1In the thrge last observations we assumed y < 0. Let us now
restore the full generality of y3 0. We can then describe the equations (*) of 5.8
(valid for y 2 0) and (**) above (valid for y < 0) by a single formula.

[
o

_ = y’s sign digit for Eao-k =
(%) 2pk ® Pk.1 + yi(' , yﬂ

=y without its sign digit for &4k = 1

Thus our verbal formulation of (**) applies here, too: We add y’'s sign digit or y
without its sign, according to whether &40.k = 0 or 1. All Py are 2 0 and < 1, and the
addition of (%) never originates a carry beyond the 2° position. obtains from 2
by a right shift, filling the sign digit with a 0. (Cf. however, Part II, Table II for
another sort of right shift that is desirable in explicit form, i.e. as an order.)

For y2 0, xy is pso, for y < 0, xy obtains from psg by injecting a carry
into the right-most stage of *A and by placing a 1 into the sign digit in A.

applied, since it makes use of x's non-sign digits only, but at the end y must be
subtracted from the result.

Sixth: This procedure applies for x 2 0. For x < 0 it should also be

‘ This method of binafy multiplication will be illustrated in some examples
in 5.15,

-19.

5,11 To complete our discussion of the multiplicative agans of our
machine we must return to a consideration of the types of accumulators menti med in 5.5.
The static accumulator operates as an adder by simultaneously applying static voltages
to its two inputs -- one for each of the two numbers being added. When steady-state
operation is reached the tctal sum is formed camplete with all carries. For such an
accumulator the above discussim is substantially complete, except that it should be
remarked that such a circuit requires at most 39 rise times to complete a carry.
Actually it is possible that the duration of these successive rises is proportional to
a lower power of 39 than the first one.

Each stage of a dynamic accumulator consists of a binary counter for
registering the digit and a flip-flop for temporary storage of the carry. The counter
receives a pulse if a 1 is to be added in at that place; if this causes the counter to
go from 1 to 0 a carry has occurred and hence the carry flip-flop will be set. It then
remains to perform the carries. Each flip-flop has associated with it a gate, the out-
put of which is connected tothe next binary counter to the left. The carry is begun by
pulsing all carry gates. Now a carry may produce a carry, so that the prccess needs to
be repeated until all carry flip-flops register 0. This can be detected by means of a
circuit involving a sensing tube connected to each carry flip-flop. It was shown in 5.6
that, on the average, five pulse times (flip-flop reactim times) are required for the
complete carry. An alternative scheme is to connect a gate tube to each binary counter
which will detect whether an incoming carry pulse would produce a carry and will, under
this circumstance, pass the inc (m1ng carry pulse directly to the next stage. This cir-
cait would require at most 39 rise times for the completion of t.he carry. (Actually
less, cf. above.)

At the present time the devel cment of a static accumulator is being
cmcluded. From preliminary tests it seems that it w1ll add two numbers in about Sp
and will shift right or left in about 1lp .

We return now to the multiplication operation.. In a static accumulator
.we order simultanecusly an addition of the multiplicand with sign deleted or the sign of
the multiplicand (cf. 5.10) and a complete carry and then a shift for each of the 39
‘steps. In a dynamic accumulator of the second kind just described we order in succession
an addition of the multiplicand with sign deleted or the sign of the multiplicand, a
complete carry, and a shift for each of the 39 steps. In a dynamic accumulator of the
first kind we can avoid 1 sing the time required for campleting the carry (in this case
an average of 5 pulse times, cf. above) at each of the 39 steps. We order an additim
by the multiplicand with sign deleted or the sign of the multiplicand, then order me
pulsing of the carry gates, and finally shift the contents o both the digit counters
and the carry flip-flops. This process is repeated 39 times. A simple arithmetical
analysis which may be carried out in a later report, shows that at each one of these
intermediate stages a single carry is adequate, and that a complete set of carries is
needed at the end only. We then carry out the complement corrections, still without
ever ordering a complete set of carry operations. When all these c arections are cam-
pleted and after round-off, described below, we then order the camplete carry mentioned
above.

5.12 It is desirable at this point in the discussion to consider rules
for rounding-off to n-digits. In order to assess the characteristics of alternative
possibilities for such properly, and in particular the role of the coancept of "unbiased-
ness'", it is necessary to visualize the conditions under which rounding-off is needed.

-20-

Fvery number x that appears in the computing machine is an approximation of
another number x’, which would have appeared if the calculation had been performed absolutely
rigorously. The approximations to shich we refer here are not those that are caused by the
explicitly introduced approximations of the numerical-mathematical set-up, e.g. the replace-
ment of a (continuous) differential equation by a (discrete) difference equation. The effect
of such approximations should be evaluated mathematically by the person who plans the problem
for the machine, and should not be a direct concern of the machine. Indeed, it has to be
handled by a mathematician and cannot be handled by the machine, since its nature, complexity,
and difficulty may be of any kind, depending upon the problem under cmsideration. The
appr aximati s which concern us here are these: Even the elementary operations of arithmetic,
to which the mathematical approximation-formulation for the machine has to reduce the true
(possibly transcendental) problem, are not rigorously executed by the machine. The machine
deals with numbers of n digits, where n, no matter how: large, has to be a fixed quantity.

(We assumed for our machine 40 digits, including the sign, i.e. n = 39.) Now the sum and
difference of two n-digit numbers are again n-digit numbers, but their product and quotient
(in general) are not. (They have, in general, 2n or % digits, respectively.) Consequently,
myltiplicati @ and division must unavoidably be replaced by the machine by two different
operatians which must produce n-digits under all conditims, and which, subject to this
limitation, should lie as close as possible to the results of the true multiplication and
division. One might call them pseudo-multiplication and pseudo-division; however, the
accepted nomenclature terms them as multiplication and division with round-off. (We are
now creating the impression that addition and subtraction are entirely free of such short-
canings. This is only true inasmuch as they do not create new digits to the right, as
multiplication and divisim do. However, they can create new digits to the left, i.e.

cause the numbers to "grow out of range". This complication, which is, of course, well
known, is normally met by the planner, by mathematical arrangements and estimates to keep
the numbers "within range". Since we propose to have our machine deal with numbers between
-1 and 1, multiplication can never cause them to "grow out of range". Division, of course,"
might cause this complication, too. The planner must therefore see to it that in every
division the absolute value of the divisor exceeds that of the dividend.)

Thus the round-off is intended to produce satisfactory n-digit approxima-
tions for the product xy and the quotient x/y of two n-digit numbers. Two things are
wanted of the round-off: (1) The approximation should be good, i.e. its variance from
the 'true" xy or x/y should be as small as practical; (2) The approximation should be
unbiased, i.e. its mean should be equal to the "true" xy or x/y.

These desiderata must, however,be considered in conjunction with some
further comments. Specifically: (a) x and y themselves are likely to be the results
of similar round-offs, directly or indirectly inherent, i.e. x and y themselves should
be viewed as unbiased n-digit approximations of "true" x’ and y’ values; (b) By talk-
ing of '"variances'" and "means" we are intr ducing statistical concepts. Now the approxi-
mati ms which we are here considering are not really of a statistical nature: They are.
due to the peculiarities (from our point of view: inadequacies) of arithmetic and of
digital representation, and are therefare actually rigorously and uniquely determined.
It seems, hovever, in the present state of mathematical science,. rather hopeless to try
to deal with these matters rigorously. Furthermore, a certain statistical appr aach,
while not truly justified has always given adequate practical results. This consists
of treating those digits which one d s not wish to use individually in subsequent
calculations, as randan variables, with equiprobable digital values, and of treating
any two such digits as statistically independent (unless this is patently false).

-21-

These things being understood, we can now undertake to discuss round-off
procedures, realizing that we will have to apply them to the multiplication and to the
division.

Let x = (.&1.. 5'-) and y = (Ma...T) be unbiased approximations of x’and
y'. Then the "true" xy = (.&s. "Cnc'n"'i" C2n) and t,he "true" x/y = (. RCTRPL I N .)
(this goes on in infinitum!) are approximations of x’y’ and x’/y’. Before we discuss how
to round them off, we must know whether the "true" xy and x/y are themselves unbiased
approximations of x'y’ and x’/y’. xy is indeed an unbiased approximation of x'y’, i.e.
the mean of xy is the mean of x(=x’) times the mean of y(=y’), owing to the independence
assumptim which ve made above. However, if x and y are closely correlated, e.g. for
x =y, i.e. fa squaring, there is a bias. It is of the order of the mean square of
x-x', i.e. of the variance of x. Since x has n digits, this variance is about 1/2%,
(If the digits of x’ beyond n are entirely unknown, then our original assumptions give
the variance 1/12°2%,) Next, x/y can be written as x-y"!, and since we have already
discussed the bias of the product, it suffices now to consider the reciprocal y . Now
if y is an unbiased estimate of y', then y ! is not an unbiased estimate of y’' "%, i e.
the mean of y’s reciprocal is not the reciprocal of y’s mean. The difference is ~y~®
times the variance of y, i.e. it is of essentially the same order as the bias found

above in the case of squaring.

It follows from all this that it is futile to attempt to avoid biases of
the order of magnitude 1/2?" or less. (The factoar 1/12 above may seem to be changing
the order of magnitude in question. However, it is really the square root of the
variance which matters and V1/12~.3 is a moderate factor.) Since we propose to use
n=39, therefore 1/278(~3:10"24) is the critical case. Note, that this possible bias
level is 1/2°%(~2:10"2) times our last significant digit. Hence we will look for
round-off rules to n-digits for the "true" xy = (.Ci... Cn Cl’l"'l oo Con) and
x/y= (@ .. 00, W,). The desideratum (1) which we formulated previously,
that the variance should be small, is still valid. The desideratum (2), however, that
the bias should be zero, need according to the above, only be enforced up to terms of

the order 1/22%,

The round-off procedures, which we can use in this connection, fall into
two broad classes. The first class is characterized by its ignoring all digits beyond
the n-th, and even the n-th digit itself, which it replaces by a 1. The second class
is characterized by the procedure of adding one unit in the n+l-st digit, perfaming the
carries which this may induce, and then keeping only the n first digits.

When applied to a number of the fam (.V1...V ¥ , ¥) (in infinitum!),
the effects of either procedure are easily estimated. In the first case we may say we
are dealing with (.V1,...,9 _) plus a random number of the form (.0,...,00 v , v),
i.e. random in the interval 0, 1/2""%, Comparing with the rounded off (Vi1,92,. .Nn_il),
we theref ae have a difference random in the interval -1/2%, 1/2", Hence its mean is 0
and its variance 1/3°2?", In the second case we are dealing with (.V1 ...V) plus a
random number of the form (.0... 00 . ¥ ., ...), i.e. randam in the interval 0, 1/2.
The "rounded-off" value will be (Vi) “increased by 0 or by 1/2 , according to
whether the random number in questim l1es in the interval 0, 1/on* 1, or in the interval
/201 1/2% Hence comgarmg with the "rounded off" value, we have a difference random
in the intervals 0, 1/20%1 gand 0, -1/20F 1 j.e. in the interval 172071 1/2%*2 Hence

its mean is 0 and its variance 1/12 22n

-22-

If the number to be rounded-off has the form (.v;.. nVn+1Vn+e -
(p finite), then these results are somewhat affected. The order of magn1tude of tﬁe
variance remains the same, indeed for large p even its relative change is negligible.

The mean difference may devaate from 0 by amounts which are easily estimated to be of
the order 1727 . 1/2P = 1/20%P,

In division we have the first situation, x/y = (\@;...0 @ L0, ...),
i.e. p is infinite. In multiplication we have the second one, xy = CP ..Gop),
i.e. p = n. Hence for the division both methods are applicable without mod1f1cat1on In
multiplication a bias of the order of 1/22n may be introduced. We have seen that it is
pointless to insist on removing biases of this size. We will therefore use the unmodified
methods in this case, too.

It should be noted that the bias in the case of multiplication can be
removed in various ways. However, for the reasons set forth ab e, we shall not compli-
cate the machine by intraducing such corrections.

Thus we have two standard "round-off" methods, both unbiased to the extent
to which we need this, and with the variances 1/3-22n, and 1/12 220, that is, with the

dispersions (1/ 43) (1/20) =-.58 times the last digit and (1/2ﬂ/§) (1/2) = .29 times
the last digit. The first one requires no carry facilities, the second one requires them.

Inasmuch as we propose to form the product x’y’ in the Accumulator, which
has carry facilities, there is no reason why we should not adopt the rounding scheme
described above which has the smaller dispersion, i.e. the one which may induce carries.
In the case, hovever, of division we wish to avoid schemes leading to carries since we
expect to form the quotient in the Arithmetic Register, which does not permit of carry
- operations. The scheme which we accordingly adopt is the one in which & is replaced
by 1. This method has the decided advantage that it enables us to write down the
approximate quotient as soon as we know its first (n-1) digits. It will be seen in 5.14
and 6.6.4 below that our procedure for forming the quotient of two numbers will always
lead to a result that is correctly rounded in accordance with the decisions just made.
We do not consider as serious the fact that our rounding scheme in the case of division
has a dispersion twice as 1arge as that in multiplication since division is a far less
frequent operation.

A final remark should be made in connection with the possible, occasional
need of carrying more than n=39 digits. Our logical control is sufficiently flexible to
permit treating k (= 2, 3,...) words as one number, and thus effecting n = 39. In this
case the round- off has to be handled differently, cf. Chapter IX, Part II. The multiplier
produces all 78 digits of the basic 39 by 39 digit multiplication: The first 39 in the
A, the last 39 in the AR. These must then be manipulated in an appropriate manner.

(For details, cf. 6.6.3 and 9.9-9.10, Part II.) The divider works far 39 digits only:
In forming x /y, it is necessary, even if x and y are available to 3% digits, to use
only 39 digits of each, and a 39 digit result will appear. It seems most convenient

to use this result as the first step of a series of successive approximations. The
successive improvements can then be obtained by various means. One way consists of
using the wel]l-known iteration formula (cf. 5.4). For k = 2 one such step will be needed,
for k = 3, 4, two steps, for k = 5, 6, 7, 8 three steps, etc.. An alternative procedure
is this: Calculate the remainder, using the approximate, 39 digit, quotient and the
complete, 3% digit, divisor and dividend. Divide this again by the approximate, 39
digit divisor, thus ocbtaining essentially the next 39 digits of the quotient. Repeat
this procedure until the full 3% desired digits of the quotient have been obtained.

- <23-

5.13 "' We might mention at this time a complication which. arises when a
fleating binary point is introduced into the machine. ‘fhe'operation of addition which
usually takes at most 1/10 of a multiplicetim time becomes much longer in a machine
with floating bmary since one must perform shifts and round»offs as well as additions.
It would seem reasonable in this case to place the time of an addition as about 1/3 to
1/2 6f a multiplication. At this rate it is clear ‘that the number of additions in a
problem is as important a factor in the total solution time as are the number of
multiplications. (Fozj further det;ails concerning the floating binary point, cf. 6.6.7.)

S. 14 We conclude our discussion of the arithmetic unit with a descrip-
tion of our method for handling the division operat.lon To perform a division we wish
. to ‘store the dividend in SR, the partial remainder in A and the partial quotient in AR.
Before proceeding further let us consider the so-called restaring and nan-restoring
methods of division. In. order to be able to make certain compensons, we will do this
for a general base m =2, 3,

Assume for the moment that divisor end. dividend are both positive. The
ordinary process of diwvision consists of subtracting from the partial remainder (at the
very beginning of the process this is ,of course, the dividend) the: divisor, repeat.i’ng this
until the famer becames smeller than the latter. For any fixed positional value in the
quotient in a well-conducted division tiis need be done at most m-1 times: If, after
precisely k = /0, 1, ..., m-1 repeutmns of this step, the partial remainder -has indeed
become less than the diwisor;, tihen the ruut i is put in the ouctient (at the pesition
under consideration), the partial remainder is shifted one place to the left, and the
whole process is repeated for the- pext position, etc., etc. Note that the above campari-
son of sizes is only needed at k = G, 1,..., m-2, i.e. before step 1 and after steps
d,-..., m-2, If the value k = m-1, iie. the point after step m-1, is at all reached
in a well-conducted division, then it may be taken for grantcd"'withouc any test, that
the partial remainder has become smaller than the divisor, and the operations on the
pcs;tmn under consicderation can theref are be concluded (In-the binary system, m = 2,
there is thus only one step, and only one.cs ST LY -Before this step.) In
this way this scheme, known as the restoring: scheme, requ:.res a maximum of m-1 comparisons
and utilizes the digits 0, 1, ..+, m=1 in each place in the quotient. 7he mfﬁculty of
this scheme for machine purposes is that usually'the only ecomgmical method for comparing
two numbers as to size is to subtract one from the other. If the part.ml remainder r,
were less than the dividend d, one would then have to-edd d back into r -d in order to
restore the remainderl. Thus at every stage anuunnecessary operation would be: performed.
'A mare symmetrical scheme is obtained: by net restormg In this method (from here on we
need not assume the positivity of divisor and dividend) one compares the signs of r; and
d; if they are of the same sign, the dividend is repeatedly subtracted from the re- 4
mainder until the signs become opposn:e, if they are oppasite, the dividend is repeatedly
added to the remainder until the. signs.again become like. In this scheme the digits that
may occur in a given place’in the quot:tent are evidently +1 __Z,.x., +(m-1), the pesitive
digits corresponding to subtractions and the negative ones to additions of the’ d1ndend
to the remainder.- :

.

Thus we have 2(m-1) digits instead of the usual 'm cu.gxts In the decimal
system this would mean 18 digits instead of 10. .This is a redundant notation.. The
standard form of- the quotient must therefore be restored.by subtracting from the aggre-
gate of its positive digits the aggregate of its negative digits. This requires carry
facilities in the place where the quotient is stored.

-24.

We propose to store the quotient in AR, which has no carry facilities.
Hence we could not use this scheme if we were to operate in the decimal system.

The same objection applies to any base m for which the digital repre-
sentation in questim is redundant -- i.e. when 2(m-1) >m. Now 2(m-1) > m whenever
m> 2, but 2(m-1) = m fa m = 2. Hence, with the use of a register which we have so
far contemplated, this division scheme is certainly excluded fran the start unless
the binary system is used.

Let us now investigate the situation in the binary system. We inquire
if it is possible to obtain a quasi-quotient by using the nm-restoring scheme and by
using the digits 1, 0 instead of 1, -1. Or rather we have to ask this question: Does
this quasi-quotient bear a simple relati mship to the true quotient?

Let us momentarily assume: this question can be answered affirmatively
and describe the division procedure. We store the divisor initially in A, the dividend
in SR and wish to form the quotient in AR. We now either add or subtract the contents
of SR into A, according to whether the signs in A and SR are opposite or the same, and
insert correspondingly a 0 or 1 in the right-hand place of AR. We then shift both A
and AR one place left, with electronic shifters that are parts of these two aggregates.

At this point we interrupt the discussion to note this: Multiplication
required an ability to shift right in both A and AR (cf. 5.8). We have now found that
division similarly requires an ability to shift left in both A and AR, Hence bch
organs must be able to shift both ways electronically. Since these abilities have to
be present for the implicit needs of multiplication and division, it is just as well
to make use of them explicitly in the fam of explicit orders. These are the orders
20,.21 of Table I, and of Table II, Part II. It will, howevér, turn out to be cmven-
ient to arrange same details in the shifts, when they occur explicitly under the
contral of those orders, differently from when they occur implicitly under the control
of a multiplication or a division. (For these things, cf. the discussion of the shifts
near the end of 5.8 and in the third remark below on one hand, and in the third remark
in 7.2, Part II, on the other hand.)

Let us now resume the discussiomn of the division. The process described
above will have to be repeated as many times as the number of quotient digits that we
consider appropriate to produce in this way. This is likely to be 39 or 40; we will
determine the exact number further below.

In this process we formed d1glts €1 =0 or 1 for the quotient, when the
digit should actually have been Ci =-lor 1, .with C1 2‘:' - 1. Thus we have a d1ffer-
ence between the true quotient z (based on t.he digits C) and the quasi-quotient z’
(based on the digits &!), but at the same time a one- to -one connection. It would be
easy to establish the élgebramal expressim for this connection between z’ and z
directly, but it seems better to do this as part of a discussion which clarifies all
other questi ms c mnected with the process of divisim at the same time.

We first make same general remarks:

First: Let x be the dividend and y the divisor. We assume, of course,
-1 £x %1, -1 £y <1. Itwill be found that our present process of division is
entirely unaffected by the signs of x and y, hence no further restrictions am that
score are required.

-25.

On the other hand, the quotient z = x/y must also fulfill -1 sz <1,
It seems somewhat simpler although this is by no means necessary, to exclude for the
purposes of this discussion z = 1, and to demand jz{ < 1. This means in terms of the
dividend x and the divisor y that we exclude x = -y and assume |x{<y .

Second: The division takes place in n steps, which correspond to the
n digits &1, ..., Cr" of the pseudo-quotient z’', n being yet to be determined (presumably
39 or 40). Assume that the k-1 first steps (k= 1,...,n) have already taken place, hav-
ing produced the k-1 first digits: Cl,..._, cl!(-i ; and that we are now at the k-th step,
involving production of the k-th digit; & . Assume furthermore, that A now contains
the quantity r,_,, the result of the k-1 first steps. (This is the k-1-st partial re-
mainder. For k = 1 clearly r_ = x.) We then form ry = 2rp 4 ¥y, according to whether
the signs of ry_, and y do or do not agree, i.e.

(f) Ty = 2rk~1 my,

E is - if the signs of ry_, and y do agree
is + if the signs of ., and y do not agree.

Let us now see what carries may originate in this procedure. We can
argue as follows: [rpl<lyl is true for h=0 (lr°|=bcl<lyl)}, and if it is true for
h = k-1, then () extends it to h=k also, since r.4 and [y have opposite signs.
The last point may be elaborated a little further: Because of the opposite signs
Irpl = 20y 0 -0y1< 20yl -1yl =lyl. Hence we have always Irj | <lyl, and therefore a
fortiori [rl < 1, i,e,, -1 < r, <L S

Consequently in the equation (f) one summand is necessarily > -2, <2,
the other is 2 -1, <1, and the sum 1s > -1, <l.. Hence we may carry out the operations
of () modulo 2, disregarding any possibilities of carries beyond the 2° position, and

the resulting ry will be automatically correct (in the range > -1, <1).

Third: Note however that the sign of Ti-1, which plays an important role
in () above, is only then correctly determinable fron the sign digit, if the number
from which it is derived is 2 -1, <l. (Cf, the discussion in 5.7.) This requirement
however, is met, as we saw above, by ry_,, but not necessarily by 2r, _,, 'Hence the sign
of r,_,, (i.e. its sign digit) as required by (f), mst be sensed before ry.1 is doubled.

’
This being understood, the doubling of r,_, may be performed as a simple
left shift, in which the left-most digit (the sign digif) is allowed to be lost -- this
corresponds to the disregarding of carries beyond the 2° position, which we recognized
above as being permissible in (f). (Cf. however, Part II, Table II, for another sort
of left shift that is desirable in explicit form, i.e. as an order.)

Fourth: Consider now the precise implication of (§) above. El=1or0
correspond to B = - or +, respectively. Hence (f) may be written

n =2, t1-28)y,

2~krk = 2«(1{-1)1,1‘“1 +(2°k “2~(k-1) le) y .

-26-

Summing over k = 1,..., n gives

20 =x (2m) 8 2D gy,

n

L kgl 2-le-l) Q+2My+2ty

This makes it clear, that z = -1 + Z;:=l 2-(k-1) (\: + 2™ carrespads to
“true quotient z = x/y and 27r r,, with an absolute value -n ly& 2" to the remainder.
Hence, if w2« disregard the term -1 for a mavent, &I, &b,... , -1.are the n+l first
digits of what may be used as a true quotient, the sign d1g1t, bemg part of this sequence.

Fifth: If we do not wish to get invalved in more complicated round-off
procedures, which exceed the immediate capacity of the only available adder, A, then the
above result suggests that we should put n+l ® 40, n = 39, The &l,..., &o are then 39
digits of the quotient, including the sien digit, but not including the right-most digit.

The right-most digit is taken care of by placing a 1 into the right-most
stage of A. ‘

At this point an additimnal argument in favor of the procedure that we
have adopted here becames apparent: The procedure coincides (without a need for any
further correctims) with the sec md r amd-off procedure that we discussed in 5.12.

There remains the term -1. Since this applies to the final result, and
no right shifts are to follaw, carries which might go beyond the 2° position may be
disregarded. Hence this amounts simply to changing the sign digit of the quctient z:
Replacing 0 or 1 by 1 or 0 respectively.

This concludes our discussion of the division scheme. We wish, however,
to reemphasize two very distinctive features which it possesses:

First: This d¥ision scheme applies equally for any cambinatims of signs
of divisor and dividend. This is a characteristic of the non-restoring division schemes,
but it is not the case for any simple known multiplication scheme. . It will be remembered,
in particular, that our multiplicati m procedure of 5.9 had to contain special carrecting
steps fa the cases where either or both factors are negative.

Second: This division scheme is practicable in the binary system only, it
has no analog for any other base.

This method of binary divisim will be illustrated on some examples in 5.15.

5,15 We give below sane illustrative examples of the operations of
binary arithmetic which were discussed in the preceding sections.

Although it presented no difficulties or ambiguities, it seems best to
begin with an example of addition.

Binary Notation

Augend 0.010110011

Addend 0.011010111

Sum 0.110001010
(Carries) 1111 111

-27-

Decimal Notapion (Fractional Form)

179/512
215/512

394/512

In what follows we will not show the carries any more.

We form the negative of a number (cf. 5.7):

Binary Notation

-0.101110100

1.010001011
1

1.010001100

Complement :

A subtraction (cf. 5.7):

Binary Notation

Subtrahend 0.011010111

Minuend 0.110001010
Complement of

Subtrahend 1.100101000

1

Difference 0.010110011

Some multiplications (cf. 5.8 and 5.9):

Binary Notation

Multiplicand 0.101
Multiplier 0.011
0101
0101
0

Product 0.001111

Decimal Notation (Fractional Form)

-372/512

-1 +140/512

Decimal Notation (Fractional Form)

215/512
394/512

-1 +297/512
179/512

Decimal Notation (Fractional Form)

5/8
3/8

15/64

-28-

Binary Notation Decimal Notation (Fractional Form)

Multiplicand 1.101 -3/8
Multiplier 1.011 - 5/8

0101
0101
1

.101111
Correction 1* 1 1

1.110111

Correction 2**
(Complement of the

multiplicand) 0.010
1
0.001111 15/64

A division (cf. 5.14):

Binary Notation o Decimal Notation (Fractional Form)

Q.D.

Divisor 1.011000 -.5/8
Dividend 0.001111 15/64

0.011110 0
1.011000

1.110110

1.101100 1
0.100111
1

0.010100

0.101000 0
1.011000

0.000000

0.000000 0
1.011000

1. 011000

0. 110000 1
0.100111
1

1.011000

Quotient

(uncorrected) 0.10011
Quotient

(corrected) 1.100111 -1 +39/64 = -25/64

*) . For the sign of the multiplicand.
**) For the sign of the multiplier.
+) Quotient Digit

-29.

Note that this deviates by 1/64, i.e. by one unit of the right-most position,
fran the correct result -3/8. This is a consequence of our round-off rule, which forces
the right-most digit to be 1 under all conditions. This produces occasionally results with
unfamiliar and even annoying aspects (e.g. when quotients like 0:y or y:y are formed), but
it is nevertheless unobjectionable and self-consistent on the basis of our general principles.

6.0 The Control.

6.1 It has already been stated that the computer will contain an organ,
called the Cantrol, which can automatically execute the orders stored in the Selectrons.
Actually, for a reason stated in 6.3, the orders for this computer are less than half as
long as a forty binary digit number, and hence the orders are stored in the Selectron
memory in pairs.

Let us consider the routine that the Cemtrol performs in directing a compu-
tation. The Control must know the location in the Selectron memory of the pair of orders
to be executed. It must direct the Selectrons to transmit this. pair, of orders to-the
Selectron Register and then to itself. It must then direct the execution of the operation
specified in the first of the two orders. Among these orders we can immediately describe
two major types: An order of the first type begins by causing the transfer of the number,
which is stored at a specified memory location, from the Selectrons to the Selectron
Register. Next, it causes the arithmetical unit to perform some arithmetical operations
on this number (usually in conjunction with another number which is already in the arith-
metical unit), and to retain the resulting number in the arithmetical unit. The second
type order causes the transfer of the number, which is held in ‘the arithmetical unit, into
the Selectron Fegister, .and from. there to a specified memory location in the Selectrons.
(It may also be that this latter operation will permit a direct transfer from the arith-
metical unit into the Selectrons.) An additional type of orders: consists of the transfer
orders of 3.5. Further orders control the inputs and the outputs of the machine. The
process described at the beginning of this paragraph must then be repeated with the second
order of the order pair. This entire routine is repeated until the end of the problem.

6.2 It is clear. from what has just been stated that the Control must have
a means of switching to a- specified location in. the Selectron memory, for withdrawing both
numbers for the computation and pairs of orders. Since t he Selectron memory (as tenta-
tively planned) will hold 212 = 4096 forty-digit words (a word is either a number or-a’
pair of orders), a twelve-digit binary number suffices to identify a memory location.
Hence a switching mechanism is required which will, on receiving a twelve-digit b1nary
number, select the corresponding memory location.

L4

The type of circuit we propose to use for this _purpose is known as a
decoding or many-one function table. It has been developed in various forms independently
by J. Rajchman and P. Crawford* It consists of n flip-flops which register an n digit
binary number. It also has a maximum of 2" output wires. The flip-flops activate-a
matrix in which the interconnections between mput. and output wires are made in such a
way that one and only one of 2 output wires is selected (i.e. has a.positive voltage
applied to it). These interconnections may be. estabhshed by means of resistors or by

* BAJchman s table is described in an RCA Laboratories’ report by Rajchman, Snyder and
Rudnick issued in 1943 under the terms of an OSFD contract OfM-sr-591. Crawford’s
work is discussed in his thesis for the Master’s degree at Massachusetts Institute of

Technology.

-30-

means of non-linear elements (such as diodes or rectifiers); all these various methods
are under investigation. The Selectron is so designed that four such function table
switches are required, each with a three digit entry and eight (22) outputs. Four sets
of eight wires each are brought out of the Selectron for switching purposes, and a parti-
cular location is selected by making one wire positive with respect to the remainder.
Since all forty Selectrons are switched in parallel, these faur sets of wires may be
connected directly to the four function table autputs.

6.3 Since most computer operatims iavolve at least one number located
in the Selectron memory, it is reasonable to adopt a code in which twelve binary digits
of every order are assigned to the specificatim of a Selectron location. In those
orders which do not require a number to be taken out of or into the Selectrons these
digit positions will not be used.

Though it has not been definitely decided how many operations will be built
into the computer (i.e. how many different orders the Control must be able to understand),
it will be seen presently that there will probably be more than 25 but certainly less than
28, For this reason it is feasible to assign'6.binary digits for the order code. It thus
turns out that each order must contain eighteen binary digits, the first twelve identifying
a memory location and the remaining six specifying an operation. It can now be explained
why orders are stored in the memory in pairs. 'Since the same memory organ is to be used
in this computer for both orders and numbers, it is efficient to make the length of each
about equivalent.. But numbers of eighteen binary digits would not be sufficiently accurate
for prdlems which this machine will solve. Rather, an accuracy of at least 10710 or 2733
is required. Hence it is preferable to make the numbers long enough to accomodate two
orders. :

As we pointed out:in 2.3, and used it in 4.2 et sequ. and 5.7 et sequ.,our
numbers will actually have 40 binary digits each. This allows 20 binary digits for each
order, i.e. the 12 digits that specify a memory location, and 8 more digits specifying
the nature of the operation (instead of the minimum of 6 referred to above). It is
convenient,, as will be seen in 6.8.2 and Chapter IX, Part II, to group these binary digits
into tetrads, groups of ‘4 binary digits. Hence a whole word consists of 10 tetrads, a
half word or order of 5 tetrads, and of these '3 specify a memory location and the remain-
ing 2 specify the nature of the operation. Outside the machine each tetrad can be
expressed by a base 16 digit. (The base 16 digits are best designated by symbols of the
10 decimal digits 0 to 9, and 6 additional symbols, e.g. the letters a to f. Cf. Chapter
IX, Part II.) These 16 characters should appear in the typing for and the printing from
the machine. (For further details of these arrangements cf. loc. cit. above.)

The specification of the nature of the operation that is involved in an
order occurs in binary form, so that another many-one or decoding function is' required
to decade the order. This function table will have six input flip-flops: (the two remain-
ing digits of the order are net needed, Since there will not be 64 different orders, not
all 64.outputs need be provided. However, it is perhaps worthwhile to connect the outputs
correspanding. to unused order possibilities to a checking ¢1rcu1t which will give an indi-
cation whenever a code word unintelligible to the control is received in the input flip-
flops.

-31-

The function table just described energizes a different output wire for
each different code operation. As will be shown later, many of the steps involved in
executing different orders overlap. (For example, addition, multiplication, division,
and going from the Selectrons to the register all include transferring a number from
the Selectrons to the Selectron Register.) For this reason it is perhaps desirable to
have an additional set of control wires, each of which is activated by any particular
combination of different code digits. These may be obtained by taking the output wires
of the many-one function table and using them to operate tubes which will in turn operate
a one-many (a coding) function table. Such a function table consists of a matrix, as
bef ae, but in this case only one of the input wires is activated at any one time, while
various sets of one or more of the output wires are activated. This particular table
may be referred to as the recoding function table.

. The twelve flip-flops operating the four function tables used in selecting
a Selectron position, and the six flip-flops operating the functim table used for de-
coding the order, are referred to as the Function Table Register, FR.

6.4 Let us consider next the process of transferring a pair of orders
fran the Selectrons to the Control. These orders first go into SR. The order which is
to be used next may be transferred directly into FR. The second order of the pair must
be removed from SR (since SR may be used when the first order is executed), but can not
as yet be placed in FR. Hence a temporary storage is provided for it. The storage :
means is called the Control Register, (R, and consists of 20 (or possibly 18) flip-flops,
capable of receiving a number from SR and transmitting a number to FR.

As already stated (6.1), the Control must know the location of the pair of
aders it is to get from the Selectron memory. Normally this location will be the one
following the location of the two orders just executed. That is, until it receives an
arder to do othewise, the Control will take its orders fram the Selectrons in sequence.
Hence the order location may be remembered in a twelve stage binary counter (one capable
of counting 212) to which one unit is added whenever a pair or orders is executed.

This counter is called the Control Counter,(C, :

The details of the process of obtaining a pair of orders from the Selectron
are thus as follows. The contents of (OC are copied into FR, the proper Selectron location
is selected, and the contents of the Selectrons are transferred to SR. FR is then cleared,
and the contents of SR are transferred to it and (R. (C is advanced by one unit so the
Control will be prepared to select the next pair of orders fram the memory. (There is,
however, an exception from this last rule for the so-called transfer orders, cf. 3.5.
This may feed CC in a different manner, cf. the next paragraph below,) First the order
in FR is executed and then the order in (R is transferred to FR and executed. It should
be noted that all these operations are directed by the Control itself, not only the
operations specified in the Control words sent to FR but also the aut amatic operations
required to get the correct orders there. :

Since the method by means of which the Control takes order pairs in sequence
from the memory has been described, it only remains to consider how the Control shifts
itself from one sequence of control orders to another in accordance with the operations
described in 3.5. The execution of these operations is relatively simple. An order
calling for one of these operations contains the twelve digit specification of the posi-
tion to which the Control is to be switched, and these digits will appear in the left-
hand twelve flip-flops of FR. All that is required to shift the Control is to transfer

-32-

the contents of these flip-flops to OC. When the Control goes to the Selectrons for the
next pair of orders it will then go the location spe01f1ed by the number so transferred.
In the case of the unconditional transfer, the transfer is made automatically; in the’
case of the canditional transfer it is made only if the sign counter of the Accumulator
registers zero.

6.5 In this report we will discuss only the general method by means of
which the Control will execute specific orders, leaving the details until later. It has
already been explained (5.5) that when a circuit is to be designed to accomplish a parti-
cular elementary operation (such as addition), a choice must be made between a static
type. and a dynamic type circuit. When the. design of the Control is considered, this same
choice arises. The function of the Control is to direct a sequence of operations which.
take place in the various circuits of the computer (mcludlng the circuits of the Control.
itself). Consider what is involved in directing an operation. The Control must signal
for the operation to begin, it must supply whatever signals are required to specify that
particular operation, and.it must in some way know when the operation has been campleted
so that it may start the succeeding operation. Hence the control circuits must be capable
of timing the operations.’ It should be noted that timing is required whether the circuit
perfarming the operation is static or dynamic. In the case of a static type circuit the
Control must supply static control signals for a period of time sufficient to allov: the
output voltages to reach the steady-state camdition. In the case of a dynamic type cir-
cuit the Cantrol must send various pulses at proper intervals to this circuit.

If all circuits of a camputer are static in character, the ‘control timing
circuits may likewise be static, and no pulses are needed in the system. However, though
some of the circuits of the computer we are planning will be static, they will pr dably
not all be so, ‘and hence pulses. as well as static signals must be supplied by the Control
to the rest of the computer. There are many advantages in der1v1ng these pulses from a
central source, called the clock. The timing may then be done either by means of counters
counting clock pulses or by means of electrical delay lines (an RC circuit is here regarded
as a simple delay line). Since the timing of the entire computer is governed by a single .
pulse saurce, the computer circuits will 'be said to operate as a synchronized system.

The clock plays an important role bath in detecting and in localizing the
errors made by the camputer. One method of checking which is under consideration is that’
of having two identical computers which operate in parallel and automatically compare
each others results. Bot:h machines would be controlled by the same clock, so they would
operate in apsolute synchronism. It is not necessary to compare every flip-flop of one
machine with the corresponding flip-flop of the other. Since all numbers and control
words pass through either the Selectran Begister or the Accumulator soon before or soon
after they are used, it suffices to check the.flip-flops of the Selectran Register and
the flip-flops of the Accumulator which hold the number registered ‘there; in fact, it
seems possible: to check the Accumilator only (cf.. the end of 6.6.2). The checking
circuit would stop the clock whenever a difference appeared, or stop the machiné'in a
more direct manner if an asynchronous system is used. Every flip-flop of each computer
will:be located at a convenient place. In: fact, all neons will be located on one panel,
the corresponding neons of ' the' two machines being placed in parallel rows so that one
can tell at a glance (after the machine has been stopped) where the discrepancies are.

-33-

The merits of any checking system must be weighed against its costi Building
two machines may appear t;o be expensive,- but since most of the cost of a scientific computer
lies in develapment. ;‘ather than production, this consideration is not so important as it
mght. seem, .- may, show. that for most problems the two machines need not be operated
in parallel J,‘ ‘most cases purely mathematical, external checks are possible:
Smooghness of the results behavior of differences of various types, validity of suitable
1denut1es, redmxda;lt,: calculat.mns, etc. All of these methods are usually adequate to
disclose the pres or absence of error in toto, their drawback is-only that they may not
allow the detailed: agnosing and locating of errors at, all or with ease. When a problem
is run for the first time, so that it requires speclal care, or when an error is known to
be present, and has to be located -- only then will it be necessary as a rule, to use both
machines’ in paralle} 'ﬂms, ‘they can be used as separate machines most of the time . -The
esgential feature of suc]r a method of checking lies in the fact that it checks the compu-
tation at every pm,x;t, (wd hence detects transient errors as wgll as steadyrstate ones)
1e, mac ‘when the error occurs so that,the process of localizing the fault
is great.ly sxmphf:.ed.f These advantages are only partially gained by duplicating the
arithmetic part of the computer, or by followmg one operation with the complement opera-
tion. (mlt).ph.catlga by division, etc.), since this fails to check either the memory or
the Control (which :Is the most. complicated, though not the largest part of the machine).

~ The method of locahzmg errors, either with or without a duplicate machine,
needs - further dlscgguom. it is planned to design all circuits (including those of the
Control) of t.he comput.er;so that if the clock‘is stopped between pulses the computer will
retain all its mfopmatlm in flip-flops so that the computation may proceed unaltered
when the clock is started again. This principle has already demonstrated its usefulness
in the ENIAG, 'Ihx& makes it possible for the machine to compute with the clock opérating
at any speed belw cert.am maximum, -as- long as the clock gives out pulses of constant
shape regardless of-¢he. spacing between pulses.. In particular, the spacing between pulses
may be made mdeﬁn:ltely large. The clock will be provided with a mode of operation in
which it will emit a smg],e pulse whenever instructed to do so by the operator. By means
of this, the operater cap cause the machine to go through an operation'step by step, .
checking the: results by means of the indicating-lamps connected to the flip-flops. It
will be noted that' this. dﬁemgn principle does not exclude the use of delay lines to obtain
delays as lmg as these are only used to time the constituent operations of a single step,
and have no part in determmmg the machine’s operating repet.:.uon rae, Timing coinci-
dences by, means of - delay lipes is excluded since this requires a constant pulse rate.

The orders which the. Control understands may be divided into two
groups: Those that specxfy operauons which are performed within the computer and those
that specify operations involved in getting data into and out of the computer. ‘At the -
present time the mtemul operatlons are more complet.ely planned than the input and out-
put operations, and‘hence they will be discussed more in detail than the latter (which
are treated brie fly in 6,8). The internal operations which have been itentatively adopted
are listed in Table I., It has already been pointed out that not all of these operations
are loglcally basic, ,but that many can be programmed by means of others. In the case of
some of these operat’;tons the reasons for building them into the Control have already been
given.” In this section we will give reasons for building the other operations into the
Control and will explam ;n the case of each operation what the Control must do in order
' to execute 11'..

-34.

In order to have the precise mathematical meaning of the symbols which are
introduced in what follows clearly in mind the reader should consult for each new symbol
the table at the end of the report in addition to the explanations given in the text.

6.6.1 Throughout what follows S(x) will denote the memory location No.
x in the Selectron. Accordingly the x which appears in S(x) is a 12 digit binary, in the
sense of 6.2. The eight addition operations [S(x) =>Ac*, S(x) =®Ac-, S(x) =>Ah+, S(x) =*Ah-,
S(x) =*AcM, S(x) —>Ac-M, S(x) =*AhM, S(x) =>Ah-M] involves the following possible four
steps:

First: Clear SR and transfer into it the number at S(x).

Second: Clear A if the order contains the symbol ¢, do not clear A if the
order contains the symbol h.

Third: Add the number in SR or its negative (i.e. in our present system
its complement with respect to 2%) into A. If the order does not contain the symbol M,
use the nupber in SR or its negative according to whether the order contains the symbol
+or - , If the order contains the symbol M, use the number in SR or its negative accord-
ing to whether the sign of the number in SR and the symbol + or - in the order do or do
not agree.

Fourth: Perform a complete carry. Building the last four addition opera-
tions (those containing the symbol M) ‘into the Control is fairly simple: It calls only
for one extra comparison (of the sign in SR and the + or - in the order, cf. the third
step above), and it requires therefore only a few tubes more than required for the first
four addition operations (those not containing the symbol M). These facts would seem of
themselves to justify adding the operations in question: Plus and minus the absolute
value. But it should be noted that these operations can be programmed out of the other
operations of Table I with correspondingly few orders (three for absolute value and five
for minus absolute value), so that some further justification for building them in is
required. The absolute value order is frequently in connection with the orders L and
R (see 6.6.7), while the minus absolute value order makes the detection of a zero very
simple by merely detecting the sign of — [N|. (If —~|N} 20, then N = 0.)

6.6.2 The operation of S(x) =R involves the following (two) steps:
First: Clear SR, and transfer S(x) to it.

Second: Clear AR and add the number in the Selectron Register into it.
The operation of R —>A merits more detailed discussion, since there are alternative ways
of removing numbers from AR. Such numbers could be taken directly to the Selectrons as
well as into A, and they could be transferred to A in parallel, in sequence, or in
sequence parallel. It should be recalled that while most of the numbers that go into
AR have come from the Selectrons and thus need not be returned to them, the result of
a division and the right-hand 39 digits of a product appear in AR. Hence while an
operation for withdrawing a number from AR is required, it is relatively infrequent
and therefore need not be particularly fast. We are therefore considering ‘the possi-
bility of transferring at least partially in sequence and to use the shifting properties
of A and of AR for this. Transferring the number to the Selectron via the Accumulator
is.also desirable if the dual machine method of checking is employed, for it means that
even if numbers are only checked in their transit through the Accumulator, nevertheless
every number going into the Selectron is checked before being placed there.

e

-35-

6.6.3 The operation S(x) x R =>A involves the following (six)’ steps:
First: Clear SR and transfer S(x) (the multiplicand) into it.

‘ Second: 39 steps, each of which consist of the two folloving parts:
(a) Add (or rather shift) the sign digit of SR into the partial product in A, or add
all but the sign digit of SR into the partial product in A -- depending upon whether
the right-most digit in AR is 0 or 1 -- and effect the appropriate carries. (b) Shift
A and AR to the right, fill the sign digit of A with a 0 and the digit of AR immediately
right of the sign digit (positional value 2°!) with the previously right-most digit of A.
(There are ways to save some time by merging these two operations when the right-most
digit in AR is 0, but we will not discuss them here more fully)

Third: If the sign digit in SR is 1 (i.e. —), then inject a carry into
the right-most stage of A and place a 1 into the sign digit of A.

Fourth: If the original sign digit of AR is 1 (i.e. -), then subtract « -
the contents of SR from A.

Fifth: If a partial carry system was employed in the main process, then
a complete carry is necessary at the end.

Sixth: The appropriate round-off must be effected. (Cf. Chapter IX,
Part II, for details, where it is also explained how the sign digit of the Arithmetic
Register is treated as part of the roaund-off process.)

It will be noted that since any number: held in A at the beginning of the
process is gradually shifted into AR, it is impossible to accumulate sums of products in
A without storing the various products temporarily in the Selectrons. While this is un-
doubtedly a disadvantage, it cannot be eliminated without constructing an extra register,
and this does not at this moment seem worthwhile.

On the other hand, saving the right-hand 39 digits of the answer is .
accomplished at very little extra equipment, since it only means connecting the 2°%°
stage of A to the 27 stage of AR during the shift operation. The advantage of saving
these digits is that it simplifies the handling of numbers &f any number of digits in
the computer (cf. the last part of 5.12). Any number of 39k binary digits (where k is
an integer) and sign can be divided into k parts, each part being placed in a separate
Selectron position. Addition and subtraction of such numbers may be programmed out of
a series of additions or subtractions of the 39-digit parts, the carry-over being pro-
grammed by means of Cc =»S(x) and Cc’ =S(x) operations. (If the 2° stage of A registers
negative after the addition of two 39 digit parts, a carry-over has taken place and hence
2°3° must be added to the sum of the next parts.) A similar procedure may be followed in
miltiplication if all 78 digits of the product of the two 39 digit parts are kept, as is
planned. (For the details cf. Chapter IX, Part II.) Since it would greatly complicate
the computer to make provision for holding and using a 78 digit divident, it is planned
to program 39 k-digit division in one of the ways described at the end of 5.12.

6.6.4 The operation of division A + S(x) R involves the following
(four) steps: '

First: Clear SR and transfer S(x) (the divisor) into it.

-36-

Second: Clear AR.

Third: 39 steps, each of which consists of the following three parts:
(a) Sense the signs of the contemts of A (the partial remainder) and of SR, and sense
whether they agree or not. (b) Shift A and AR left. In this process the previous sign
digit of A is lost. Fill the right-most digit of A (after the shift) with a 0, and the
right-most digit of AR (before the shift) with 0 or 1, depending on whether there was
disagreement or agreement in (a). (c) Add or subtract the contents of SR into A,
depending on the same alternative as above.

Fourth: Fill the right-most digit of AR with a 1, and change its sign
digit.

For the purpose of timing the 39 steps involved in division a six stage
counter (capable of counting to 2% = 64) will be built into the Control. This same
counter will also be used for timing the 39 steps of multiplication, and possibly for
controlling A when a number is being transferred between it and a tape in either direc-
tion (see 6.8).

6.6.5 The three substitution operations [At =>S(x), Ap “*S(x), and
Ap’ =>S(x)] involve transferring all or part of the number held in A into the Selectrons.
This will be done by means of gate tubes connected to the registering flip-flops of A.
Forty such tubes are needed for the total substitutions, At =>S(x). The partial substi-
tution Ap —>S(x) and Ap’ =—S(x) require that the left-hand twelve digits of the number
held in A be substituted in the proper places in the left-hand and right-hand orders
respectively. This may be dme by means of extra gate tubes, or by shifting the number
in A and using the gate tubes required for At =>S(x). (This scheme needs same additional
elabarati m, when the order directing and the order suffering the substitution are the
two successive halves of the same word. I.e. when the latter is already in FR at the
time when the former becomes operative in (R, so that the substitution effected in the
Selectrons comes too late to alter the order which has already reached (R, to become
operative at the next step in FR. There are various ways tc take care of this compli-
catim, either by some additional equipment or by appropriate prescriptions in coding.
We will not discuss them here in more detail, since the decisions in this respect are
still open.)

~ The importance of the par tial substitution operations can hardly be over-
estimated. It has already been pointed out (3.3) that they allow the computer to perform
operations it could not otherwise conveniently perform, such as making use of a function
table st aed in the Selectron memory. Furthermore, these operations remove a very size-
able burden from the person coding problems, for they make possible the caling of classes
of problems, in contrast to coding each individual problem separately. Because Ap=¥S(x)
and Ap’ =>S(x) are available, any program sequence may be stated in general form (that is,
without Selectron location designations for the numbers being operated on), and the
Selectr m locations of the numbers to be operated on substituted whenever that sequence
is used. As an example, consider a general code for n-th order integration of m total
differential equations for p steps of independent variable t, formulated in advance.
Wheénever a problem requiring this rule is coded for the camputer, the general integration
sequence can be inserted into the statement of the problem along with coded instructions
for telling the sequence where it will be located in the memory (so that the proper S(x)
designations will be inserted into such orders as Cu=>S(x), etc.). Whenever this
sequence is to be used by the computer it will automatically substitute the correct

-37-

values of m, n, p and At, as well as the locations of the boundary conditions and the
descriptions of the differential equations, into the general sequence. (For the details
of this particular procedure, cf. Chapter XIII, Part II.) A library of such general
sequences will be built up, and facilities provided for convenient insertion of any of
these into the coded statement of a problem (cf. 6.8.4). When such a scheme is used,
only the distinctive features of a problem need be coded.

6.6.6 The manner in which the control shift operations [Cu=>S(x),
Cu’ =S(x), Cc =*S(x), and Cc’=»8(x)] are realized has been discussed in 6.4 and needs

no further comment.

6.6.7 One basic question vhich must be decided before a computer is
built is whether the machine is to have a so-called floating binary (or decimal) point.
While a floating binary point is undoubtedly very convenient in coding problems, build-
ing it into the computer adds greatly to its complexity and hence a choice in this
matter should receive very careful attention. However, it should first be noted that
the alternatives ordinarily considered (building a machine with a floating binary point
vs. doing all computation with a fixed binary point) are not exhaustive and hence that
the arguments generally advanced for the floating binary point are only of limited
validity. Such arguments overlook the fact that the choice vith respect to any parti-
cular operation (except for certain basic ones) is not between building it into the
computer and not using it at all, but rather between building it into the computer and
programming it out of operauons built into the comput.er (One short reference to the
floating binary point was made in 5.13.)

Building a floating binary point into the computer will not only compli-
cate the Control but will also increase the length of a number and hence increase the
size of the memory and the arithmetic unit. Every number is effectively increased in
size, even though the floating binary point is not needed in many instances. Further.
more, there is considerable redundancy in a floating binary point type of notation,
for each number carries with it a scale factor, while generally speaking a single scale
factor will suffice for a possibly estensive set of numbers. By means of the operations
already described in the report a flcating binary point can be programmed. While addi-
tional memory capacity is needed for this, it is probably less than that required by a
built-in fl @ating binary point since a different scale factor does not need to be
remembered for each number.

To program a floating binary point involves detecting where the first
zero occurs in a number in A. Since A has shifting facilities this can best be done
by means of them. In terms of the operations previously described this would require
taking the given number out of A and performing a suitable arithmetical operation on
it: For a (multiple) right shift a multiplication, for a (multiple) left shift either
one divisim, or as many doublings (i.e. additions) as the shift has stages. However,
these operations are inconvenient and time-casuming, so we propose to introduce two
operations (L and R) in order that this (i.e. the single left and right shift) can be
accomplished directly. These operations make use of facilities already present in A
and hence add very little equipment to the computer. It should be noted that in many
instances a single use of L and possibly of R will suffice in programming a floating
binary point. For if the two factors in a multiplication have no superfluous zeros,
the product will have at most one superfluous zero (if % $X <1 and %2 €Y <1, then
% £XY <1). This is similarly true in division (if X $X <) and % S Y <1, then
4 <X/Y <1). In addition and subtraction any numbers growing ait of range can be

-38-

treated similarly. Numbers which decrease in these cases, i.e. develop a sequence of
zeros at the beginning, are really (mathematically) losing precision. Hence it is
perfectly proper to omit formal readjustments in this event, (Indeed, such a true
loss of precision cannot be obviated by any formal procedure, but., if at all, only by
a different mathematical formulation of the problem,)

6.7 Table I shows that many of the operations which the Control is.to
execute have common elements. Thus addition, subtraction, multiplication and division
all involve transferring a number from the Selectrons t o SR. Hence the Control may be
simplified by breaking some of the operations up into more basic ones.” A timing cir-
cuit will be provided far each basic operation, and one or mare such circuits will be
involved in the execution of an order. The exact choice of basic operations will depend
upon how the arithmetic unit is built.

In addition to the timing circuits needed for executing the orders of
Table I, two such circuits are needed for the automatic operations of transferring
orders from the Selectron Register to (R and FR, and for transferring an order from
(B to FR. In normal computer operation these twa circuits are used alternately, so a
binary counter is needed to remember which is to be used next. In the operations
Cu’ —S(x) and Cc’=>S(x) the first order of a pair is ignored, so the binary counter
must be altered accardingly.

The execution of a sequence of orders involves using the various timing
circuits in sequence. When a given timing circuit has completed its operation, it
emits a pulse which should go to the timing circuit to be used next. Since this de-
pends upon the particular operation being executed, these pulses are routed acc ading
to the signals received from the decoding and recoding function tables activated by
the six binary digits specifying an order.

6.8 In this section we will consider what must be added to the Control
so that it can direct the mechanisms for getting data into and out of the computer and
also describe the mechanisms themselves. Three different kinds of input-output mechanism
are planned.

First: Several magnetic wire storage units operated by serv amechanisms
controlled by the computer.

Second: Some viewing tubes for graphical portrayal of results.

: Third: A typewriter for feeding data directly into the computer, not to
be confused with the equipment used for preparing and printing from magnetic wires. As
presently planned the latter will consist of modified Teletypewriter equipment, cf.
6.8.2 and 6.8.4.

6.8.1 Since there already exists a way of transferring numbers between
the Selectrons and A, therefore A may be used for transferring numbers from and to a
wire. The latter transfer will be done serially and will make use of the shifting
facilities of A. Using A for this purpose eliminates the possibility of computing and
reading from or writing on the wires simultaneously. -However, simultaneous operation
of the camputer and the input-output organ requires additional temporary storage and
introduces a synchronizing prclem, and hence it is not being considered for the first
model.

-39.

Since, at the beginning of the problem, the computer is empty, facilities
must be built into the Control for reading a set of numbers from a wire when the operator
presses a manual switch. As each number is read from a wire into A, the Control must
transfer it to its proper location in the Selectrons.. The OC may be used to count off
‘these positions in sequence, since it is capable of transmitting its contents to FR.

A detection circuit on OC will stop the process when the specified number of numbers has
been placed in the memory, and the Control will then be shifted to the orders located in
the first position of the Selectron memory.

It has already been stated that the entire memory facilities of the wires
should be available to the computer without human intervention. This means that the
Control must be able to select the proper set of numbers from those going by. Hence
additional orders are required for the code. Here, as before, we are faced with two
alternatives. We can make the control capable of executing an order of the form: Take
numbers fram positions p to p + s on wire No. k and place them in Selectron locations
vtov +s. Or we can make the Control capable of executing some less complicated opera-
tions which, together with the already given control orders, are sufficient for program-
ming the transfer operation of the first alternative. Since the latter scheme is simpler
we adopt it tentatively.

The computer must have same way of finding a particular number on a wire.
One method of arranging for this is to have each number carry with it its own location
designation. A method more economical of wire memory capacity is to use the Selectrm
memory facilities to remember the position of each wire. For example, the computer
would hold the number ti specifying which number on the wire is in position to be read.
If the Control is instructed to read the number at position ps on this wire, it will
compare pi with ti; and if they differ, cause the wire to move in the proper direction.
As each number on the wire passes by, one unit is added or subtracted to ti and the
comparison repeated. VWhen ps = ti numbers will be transterred from the wire to the
Accumlator and then to the proper location in the memory. Then both t; and py will
‘be increased by 1, and the transfer from the wire to Accumulator to memory repeated.
This will be iterated, until t; + s and p; + s are reached, at which time the Control
will direct the wire to stop.

Under this system the Control must be able to execute the following orders
with regard to each wire: Start the wire forward, start the wire in reverse, stop the
wire, transfer from wire to A, and transfer from A to wire. In addition, the wire must
signal the Control as each digit is read and when the end of a number has been reached.
Conversely, when recording is done the Control must have a means of timing the signals
sent from A to the wire, and of counting off the digits. The 28 counter used for multi-
plication and division may be used for the latter purpose, but other timing circuits will
‘be required for the former. '

If the method of checking by means.of two computers operating simultaneously
is adopted, and each machine is built so that it can operate independently of the other,
then each will have a separate input-output mechanism. The process of making wires for
‘the computer must then be duplicated, and in this way the work of the person making a wire
can be checked. Since the wire servomechanisms' cannot be synchronized by the central
clock, a prdlem of synchronizing the two computers when the wires are being used arises.
It is probably not practical to synchronize the wire feeds to within a given digit, but
this is unnecessary since the numbers caning into the two organs A need not be checked
as the individual digits arrive, but only prior to being deposited in the Selectron
memory. ‘

-40-

6.8.2 Since the computer operates in the binary system, some means of
decimal-binary and binary-decimal conversions is highly desirable . Various alternative
ways of handling this problem have been considered . In general we recognize two broad
classes of solutions to this problem.

First: The conversion problems can be regarded as simple arithmetic
pracesses and programmed as sub-routines out of the orders already incorporated in the
machine. The details of these programs together with a more complete discussion are
given fully in Chapter IX, Part II, where it is shewn, among other things, that the
conversim of a word takes about 5 milliseconds. Thus the conversion time is comparable
to the reading or withdrawing time for a word -- about 2 milliseconds -- and is trivial
as campared to the solution time for problems to be handled by the computer. It should
be noted that the treatment proposed there presupposes only that the decimal data pre-
sented to or received fram the camputer are in tetrads, each tetrad being the binary
coding of a decimal digit -- the information (precision) represented by a decimal digit
being actually equivalent to that represented by 3.3 binary digits. The coding of deci-
mal digits into tetrads of binary digits and the printing-of decimal digits fram such
‘tetrads can be accomplished quite simply and automaucally by slightly modified Teletype
equipment, cf. 6.8.4 below.

Second: The conversion prablems can be regarded as unique problems and
handled by separate conversion equipment incorporated either in the computer proper o
associated with the mechanisms for preparing and printing from magnetic wires. Such
convertors are really nothing other than special purpose digital computers. They would
seem to be justified only for those computers which are primarily intended for solving
problems in which the computation time is small compared to the input-output time, to
which class our computer does not belong.

6.8.3 It is possible to use various types of cathode ray tubes, and in
particular Selectrons for the viewing tubes, in which case programming the viewing opera-
tion is quite simple. The viewing Selectrons can be switched by the same function tables:
that switch the memory Selectrons. By means of the substitution operation Ap-S(x) and
Ap~»S(x), six-digit numbers specifying the abscissa and ordinate of the point (six
binary digits represent a precision of me part in 2% = 64, i.e. of about 1.5% which
seems reasanable in such a component) can be substituted in this order, which will spe-
cify that a particular one of the viewing Selectrons is to be activated.

6.8.4 As was mentioned above, the mechanisms used for preparing and
prmt,mg from wire for the first model, at least, will be modified Teletype equipment.
We are quite fortunate in having secured the full cooperation of the Ordnance Development
Division of the National Bureau of Standards in making these modifications and in design-
ing and building some associated equipment.

By means of this modified Teletype equipment an operator first prepares
a checked paper tape and then directs the equipment to transfer the information from
the paper tape to the magnetic wire.. Similarly a magnetic wire can transfer its contents
to a paper tape which can be used to operate a teletypewriter. (Studies are being under-
taken to design equipment that will eliminate the necessity far using paper tapes.)

-41-

As was .shom in 6.6.5, the statement of a new problem on a wire involves
data unique to that problem interspersed with data found on previously prepared paper
tapes or magnetic wjres. The equipment discussed in the previous paragraph makes it
possible for the operator to combine conveniently these data onto a single magnetic
wire ready for insertion into the comput.er.

It is fr 1tly very convenient to introduce data into a computation
without producing a new wire. Hence it is planned to build one simple typewriter as
an integral part of the computer.. By means of this typewriter the operator can stop
the computation, type in a memory location (which will go to the FR), type in a number
(which will go to A and then be placed in the first mentioned locauon) and start the
computation again.

6.8.5 There is one further order that the Control needs to execute.
There should be some means by which the computer can signal to the operator when a
computation has been concluded, or when the computation has reached a previously deter-
mined point. Hence an arder is needed which will tell the computer to stop and to
flash a light or ring a bell

C-42.

uoumﬂmom JT38UN3ITIy SUBSUW nqubvm .
919y3 3T JurABI] ‘7 Aq JOJETMUMOdY SY3 UT JaquUnu Y3 SPTALg d al ‘12
"9I9y3 3T SuTABd] ‘g Aq Joje[numooy 3y3 Ut Joqumu Iy Ajdryyny 1 1| -0z
. " I03eTnumIdy dY3 UT SITHIP g Puey-1y3T Y3 4q
SU01399T3g Y3 UT X UoTITsod je pajem | J9pIo puey-Iyd1I ay3 jo muﬂm..av. g1 Ppuey-133] ayy aserday dg x| (%8 « dy | 61
*I07BTMUMOdy Y3 UT SITIIP Z[Puey-1j31 3y 4q .
Su01393[3g Y3 UT X uoT3Tsod 3e P33ed0] ILSpIO puey-1y3] Y3 Jo SITITp g puey-1y2] oy soe(dey dg x| (¥)g &= n< 81
“SUOI}V3TAg Y3 UT X uoTI3Tsod 03 JOJR[MUMOIdY SYJ UT JOquMu Y3 JBFSUBI SX| (X)se« W/ ‘i
*(X)S <=) UT SB [0I3U0) 3Y3 IFTIYS ‘() T ST JOJB[NUMOdy dY3 UT Iaqumu 3Yy3 FI 2% XS« 2| 91
*(¥X)S . «=1) UT SB [OI3U0,) 3Y3 IJTYS ‘() T ST JOJE[mMOdy Y3 UT Jaqumu Y3 J NX| () g e | o1
“SU0IPI[3g
9Y3 ut x wotyIsod 38 pajedoy ited Iapio IY3 JOo IspIo pueY-IYSTI SY3 03 TOIIUOY YD IFTYQ DX] 8 &= ™| ¥1
*SUD 1399]3g ‘
3Yy3 uT X uoryTsod e pojedo] Ited I3pIo SY] JO IAPIO puey-31F3[Y3 03 T013u0y) 3P IFTYg DX (¥)s «m | ‘g1
R . nuuw..nmﬁu— :
ay3 ut juatjonb ay3 Burde[d pue IojBIUMOdY SY3 UT JIpUTEWSI Y3 FuTAES| ‘suox30913g Y3
§o x uoratsod UT paned0] Jaqunu SY3 Aq IOJBJMUMIIY SY3 UT ISqUMU Y] IPTIAIP pue 1335183y Ied) + Xl e)V | 2
"193S189y 9yl UT Jamsue ay3 yo SITIIp 6¢ Puey
-IYSTI 9Y3 pue JOJBTIUMODY SY3 UL JOMSue 3Yy3 jo s3TIIp 6€ PueY-1391 3y3 Juroerd ‘i133sTd9y OYy3 ur . ,
I3qumu 3y3 Aq SUDI3II[3g AY3 UT X w r31sod e peedo] Jaqunu ay3 A(draynu pue I03BTMIMODY T8 XXV ¥)s]| 11
"3T 03UT I33STFoy UT PIaY Jaqumu 3FTYS pue JOIBTMUMOdY Iean) \'4 Ve 4|l o1
"3T OUT SUOIYI[3g @Yy UT X uoTatsnd 3e pajedo] Jaqumu ppe pue 1935133y Ies] g X e (¥s | 6
*I03BTMMOOY 3Y3 0JUT SUOIIII[3g Y3 UT X UOTITsod 38 Pajedoo] Joqumu O SN[eA IIN[osqe IBIqNG M- XKUY « (X)S | '8
"I03B[MUMDDY 3Y3 OJUT SUOIOAT3g Y3 UT X W I71s0d 38 PojedO] ISqUMU JO SNTBA IINTOSqE Ppy MX] Ve (XS | ‘2
"I07B[MUMIdY 9Y3 OJUT SUOIIVIT3g Y3 UT X uorIjIsod 38 PajedO] Iaqumu 3oRIIqNg YX| Iy e (X)s | 9
*J03BTNIMIOY 3Y3 OUT SW I303T3g Y3 UT X uoTjrsod 1 ps |IO] Jaqumu ppy YxX| 49 e« (¥)s | s
“3T 03UT SUOII[dg
9y3 ut x uotyTsed je pajedco] Jaqumu JOo Sn{EA IINTOSqR 3OBIIGNS PUB JOYETAUMOIVY Iesn) W X|NWe (XS | ¥
31 ojqur
SUOIO3T3g 3Y3 UT X UOTyTsod 38 PajeIO] JoqUNU JO SN[BA IINTOSqE Ppe pue J03E[mumIdy 1e3]) NX]| WV = (¥)s | ¢
"3T 0JUT SUOILOIT3G 3Y3 UT X UOTITSOd 38 PIJBIO] ISQUMU JDOBIIGNS PUE JOJBTMUMOOY IB3[) x| Ve (XS | 2
“3T 03UT SUOI}DI[3G 3Y3 UT X UoT3Tsod 98 Pajeoo| Jaqumu ppe pue IOJBTIUNDIDY Jedn X| 9Ve= (XS | 1
T
-21qqyj 14
NOILVZI'TOdNAS

I 378vl

R W\\l\\l\l\m\\\\\\

THE UNIVERSITY OF MICHIGAN

iz [HoP™
[0/ [eerr

