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Abstract

Current microprocessors incorporate techniquesto ex-
ploit instruction-levelparallelism(ILP). However, previous
work hasshownthat theseILP techniquesare lesseffective
in removing memorystall timethanCPU time, makingthe
memorysystema greaterbottleneck in ILP-basedsystems
thanprevious-generation systems.Thesedeficienciesarise
largely becauseapplicationspresentlimited opportunities
for anout-of-orderissueprocessorto overlapmultipleread
misses,thedominantsourceof memorystalls.

This work proposescode transformationsto increase
parallelism in the memorysystemby overlappingmultiple
readmisseswithin thesameinstructionwindow, while pre-
servingcache locality. We presentan analysisand trans-
formationframeworksuitablefor compilerimplementation.
Our simulationexperimentsshowsubstantialincreasesin
memoryparallelism, leading to executiontime reductions
averaging 23% in a multiprocessorand 30% in a unipro-
cessor. We seesimilar benefitson a Convex Exemplar.

1. Introduction

Current commodity microprocessorsimprove perfor-
mancethroughaggressive techniquesto exploit high lev-
elsof instruction-level parallelism(ILP). Thesetechniques
include multiple instructionissue,out-of-order(dynamic)
issue,non-blockingreads,andspeculativeexecution.

Ourpreviouswork characterizedtheeffectivenessof ILP
processorsin a shared-memorymultiprocessor[14]. Al-
though ILP techniquessuccessfullyand consistentlyre-
ducedthe CPU componentof execution time, their im-
pacton the memory(read)stall componentwaslower and
moreapplication-dependent,makingreadstall timea larger
bottleneckin ILP-basedmultiprocessorsthan in previous-
generationsystems.In particular, currentand future read�
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misslatenciesaretoo long to overlapwith otherinstruction
types. Thus, an ILP processorneedsto overlap multiple
readmisseswith eachotherto hidea significantportionof
their latencies.An out-of-orderprocessorcanonly overlap
thosereadsheldtogetherwithin its instructionwindow. In-
dependentreadmissesmustthereforebeclustered together
within a singleinstructionwindow to effectively hidetheir
latencies(read missclustering). The applicationsin our
studytypically did not exhibit muchreadmissclustering,
leadingto poorparallelismin thememorysystem.

This paper presentscode transformationsto improve
memoryparallelismfor systemswith out-of-orderproces-
sors,while preservingcachelocality. Weexploit codetrans-
formationsalreadyknown and implementedin compilers
for otherpurposes,providing the analysisneededto relate
them to memoryparallelism. The key transformationwe
useis unroll-and-jam,which was originally proposedfor
improving floating-pointpipelining andfor scalarreplace-
ment [1, 2, 4, 11]. We develop an analysisthat mapsthe
memoryparallelismproblemto floating-pointpipelining.

We evaluatethesetransformationsappliedby hand to
a latency-detectionmicrobenchmarkandfive scientificap-
plicationsrunningon simulatedandreal uniprocessorand
multiprocessorsystems.Our clusteringtransformationsre-
duceexposedlatency by over80%for thelatency-detection
microbenchmark.For thescientificapplications,the trans-
formations reduceexecution time by 9–39% (averaging
23%) in the simulatedmultiprocessorand11–48%(aver-
aging 30%) in the simulateduniprocessor. A substantial
partof theseexecution-timereductionsarisefrom improv-
ing memoryparallelism,particularlyasmemorystall time
becomesmoresignificant. We confirm the benefitsof our
transformationsonarealsystem(Convex Exemplar),where
they reduceapplicationexecutiontimeby 9–34%.

An alternative latency tolerating techniqueis software
prefetching,which hasbeenshown to beeffective for sys-
temsbuilt with simpleprocessors[10]. However, prefetch-
ingcanbelesseffectivein ILP systemsbecauseof increased
lateprefetchesandresourcecontention[14]. We only con-
siderreadmissclusteringin this work; our ongoinginves-
tigationsindicatewaysin which clusteringtransformations
canalsoimprovetheeffectivenessof prefetching[13].
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(c) Exploitsboth

Figure 1. Impact of matrix traversal order on miss clustering. Crosses represent matrix elements,
and shaded bloc ks represent cache lines. The matrix is sho wn in row-major order.

2. Motivation for Read Miss Clustering

This sectiondiscussestheneedfor readmissclustering,
thesourcesof poorclustering,andcodetransformationsto
improveclustering.

2.1. Latency Tolerance in ILP Processors

Instructionsin an out-of-order processor’s instruction
window (reorderbuffer) can issue and completeout-of-
order. To maintainpreciseinterrupts,however, instructions
committheir resultsandretirefrom thewindow in-orderaf-
tercompletion[17]. Theonly exceptionis for writes,which
canusewrite-bufferingto retirebeforecompletion.

Becauseof the growing gap in processorand memory
speeds,externalcachemissescantake hundredsof proces-
sor cycles. However, currentout-of-orderprocessorstypi-
cally have only 32–80elementinstructionwindows. Con-
sideranoutstandingreadmissthat reachestheheadof the
window. If all otherinstructionsin thewindow arefast(e.g.,
typical computationandreadhits) or canbebufferedaside
(e.g.,writes),theindependentinstructionsmaynot overlap
enoughlatency to keepthe processorbusy throughoutthe
cachemiss. Sincethe later instructionswait to retire in-
order, theinstructionwindow will fill up andblock thepro-
cessor. Thus,this missremainsexposeddespitesuchILP
featuresasout-of-orderissueandnon-blockingreads.

Supposethat independentmissesfrom elsewherein the
applicationcouldbescheduledinto theinstructionwindow
behindtheoutstandingreadmiss.Then,thelatermissesare
hiddenbehindthe stall time of the first miss. Thus, read
misslatenciescantypically be effectively overlappedonly
behindotherreadmisses,andsuchoverlaponly occursif
readmissesto multiple cachelinesappearclusteredwithin
thesameinstructionwindow. We referto this phenomenon
asreadmissclustering, or simply clustering.

2.2. Increasing Read Miss Clustering

To understandthesourcesof poorreadmissclusteringin
typical code,we considera loop nesttraversinga 2-D ma-
trix. Figure1 graphicallyrepresentsthreedifferentmatrix

for( ����� j++) for( �	��� i++)
for( ����� i++) for( �	��� j++)���	� A[j,i] �	��� A[j,i]

(a)Basecode (b) Interchange

for( ����� jj+=N) for( �	��� j+=N)
for( ����� i++) for( �	��� i++) 

for(j=jj;j<jj+N;j++)�	��� A[j,i] �	��� A[j,i]�	��� A[j+1,i]�	����������	��� A[j+N-1,i]

(c) Strip-mineandinterchange ( �	 ) Unroll-and-jam

Figure 2. Pseudocode for Figure 1 matrix
traversals (row-major notation).

traversals. The matrix is shown in row-major order, with
crossesfor dataelementsandshadedblocksfor cachelines.
Figure2 relatesthesematrix traversalsto codegeneration,
with pseudocodeshown in row-majornotation.

Figures1(a)and2(a) show a matrix traversaloptimized
for spatiallocality, following muchcompiler research.In
this row-wisetraversal, � successive loop iterationsaccess
eachcacheline, where� is thenumberof dataelementsper
cacheline. While thistraversalmaximizesspatiallocality, it
minimizesclustering.For example,an instructionwindow
thatholds � or fewer iterationsnever holdsreadmissesto
multiplecachelines,preventingclustering.Thisproblemis
exacerbatedby largercachelinesor largerloopbodies.

Readmiss clusteringcan be maximizedby a column-
wise traversal, since successive iterations held in
the instruction window access different cache lines.
Figures1(b)and2(b) show sucha column-wisetraversal,
obtained by applying loop interchangeto the code in
Figure2(a). Eachcacheline is now accessedon multiple
successive outer-loop iterations. However, the traversal
passesthroughevery row beforerevisiting an older cache
line. If therearemorerows thancachelines, this traversal
could loseall cachelocality, potentiallyoverwhelmingany
performancebenefitsfrom clustering.

The above example suggestsa tradeoff betweenspa-
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tial locality (favoredby currentcode-generationschemes)
andmissclustering. We seeka solution that achievesthe
benefitsof clusteringwhile preservingspatial locality. A
column-wisetraversalcanmaximizeclustering;however, it
muststopbeforelosing locality. In particular, thecolumn-
wise traversalcan stop as soonas the miss clusteringre-
sourcesare fully utilized. For example,a processorthat
allows ten simultaneouscachemissesseesthe maximum
memoryparallelismwhenten independentmissreferences
areclustered.The traversalcould thencontinuein a row-
wise fashionto preserve locality. Figure1(c) shows a ma-
trix traversalthatexploitsclusteringandlocality in thisway.
Figure2(c) expressesthis traversalby applyingstrip-mine
andinterchangeto Figure2(a).

Since the column-wise traversal length ( � ) of
Figure2(c) is basedon the hardwareresourcesfor overlap
( ����� today), the strip size is small, and the innermost
loop canbefully unrolled. Figure2(��� ) shows theresultof
thatunrolling. Now, thecodereflectsthetransformationof
unroll-and-jamappliedto Figure2(a). This transformation
unrolls an outer loop and fuses(jams) the resultinginner
loop copiesinto a single inner loop. Previous work has
used unroll-and-jam for scalar replacement(replacing
array memory operationswith register accesses),better
floating-pointpipelining, or cachelocality [1, 2, 3, 4, 11].
Using unroll-and-jam for read miss clustering requires
differentheuristics,andmayhelpevenwhenthepreviously
studiedbenefitsareunavailable.

We prefer to useunroll-and-jaminsteadof strip-mine
andinterchangefor two reasons.First, unroll-and-jamal-
lows us to exploit benefitsfrom scalarreplacement.Sec-
ond, unroll-and-jamdoesnot changethe inner-loop itera-
tion count.Theshorterinnerloopsof strip-miningcanneg-
atively impact techniquesthat target inner loops, suchas
dynamicbranchprediction.By increasinginner-loop com-
putationwithout changingthe iterationcount, unroll-and-
jamcanalsohelpsoftwareprefetching[13].

Unroll-and-jamcreatesan � -way unrolledsteady-state,
followed by an untransformedpostludeof leftover itera-
tions.To enableclusteringin thepostlude,wesimply inter-
changethepostludewhenpossible.Thisshouldnotdegrade
locality, sincethe postludeoriginally hasfewer outer-loop
iterationsthantheunroll-and-jamdegree.

3. Analysis and Transformation Framework

Thissectionprovidesaformalframework to applymem-
ory parallelismtransformationsin a compiler.

3.1. Dependences that Limit Memory Parallelism

We first describea dependenceframework to represent
limitations to memoryparallelism. As in other domains,
dependenceshereindicatereasonswhy oneoperationwill

not issuein parallelwith another. However, thesedepen-
dencesare not ordinary datadependences,sincememory
operationscanbeserializedfor differentreasons.We build
this framework to gaugeperformancepotential,not to spec-
ify legality. Thus,we optimisticallyestimatememorypar-
allelismandspecifydependencesonly whentheir presence
is known. The transformationstagesmust thenusemore
conventional(andconservative)dependenceanalysisfor le-
gality. For simplicity, weonly considermemoryparallelism
dependencesthatareeitherloop-independentor carriedon
theinnermostloop. Wecanthenexploit previouswork with
thesamesimplification[2].

Sincewe focus on parallelismamongreadmisses,we
first requirelocality analysisto determinewhich staticref-
erencescanmissin theexternalcache(leadingreferences),
andwhich leadingreferencesareknown to exhibit spatial
locality acrosssuccessive iterationsof the innermostloop
(inner-loop self-spatiallocality). Known locality analysis
techniquescanprovide the neededinformation[19]. Cur-
rently, we do not considercacheconflicts in our analysis
andtransformations.

We usethe above informationto identify limitations to
readmissparallelism. We focuson threekinds of limita-
tions, which we call cache-linedependences, addressde-
pendences, andwindowconstraints.

Cache-line dependences. If a readmissis outstanding,
thenanotherreferenceto the samecacheline simply coa-
lesceswith the outstandingmiss,addingno readmisspar-
allelism.Thus,wesaythatthereis acache-linedependence
from memoryoperationA to B if A is a leadingreference
anda miss on A brings in the dataof B. The cache-line
dependenceis a new resourcedependenceclass,extending
inputdependencesto supportmulti-wordcachelines.

The following codeillustratescache-linedependences.
In all examples,leadingreferencesknown to have inner-
loopself-spatiallocality will beitalicized,while otherlead-
ing referenceswill beboldfaced.Theaccompanying graph
shows staticmemoryreferencesasnodesanddependences
asedges.Eachedgeis markedwith the inner-loop depen-
dencedistance,the minimum numberof inner-loop itera-
tionsseparatingthedependentoperationsspecified.

for( ����� j++)
for( ����� i++)
b[j,2*i] = b[j,2*i] + a[j,i]

+ a[j,i-1]

a[j,i] 0

1

1

b[j,2i]

a[j,i−1]

Notethat thereareno cache-linedependencesfrom one
leading referenceto another; such a dependencewould
make the secondnodea non-leadingreference.Addition-
ally, any leadingreferencewith inner-loop self-spatiallo-
cality hasa cache-linedependenceontoitself. Thatdepen-
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dencehasdistance1 for any stride,sincetheaddressof the
missreferencewill becloserto theinstance1 iterationlater
thanto aninstancefartheraway.

Address dependences. Thereis anaddressdependence
from memoryoperationA to B if the result of A is used
in computing the addressof B, serializing B behind A.
Addressdependencestypically arisefor irregularaccesses,
suchasindirectaddressingor pointer-chasing.Thefollow-
ing codesegmentsshow addressdependences.Thegraphs
show addressdependencesassolid linesandcache-linede-
pendencesasdottedlines. Thefirst exampleshows the in-
directaddressingtypical of sparse-matrixapplications.

for( ����� j++)
for( ����� i++) 

ind = a[j,i]
sum[j] = sum[j] + b[ind]

b[ind]0

1

a[j,i]

Theaboveshowsoneleadingreferencethatexhibitscache-
line dependences,connectedthrough an addressdepen-
denceto anotherleading reference. The following code
showsaddressdependencesfrom pointerdereferencing.

for( ����� i++) 

l = list[i]
for( ����� l=l � next)
sum[i] += l � data

1
1

0
l  data l  next

Theabove assumesthat thedata andnext fieldsalways
lie on the samecacheline andthatseparateinstancesof l
arenot known to sharecachelines.Eventhoughl � next
is a non-leadingreference,it is importantsincea depen-
denceflows from thisnodeto theleadingreference.

Window constraints. Evenwithout otherdependences,
readmissparallelismis limited to the numberof indepen-
dentreadmissesin the loop iterationssimultaneouslyheld
in theinstructionwindow. Wedonot includetheseresource
limitationsin ourdependencegraphs,sincethey canchange
ateachstageof transformation.We will, however, consider
theseconstraintsin our transformations.

Control-flow andmemoryconsistency requirementsmay
alsorestrictreadmissparallelism.Wedonotconsiderthese
constraints,sincetheirperformanceimpactcanbemitigated
throughwell-known staticor dynamictechniquessuchas
speculation.However, thesedependencesmay still affect
thelegality of any codetransformations.

Of thethreedependenceclassesthatweconsider(cache-
line, address,andwindow), only addressdependencesare
true data-flow dependences.Window constraintscan be
eliminated through careful schedulingof the loop body,
possiblyenhancedby inner-loop unrolling. Suchschedul-
ing would aim to clustertogethermissesspreadovera long
loop body. Loop-carriedcacheline dependencescan be
convertedto loop-invariantdependencesthroughinner-loop
unrolling by a multiple of � , where � iterationsshareeach

cacheline. Then,no cacheline is sharedacrossunrolled
loop iterations.The inner-loop unrolling degreemay need
to go ashigh as ����� to provide clusteredmissesto �
separatecachelines. This can be excessive, particularly
with longcachelines.Wethereforeleavetheseloop-carried
cache-linedependencesin placeand seekto extract read
miss parallelismwith lesscodeexpansionthroughouter-
loopunroll-and-jam.

We will addressmemoryparallelismlimitations in loop
nestsby first resolving recurrences(cycles in the depen-
dencegraph), and then handlingwindow constraints. A
loop nestmay suffer from one or both problems,and re-
currenceresolutionmaycreatenew window constraints.

3.2. Resolving Memory Parallelism Recurrences

Unroll-and-jam has previously been used to improve
floating-point pipelining in the presenceof inner-loop
floating-pointrecurrences[2, 11]. We seekto useunroll-
and-jamto target loop nestswith memory-parallelismre-
currences,which arisefor suchcommonaccesspatternsas
self-spatialor pointer-chasingleadingreferences.We map
memoryparallelismto floating-pointpipelining, exposing
severalkey similaritiesanddifferencesbetweentheseprob-
lems.This sectionthusshows how to automatetheprocess
describedin Section2.2, which usedunroll-and-jamto in-
creasemissclusteringwithout degradinglocality.

3.2.1. Background on Floating-point Pipelining

Consideraninnerloopthatcarriesafloating-pointrecur-
rence(acycleof truedependences).Theoperationsof later
iterationscanstall for the resultsof earlier iterations,pre-
ventingmaximumpipelinethroughput.Further, inner-loop
unrollingandschedulingcannothelp,aslaterinner-loop it-
erationsare also in the cycle. The following pseudocode
hasan inner-loop recurrencebetweenstatements� and � .
The graphshows floating-pointtrue dependencesand de-
pendencedistances.

for( ����� j++)
for( ����� i++) 
�! b[j,i] = a[j,i-1] + c[i]"  a[j,i] = b[j,i] + d[i]

α

β
0
#

1

Theaboverecurrencehastwo floating-pointoperations,and
needs1 iterationfor a completecycle (the sumof the de-
pendencedistances). Thus, the systemmust serialize2
floating-pointoperations(the numberin the recurrence)to
complete1 iteration(the lengthof thecycle), regardlessof
thepipeliningsupported.Callahanetal. describedfloating-
point recurrencesasfollows[2]1:

1Their notationwasslightly different,with $&% , ')(*%,+ , -.(*%,+ , and /�0
insteadof % , ' , - , and / , respectively.
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13254 : numberof stagesin thefloating-pointpipeline176 : ratio of the numberof nodes(staticfloating-point
operations)in the inner-loop recurrence( 8 ) to the
numberof iterationsto traversethecycle ( 9 )1;: : staticcountof floating-pointoperationsin the in-
nermostloop

Since 8 floating point operationsmustbe serializedin9 iterations,the recurrencerequiresat least 6 pipeline la-
tencies( < 2 4 � 6 pipeline stages)per iteration. Without
dependences,eachiteration would require only the time
of : pipelinestages.Thus, the recurrencelimits pipeline
utilization to =>@?)ACB . Unroll-and-jamintroducesindependent
copiesof therecurrencefrom separateouterloop iterations,
increasing: without affecting 6 [2]. To fill the pipeline,
unroll-and-jammustbeapplieduntil :EDF254 � 6 . (Themax-
imum 6 shouldbeusedfor aloopwith multiplerecurrences,
sinceeachrecurrencelimits pipelineutilization.)

Certain dependencescan prevent unroll-and-jam, but
they are not directly related to the recurrencestargeted.
Previous work more thoroughlydiscusseslegality andthe
choiceof outerloopsto unroll for deepernests[2, 4, 11].

3.2.2. Mapping to Memory Parallelism

Above,unroll-and-jamusedonly thenumberof pipeline
stages,not the latency. The pipelinesimply representsthe
numberof floating-pointoperationsthat canbe processed
in parallel. Thus, we can map this algorithm to memory
parallelism: the goal is to fully utilize the missclustering
resources,not to schedulefor somespecificmisslatencies.
Here, 254 correspondsto the maximumnumberof simulta-
neousoutstandingmissessupportedby the processor. The
restof themappingis moredifficult, asnot all memoryop-
erationsutilize the resourcesfor missparallelism— only
thoseinstancesof leadingreferencesthat missat run-time
do. Thisdifferenceaffects 6 and : .

Characterizing recurrences ( 6 ). We refer to recur-
renceswith only cache-linedependencesascache-linere-
currencesandrecurrenceswith at leastoneaddressdepen-
denceasaddressrecurrences. Recurrenceswith no leading
missreferencesareirrelevanthereandcanbeignored,since
they do not impactreadmissparallelism.

As discussedin Section3.2.1, 6 is computedfrom two
values: 8 and 9 . We countonly leadingreferencesin 8 ,
asonly thesenodescanleadto serializationfor a miss.We
count 9 asin Section3.2.1,sincethis specifiesthenumber
of iterationsafter a missinstancebeforeserialization.Al-
thoughour discussionhasfocusedon toleratingreadmiss
latencies,ouralgorithmmustcountbothreadandwritemiss
referencesin 8 and : , sincewrites alsorequireresources.
Nevertheless,we will not applyunroll-and-jamon anouter
loop if it only addswrite misses,sincewrite latenciescan
behiddenthroughwrite-buffering.

Counting memory parallelism candidates ( : ). For
floating-pointpipelines,the : parametercountsthe static
instructionsin theinnermostloop. We cannotusethissame
definitionherefor two key reasons,describedbelow.

Dynamicinner-loop unrolling. An out-of-orderinstruc-
tion window of G instructionsdynamicallyunrollsa loop
bodyof H instructionsby I�J KML . (For simplicity, we assume
no outer-loop unrolling, althoughthis couldariseif the in-
nerloophadfewerthan I J K L iterations).Suchunrollingex-
posesno additionalsteady-stateparallelismfor loopswith
addressrecurrences,sincetheseareanalogousto therecur-
rencesof floating-pointpipelining. However, this unrolling
canactuallybreakcache-linerecurrences.In particular, if�ON successiveiterationsshareacacheline for leadingrefer-
enceP , dynamicinner-loop unrolling createsI JKRQTS L inde-
pendentmissesfrom theoriginal recurrence.Leadingrefer-
encesoutsiderecurrencescanalsocontributemultiple out-
standingmisses( � N <U� , sinceno cache-linesharingis
known). Thus,we define V N , the numberof copiesof P
thatcancontributeoverlappedmisses:

V N <
W I JK5QTS L loopwith no addressrecurrences� otherwise

(1)

Misspatterns.A simplecountof leadingreferencescan
overestimatememoryparallelism,sincenot all leadingref-
erenceinstancesmiss in the cache. To determinewhich
leadingreferenceinstancesmisstogether, wemustknow the
misspatterns(sequencesof hits andmisses)for thediffer-
entleadingreferencesandtheir correlationwith eachother.
Suchmeasurescanbedifficult to determinein general.In
this work, we make somesimple assumptions,described
below.

We split the leadingreferencesinto two types: regular
(arraysindexed with affine functionsof the loop indices)
andirregular(all others).For regularreferences,weassume
thatat leastsomepassesthroughthe inner loop experience
missesoneachcacheline accessed,andthatdifferentregu-
lar leadingreferencesexperiencemissestogether. Theseas-
sumptionsleadto maximumestimatedparallelismfor reg-
ular leadingreferences.

For irregulars,the misspatternis not typically analyz-
able. We assumeno correlation,eitheramonginstancesof
thesamereferenceor acrossmultiple references.Thus,we
only needto know theoverallmissrate, X,N , for eachrefer-
enceP . X,N canbemeasuredthroughcachesimulationor
profiling. Theseassumptionsallow moreaggressive trans-
formationthanthemorecommonassumptionof no locality
for irregulars.

We can now estimatethe : parameter, accountingfor
bothdynamicinner-loopunrollingandmisspatterns:: < :.Y	Z\[^]3: K Y	Y	Z\[ (2):.Y�Z_[ < `Nbadc Q c V^N (3)
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: K Y	Y	Z_[ < I `Nbade Q c X N �fV N L (4)

Wesplit : into regularandirregularcomponents,with 8g�h8
and ij�O8 thesetsof regularandirregularleadingreferences
respectively. Theterms V N in Equation3 and X N �fV N in
Equation4 give the maximumexpectednumberof misses
to separatecachelinescontributedby leadingreferenceP .
We roundup : K Y	Y	Z_[ to insurethat someresourcesareheld
for irregularreferenceswhenthey arepresent.

The floating-pointpipelining algorithm appliedunroll-
and-jamuntil :kDl254 � 6 . We shouldbe moreconserva-
tivefor memoryparallelism,asthecachecanseeextracon-
tentionwhentheresourcesfor outstandingmisses(MSHRs)
fill up. Thus,we aim to apply unroll-and-jamasmuchas
possiblewhile maintaining: � 254 � 6 (usingthemaximum6 for theloop).

After applyingunroll-and-jam,wemustrecompute: for
two reasons.First, unroll-and-jamcanintroducenew lead-
ing referencesandincreasethe iterationsize. On theother
hand, some leading referencecopies may becomenon-
leadingreferencesbecauseof scalarreplacementor group
locality. For similar reasons,we must repeatthe locality
anddependenceanalysispasses.

Since : varies as describedabove, we may need to
attemptunroll-and-jammultiple times with different un-
rolling degrees to reach our desired : . We can limit
the numberof invocationsby choosinga maximum un-
rolling degree m basedon theresourcesfor memoryparal-
lelism, codeexpansion,registerpressure,andpotentialfor
cacheconflicts. If we unroll only oneouter loop, we can
choosetheunrollingdegreeby binarysearch,usingatmostI*nRodp)qrmsL passes[4]. Generalizedsearchingfor unrolling
multiple outer loopscanfollow the strategiesdescribedin
previous work [4]. We alsorefer to previous work for le-
gality issues[2, 4, 11]. We addonly that we prefernot to
unroll-and-jamloopsthatonly exposeadditionalwrite miss
references,sincebufferingcanhidewrite latencies.

To revisit the motivating exampleof Section2.2, note
that thematrix traversalof Figure2(a)hasa cache-linere-
currencewith 6 <t� . �ON typically rangesfrom 4 to 16
for stride-1double-word accesses,so I JKRQTS L is mostlikely
1 for a loop bodywith a moderateamountof computation
andcurrentinstructionwindow sizes.Thus, : < :uY	Z_[ <v�
initially. This examplehasno scalarreplacementopportu-
nities, so eachrecurrencecopy createdby unroll-and-jam
contributesa leadingreferenceto thecalculationof : . As-
suming m is chosento be at least 2 4 , the searchalgorithm
will find thatunroll-and-jamby 2 4 leadsto : < 2 4 � 6 .
3.3. Resolving Window Constraints

We now addressmemoryparallelismlimitations from
window constraints.Thesecanarisefor loopswith or with-
out recurrences.Further, recurrenceresolutioncanactually

createnew window constraints,sinceunroll-and-jamcan
spreadits candidatesfor readmissparallelismover a span
of instructionslarger thana singleinstructionwindow. We
proceedin two stages:first usingloop unrolling to resolve
any inter-iterationwindow constraints,thenusinglocal in-
structionschedulingto resolve intra-iterationconstraints.

As discussedin Section3.2.2, an instruction window
of G instructionsdynamicallyunrolls an inner-loop body
of H instructionsby I�J KOL . Inter-iteration window con-
straintsarise when the independentread missesin I�J K L
iterationsdo not fill the resourcesfor memoryparallelism
(typically becauseof large loop bodies). Sinceany recur-
renceshave alreadybeenresolved,we cannow useinner-
loop unrolling to betterexposeindependentmissesto the
instructionscheduler. We candirectly countthemaximum
expectednumberof independentmissesin I J K L iterations,
usingthemissrate X,N to weighttheirregularleadingrefer-
ences.Wethenunroll until theresourcesfor memoryparal-
lelismarefilled, recomputingtheexposedindependentmiss
countaftereachinvocationof unrolling.

Now we resolve any intra-iterationwindow constraints
stemmingfrom loop bodieslarger thana singleinstruction
window (possiblybecauseof unroll-and-jamor inner-loop
unrolling). In suchcases,the instructionschedulershould
packindependentmissreferencesin theloop bodycloseto
eachother. Thetechniqueof balancedschedulingcanpro-
vide someof thesebenefits[6, 7], but mayalsomisssome
opportunitiessinceit doesnot explicitly considerwindow
size. Nevertheless,this heuristicworkedwell for the code
sequencesweexamined.Moreappropriatelocalscheduling
algorithmsremainthesubjectof futureresearch.

4. Experimental Methodology

4.1. Evaluation Environments

We perform most of our experimentsusingRSIM, the
Rice Simulator for ILP Multiprocessors[15]. We model
both an ILP uniprocessorand an ILP-basedCC-NUMA
multiprocessorwith releaseconsistency. Table1 summa-
rizes the baseconfiguration. The cachesizesare scaled
basedonapplicationinputsizesaccordingto themethodol-
ogyof Wooetal. [20]. Thememorybanksusepermutation-
basedinterleaving on a cache-linegranularity to support
a variety of strides[18]. The simulatedsystemlatencies
without contentionare1 cycle for L1 hits,10 cyclesfor L2
hits,85cyclesfor localmemory, 180–260cyclesfor remote
memory, and210–310cyclesfor cache-to-cachetransfers.
Wealsobriefly summarizeexperimentalresultsusingareal
machine(Convex Exemplar),with more detail in our ex-
tendedreport[12].
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Processor parameters
Clock rate 500MHz
Fetchrate 4 instructions/cycle
Instructionwindow 64 instructionsin-flight
Memoryqueuesize 32
Outstandingbranches 16
Functionalunit count 2 ALUs, 2 FPUs,2 addressunits
Functionalunit laten-
cies(cycles)

1 (addr. gen.,mostALU),
3 (mostFPU),7 (int. mult./div.),
16 (FPdiv.), 33 (FPsqrt.)

Memory hierarchy and network parameters
L1 D-cache 16KB, direct-mapped,2 ports,

10MSHRs,64-byteline
L1 I-cache 16KB, direct-mapped,64-byteline
L2 cache 64 KB (1 MB for Em3d),4-way as-

sociative,1 port,10MSHRs,
64-byteline, pipelined

Memorybanks 4-way, permutationinterleaving
Bus 167MHz, 256bits,split transaction
Network 2D mesh,250MHz, 64 bits, flit de-

lay of 2 network cyclesperhop

Table 1. Base sim ulated configuration.

4.2. Evaluation Workload

We evaluate our clustering transformationsusing a
latency-detectionmicrobenchmarkandfivescientificappli-
cations. Table 2 summarizesthe evaluationworkload for
the simulatedsystem. The numberof processorsusedfor
the simulatedmultiprocessorexperimentsis basedon ap-
plicationscalability, with a limit of 16. Theinput sizesand
processorcountsfor experimentsontherealmachinearere-
portedin [12]. Eachcodeis compiledwith theSunSPARC
SC4.2compiler, usingthe-xO4 optimizationlevel. We in-
corporatemissclusteringtransformationsby hand,follow-
ing thealgorithmspresented.

Latbenchis basedon the lat mem rd kernel of lm-
bench [8]. lat mem rd seesinner-loop addressrecur-
rencesfrom pointer-chasing.Latbenchwrapsthisloopin an
outerloopthatiteratesoverdifferentpointerchains,with no
locality in or acrosschains.Thepseudocode,givenbelow,
showscodeaddedfor Latbenchin sans-serif.

for (j=0;j w N;j++) 

p = A[j];
for(i=0;i w I;i++)
p = p � next // serialized misses

USE(p) // keeps p live

Latbench is clustered with unroll-and-jam. As in
lat mem rd, loopingoverheadis minimizedby unrolling
theinnermostloopsto include1000pointerdereferencesin
eachloop body, for boththebaseandclusteredversions.

Em3d is a shared-memoryadaptationof a Split-C ap-
plication [5], and is clusteredusingunroll-and-jam. This
codehasbothcache-lineandaddressdependences,but only
cache-linerecurrences.Thedominantloopnesthasvariable

Microbenchmark Input Size Procs.
Latbench 6.4M datasize 1

Application Input Size Procs.
Em3d 32K nodes,deg. 20,20%rem. 1,16
Erlebacher 64x64x64cube,block8 1,16
FFT 64K points 1,16
LU 256x256matrix,block 16 1,8
Mp3d 100Kparticles 1,8

Table 2. Data set sizes and number of proces-
sor s for sim ulation experiments.

inner-loop length,soonly the minimumlengthseenin the
unrolledcopiesis fused. Eachcopy completesits remain-
ing lengthseparately. We assumedthat the outerloop was
explicitly identifiedasparallelto enabletransformationde-
spiteEm3d’spointerreferences.Becauseof its largerwork-
ing set,Em3dis simulatedwith 1 MB L2 caches.

Erlebacheris a shared-memoryport of a programby
ThomasEidsonat the Institutefor ComputerApplications
in ScienceandEngineering(ICASE).FFTandLU arefrom
SPLASH-2[20]. For betterload balance,LU is modified
slightly to useflags insteadof barriers. Thesethreeregu-
lar codesseeonly cache-linerecurrences.Eachis clustered
with unroll-and-jamandpostludeinterchanging.

Mp3d is an irregular, asynchronous,communication-
intensive SPLASH code[16]. To eliminatefalse-sharing,
key datastructureswerepaddedto a multiple of the cache
line size. To reducetrue-sharingandimprove locality, the
dataelementsweresortedby positionin themodeledphys-
ical world [9]. Mp3dhasnorecurrences,but seespoormiss
clusteringbecauseof large loop bodies. Thus, inner-loop
unrolling andaggressive schedulingcanprovide clustering
here,asdiscussedin Section3.3.Weassumedthatthedom-
inantmove loopwasexplicitly markedparallel.

5. Experimental Results

5.1. Performance of Latbench

The baseLatbenchof Section4.2 exposesan average
miss latency of 171 ns on the simulatedsystem(identical
to lat mem rd). Clusteringdropstheaverageexposedla-
tency to 32 ns,a speedupof 5.34X.On theConvex Exem-
plar, clusteringreducesthe averageexposedlatency from
502nsto 87 ns,for aspeedupof 5.77X.

Theseresultsindicatethe potentialgainsfrom memory
parallelismtransformations,but alsoindicatesomebottle-
necks,sincethespeedupsarelessthan10(thenumberof si-
multaneousmissessupportedby eachprocessor).Ourmore
detailedstatisticsfor the simulatedsystemshow that clus-
teringincreasescontention,increasingaveragetotal latency
to 316 ns (from addressgenerationto completion). Fur-
ther, busandmemorybankutilization bothexceed85%af-
ter clustering. Thus,a further increasein speedupwould
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Figure 3. Impact of clustering transf ormations on application execution time .

requiregreaterbandwidthat boththebusandthememory.

5.2. Impact on Application Performance

Figure 3 shows the impact of the clusteringtransfor-
mationson applicationexecutiontime for the basesimu-
latedsystem.Thegraphshows multiprocessorandunipro-
cessorexperiments(MP/UP) before and after clustering
(Base/Clust), normalizedto thegivenapplicationandsys-
temsizewithout clustering.For analysis,executiontime is
categorizedinto datamemorystall, CPU, synchronization
stall,andinstructionmemorystall times,following thecon-
ventionsof previouswork (e.g.,[14]). Sincewritescanre-
tire beforecompletingandreadhits arefast,nearlyall data
memorystallsstemfrom readsthatmissin theL2 cache.

Overall, the clusteringtransformationsstudiedprovide
from 9–39%reductionin multiprocessorexecutiontimefor
theseapplications,averaging23%.Themultiprocessorben-
efits in Erlebacherand Mp3d comealmostentirely from
reducingthe memorystall time. (Mp3d seessomeCPU
degradationbecauseof no scalarreplacementor pipeline
improvementandslightly worsereturn-addressprediction.)
Em3d,FFT, andLU seebenefitssplit betweenmemorystall
time andCPUtime; unroll-and-jamhelpstheCPUcompo-
nent throughbetterfunctionalunit utilization andthrough
scalarreplacement(in FFT and LU). By speedingup the
dataproducersin LU, the clusteringtransformationsalso
reducethe synchronizationtime for dataconsumers.Our
moredetailedstatisticsshow thattheL2 misscountisnearly
unchangedin all applications,indicatingthatlocality is pre-
served andthat scalarreplacementprimarily affectscache
hits. All applicationsseemore multiprocessorexecution
timereductionfrom thenewly exposedbenefitsin readmiss
clusteringthanthepreviouslystudiedbenefitsin CPUtime.

The uniprocessorseesslightly larger overall benefits
from theclusteringtransformations,rangingfrom 11–48%
(average30%). The speedupof data memory stalls is
greaterin the uniprocessorthan in the multiprocessor, as
the uniform latency and bandwidthcharacteristicsof the
uniprocessorbetterfacilitateoverlap. However, sincethe
uniprocessortypically spendsa smallerfraction of time in
datamemorystalls, the transformations’benefitsfor FFT
andLU arepredominantlyin theCPUcomponent.
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Figure 4. Factor s shaping memor y paral-
lelism (read L2 MSHR utilization) and con-
tention (total L2 MSHR utilization).

To representthe growing processor-memoryspeedgap,
wesimulatedasystemwith 1 GHzprocessorsandall mem-
ory and interconnectparametersidentical (in ns or MHz)
to thebase.Thetotal executiontime reductionsaresimilar
(10–36%in themultiprocessor, averaging24%;12–47%in
theuniprocessor, averaging34%).However, thelargerfrac-
tion of memorystall time in thesesystemsallows memory
parallelismto provide moreof thetotal benefitsthanin the
base. Thus, targetingmemoryparallelismbecomesmore
importantfor suchpotentialfutureconfigurations.

All simulationexperimentsshow few instructionmem-
ory stalls. Thus, the codeaddedby our transformations
doesnotsignificantlyimpactI-cachelocality for theseloop-
intensivecodes.

We also performedexperimentson a Convex Exem-
plar, using larger input sizesappropriatefor the real ma-
chine [12]. EachHP PA-8000 processorin the Exemplar
supports10 simultaneousmisses.The clusteringtransfor-
mationsgivetheExemplar9–34%reductionsin application
executiontime for themultiprocessoranduniprocessorex-
periments.Our extendedreportprovidesmoredetails[12].

5.3. Memory Parallelism and Contention

The MSHR utilization graphsof Figure 4 depict the
sourcesof memoryparallelismandcontentionfor themul-
tiprocessorrunsof Em3dandLU, the two extremeappli-
cationswith regard to improvementfrom the transforma-
tions. Figure4(a) indicatesreadmissparallelism,showing
thefractionof totaltimefor whichatleast� L2 MSHRsare
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occupiedby readmissesfor eachpossible� on theX axis.
The clusteringtransformationsonly slightly improve read
missparallelismfor Em3d,sinceEm3d’s irregularaccesses
giveeventhebaseversionsomeclustering.In contrast,the
transformationsconvert LU from a codethat almostnever
hadmorethan1 outstandingreadmissto onewith 2 or more
outstandingreadmisses20% of the time andup to 9 out-
standingreadmissesat times.

Figure4(b) shows the total L2 MSHR utilization, in-
cluding both readsand writes. This indicatescontention,
measuringhow many requestsusethe memorysystemat
once. Both Em3dandLU seecurvessimilar to their read
misscurves,indicatingthatcontentionin theseapplications
comesprimarily from reads.Thus, for theseapplications,
any negative impactfrom increasedcontentionis offsetby
theperformancebenefitsof readmissparallelism.

6. Conclusions and Future Work

This studyfinds that codetransformationscanimprove
memoryparallelismin systemswith out-of-orderproces-
sors. We adaptcompiler transformationsknown for other
purposesto the new goal of memoryparallelism. Our ex-
perimentalresultsshow substantialimprovementsin mem-
ory parallelism,thus hiding more memorystall time and
reducingexecutiontimesignificantly. As memorystallsbe-
comemore important(e.g.,multiprocessorsor future sys-
temswith greaterprocessor-memoryspeedgaps),moreex-
ecution time reductionscome from the transformations’
newly exposedbenefitsin memorystall time thantheir pre-
viouslystudiedbenefitsin CPUtime.

We canextendthis work in severalways. For example,
we canseekto resolve memory-parallelismrecurrencesfor
unnestedloopsby fusingotherwiseunrelatedloops.Weare
also investigatingthe interactionsof miss clusteringwith
software prefetching,as their different approachesto la-
tency toleranceallow eachto providedistinctbenefits.
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