Available Instruction-Level Parallelism for
Superscalar and Superpipelined Machines

Norman P. Jouppi
David W. Wall

Digital Equipment Corporation
Western Research Lab

Abstract

Superscalar machines can issue several instructions
per cycle. Superpipelined machines can issue only one
instruction per cycle, but they have cycle times shorter
than the latency of any functional unit. In this paper
these two techniques are shown to be roughly equivalent
ways of exploiting instruction-level parallelism. A
parameterizable code reorganization and simulation sys-
tem was developed and used to measure instruction-level
parallelism for a series of benchmarks. Results of these
simulations in the presence of various compiler optimiza-
tions are presented. The average degree of
superpipelining metric is introduced. Our simulations
suggest that this metric is already high for many
machines. These machines already exploit all of the
instruction-level parallelism available in many non-
numeric applications, even without parallel instruction
issue or higher degrees of pipelining.

1. Introduction

Computer designers and computer architects have
been striving to improve uniprocessor computer perfor-
mance since the first computer was designed. The most
significant advances in uniprocessor performance have
come from exploiting advances in implementation tech-
nology. Architectural innovations have also played a
part, and one of the most significant of these over the last
decade has been the rediscovery of RISC architectures.
Now that RISC architectures have gained acceptance
both in scientific and marketing circles, computer ar-
chitects have been thinking of new ways to improve
uniprocessor performance. Many of these proposals
such as VLIW [12], superscalar, and even relatively old
ideas such as vector processing try to improve computer
performance by exploiting instruction-level parallelism.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and
the title of the publication and its date appear, and notice is
éiven that copying is by permission of the Association for

omputing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

© 1989 ACM 0-89791-300-0/89/0004/0272 $1.50

272

They take advantage of this parallelism by issuing more
than one instruction per cycle explicitly (as in VLIW or
superscalar machines) or implicitly (as in vector
machines). In this paper we will limit ourselves to im-
proving uniprocessor performance, and will not discuss
methods of improving application performance by using
multiple processors in parallel.

As an example of instruction-level parallelism, con-
sider the two code fragments in Figure 1-1. The three
instructions in (a) are independent; there are no data
dependencies between them, and in theory they could all
be executed in parallel. In contrast, the three instructions
in (b) cannot be executed in parallel, because the second
instruction uses the result of the first, and the third in-
struction uses the result of the second.

Load Cl<-23(R2)
Add R3<-R3+1
FPAdd C4<-C4+C3

Add R3<-R3+1
Add R4<-R3+R2
Store 0[R4]1<-RO

(a) parallelism=3 (b) parallelism=1

Figure 1-1: Instruction-level parallelism

The amount of instruction-level parallelism varies
widely depending on the type of code being executed.
When we consider uniprocessor performance improve-
ments due to exploitation of instruction-level parallelism,
it is important to keep in mind the type of application
environment. If the applications are dominated by highly
parallel code (e.g., weather forecasting), any of a number
of different parallel computers (e.g., vector, MIMD)
would improve application performance. However, if
the dominant applications have little instruction-level
parallelism (e.g., compilers, editors, event-driven
simulators, lisp interpreters), the performance improve-
ments will be much smaller.

In Section 2 we present a machine taxonomy helpful
for understanding the duality of operation latency and
parallel instruction issue. Section 3 describes the com-
pilation and simulation environment we used to measure
the parallelism in benchmarks and its exploitation by dif-
ferent architectures. Section 4 presents the results of
these simulations. These results confirm the duality of
superscalar and superpipelined machines, and show
serious limits on the instruction-level parallelism avail-

able in most applications. They also show that most
classical code optimizations do nothing to relieve these
limits. The importance of cache miss latencies, design
complexity, and technology constraints are considered in
Section 5. Section 6 summarizes the results of the paper.

2. A Machine Taxonomy
There are several different ways to execute instruc-

tions in parallel. Before we examine these methods in

detail, we need to start with some definitions:

operation latency
The time (in cycles) until the result of an in-
struction is available for use as an operand in
a subsequent instruction. For example, if the
result of an Add instruction can be used as an
operand of an instruction that is issued in the
cycle after the Add is issued, we say that the
Add has an operation latency of one.

simple operations

The vast majority of operations executed by
the machine. Operations such as integer add,
logical ops, loads, stores, branches, and even
floating-point addition and multiplication are
simple operations. Not included as simple
operations are instructions which take an order
of magnitude more time and occur less fre-
quently, such as divide and cache misses.

instruction class
A group of instructions all issued to the same
type of functional unit.

issue latency
The time (in cycles) required between issuing
two instructions. This can vary depending on
the instruction classes of the two instructions.

2.1. The Base Machine

In order to properly compare increases in perfor-
mance due to exploitation of instruction-level paral-
lelism, we define a base machine that has an execution
pipestage parallelism of exactly one. This base machine
is defined as follows:

¢ Instructions issued per cycle = 1
¢ Simple operation latency measured in cycles = 1

¢ Instruction-level parallelism required to fully utilize
=1

The one-cycle latency specifies that if one instruc-
tion follows another, the result of the first is always
available for the use of the second without delay. Thus,
there are never any operation-latency interlocks, stalls, or
NOP’s in a base machine. A pipeline diagram for a
machine satisfying the requirements of a base machine is
shown in Figure 2-1. The execution pipestage is cross-
hatched while the others are unfilled. Note that although
several instructions are executing concurrently, only one
instruction is in its execution stage at any one time.
Other pipestages, such as instruction fetch, decode, or

273

write back, do not contribute to operation latency if they
are bypassed, and do not contribute to control latency
assuming perfect branch slot filling and/or branch predic-
tion.

ll ‘ Key:
—
iFetch Dascode Execute WriteBack
Successive]
i
Instructions { SC_LJ]

o 1 2 3 4 5 6 7 8 9 13

Time in Base Cycles

10 11 12

Figure 2-1: Execution in a base machine

2.2. Underpipelined Machines

The single-cycle latency of simple operations also
sets the base machine cycle time. Although one could
build a base machine where the cycle time was much
larger than the time required for each simple operation, it
would be a waste of execution time and resources. This
would be an underpipelined machine. An under-
pipelined machine that executes an operation and writes
back the result in the same pipestage is shown in Figure
2-2.

1 XXX]
1 XX]
. o L——@M
Successive
Instructions
Feich & decode Execute & write back
N
o 1 2 38 4 5 6 7 8 9 10 11 12 13

Time in Base Cycles

Figure 2-2: Underpipelined: cycle > operation latency

The assumption made in many paper architecture
proposals is that the cycle time of a machine is many
times larger than the add or load latency, and hence
several adders can be stacked in series without affecting
the cycle time. If this were really the case, then some-
thing would be wrong with the machine cycle time.
When the add latency is given as one, for example, we
assume that the time to read the operands has been piped
into an earlier pipestage, and the time to write back the
result has been pipelined into the next pipestage. Then
the base cycle time is simply the minimum time required
to do a fixed-point add and bypass the result to the next
instruction. In this sense machines like the Stanford
MIPS chip [8] are underpipelined, because they read
operands out of the register file, do an ALU operation,
and write back the result all in one cycle.

Another example of underpipelining would be a
machine like the Berkeley RISC II chip [10], where
loads can only be issued every other cycle. Obviously
this reduces the instruction-level parallelism below one
instruction per cycle. An underpipelined machine that

can only issue an instruction every other cycle is il-
lustrated in Figure 2-3. Note that this machine’s perfor-
mance is the same as the machine in Figure 2-2, which is
half of the performance attainable by the base machine.

I N6
[1 XXX]
[] XXX]
[f PO |
| i XXX |
. Key: —
Successive oo
Instructions T XXX 1]
IFetch Decode Execute WriteBack
N

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Time in Base Cycles

Figure 2-3: Underpipelined: issues < 1 instr. per cycle

In summary, an underpipelined machine has worse

performance than the base machine because it either has:

e a cycle time greater than the latency of a simple
operation, or

e it issues less than one instruction per cycle.
For this reason underpipelined machines will not be con-
sidered in the rest of this paper.

2.3. Superscalar Machines

As their name suggests, superscalar machines were
originally developed as an alternative to vector
machines. A superscalar machine of degree » can issue #
instructions per cycle. A superscalar machine could is-
sue all three parallel instructions in Figure 1-1(a) in the
same cycle. Superscalar execution of instructions is il-
lustrated in Figure 2-4.

Key:

IFetch Decode Execute WriteBack

N
13

0 1 2 3 4 5 6 7 8 9 10 11 12

Time in Base Cycles

Figure 2-4: Execution in a superscalar machine (n=3)

In order to fully utilize a superscalar machine of
degree n, there must be » instructions executable in
parallel at all times. If an instruction-level parallelism of
n is not available, stalls and dead time will result where
instructions are forced to wait for the results of prior
instructions.

Formalizing a superscalar machine according to our
definitions:
e Instructions issued per cycle = n
¢ Simple operation latency measured in cycles = 1
e Instruction-level parallelism required to fully utilize
=n

A superscalar machine can attain the same perfor-
mance as a machine with vector hardware. Consider the

274

operations performed when a vector machine executes a
vector load chained into a vector add, with one element
loaded and added per cycle. The vector machine per-
forms four operations: load, floating-point add, a fixed-
point add to generate the next load address, and a com-
pare and branch to see if we have loaded and added the
last vector element. A superscalar machine that can is-
sue a fixed-point, floating-point, load, and a branch all in
one cycle achieves the same effective parallelism.

2.3.1. VLIW Machines

VLIW, or very long instruction word, machines
typically have instructions hundreds of bits long. Each
instruction can specify many operations, so each instruc-
tion exploits instruction-level parallelism. Many perfor-
mance studies have been performed on VLIW machines
[12]. The execution of instructions by an ideal VLIW
machine is shown in Figure 2-5. Each instruction
specifies multiple operations, and this is denoted in the
Figure by having multiple crosshatched execution stages
in parallel for each instruction.

Key:

[}
Successive
Instructions

IFetch Decode Execute WriteBack
(3 operations)

o 1 2 3 4 5 6 7 8 9 10 11 12 1%
Time in Base Cycles
Figure 2-5: Execution in a VLIW machine
VLIW machines are much like superscalar

machines, with three differences.

First, the decoding of VLIW instructions is easier
than superscalar instructions. Since the VLIW instruc-
tions have a fixed format, the operations specifiable in
one instruction do not exceed the resources of the
machine. However in the superscalar case, the instruc-
tion decode unit must look at a sequence of instructions
and base the issue of each instruction on the number of
instructions already issued of each instruction class, as
well as checking for data dependencies between results
and operands of instructions. In effect, the selection of
which operations to issue in a given cycle is performed at
compile time in a VLIW machine, and at run time in a
superscalar machine. Thus the instruction decode logic
for the VLIW machine should be much simpler than the
superscalar.

A second difference is that when the available
instruction-level parallelism is less than that exploitable
by the VLIW machine, the code density of the super-
scalar machine will be better, This is because the fixed
VLIW format includes bits for unused operations while
the superscalar machine only has instruction bits for use-
ful operations.

A third difference is that a superscalar machine
could be object-code compatible with a large family of
non-parallel machines, but VLIW machines exploiting
different amounts of parallelism would require different
instruction sets. This is because the VLIW’s that are
able to exploit more parallelism would require larger in-
structions.

In spite of these differences, in terms of run time
exploitation of instruction-level parallelism, the super-
scalar and VLIW will have similar characteristics. Be-
cause of the close relationship between these two
machines, we will only discuss superscalar machines in
general and not dwell further on distinctions between
VLIW and superscalar machines.

2.3.2. Class Conflicts
There are two ways to develop a superscalar
machine of degree n from a base machine,

1. Duplicate all functional units n times, including
register ports, bypasses, busses, and instruction
decode logic.

2. Duplicate only the register ports, bypasses, busses,
and instruction decode logic.

Of course these two methods are extreme cases, and one
could duplicate some units and not others. But if all the
functional units are not duplicated, then potential class
conflicts will be created. A class conflict occurs when
some instruction is followed by another instruction for
the same functional unit. If the busy functional unit has
not been duplicated, the superscalar machine must stop
issuing instructions and wait until the next cycle to issue
the second instruction. Thus class conflicts can substan-
tially reduce the parallelism exploitable by a superscalar
machine. (We will not consider superscalar machines or
any other machines that issue instructions out of order.
Techniques to reorder instructions at compile time in-
stead of at run time are almost as good [6, 7, 17], and are
dramatically simpler than doing it in hardware.)

2.4. Superpipelined Machines

Superpipelined machines exploit instruction-level
parallelism in another way. In a superpipelined machine
of degree m, the cycle time is 1/m the cycle time of the
base machine. Since a fixed-point add took a whole
cycle in the base machine, given the same implemen-
tation technology it must take m cycles in the super-
pipelined machine. The three parallel instructions in
Figure 1-1(a) would be issued in three successive cycles,
and by the time the third has been issued, there are three
operations in progress at the same time. Figure 2-6
shows the execution of instructions by a superpipelined
machine.

Formalizing a superpipelined machine according to
our definitions:
¢ Instructions issued per cycle = 1, but the cycle time
is 1/m of the base machine

275

¢ Simple operation latency measured in cycles=m

¢ Instruction-level parallelism required to fully utilize

Key:

IFstch Decode Execute WrheBack
[XX]
[XXX]

Successive XK

instructions T

ot 2 3 4 65 6 7 8 9

Time in Base Cycles

10 11 12 19

Figure 2-6: Superpipelined execution (m=3)

Superpipelined machines have been around a long
time. Seymour Cray has a long history of building su-
perpipelined machines: for example, the latency of a
fixed-point add in both the CDC 6600 and the Cray-1 is
3 cycles. Note that since the functional units of the 6600
are not pipelined (two are duplicated), the 6600 is an
example of a superpipelined machine with class con-
flicts. The CDC 7600 is probably the purest example of
an existing superpipelined machine since its functional
units are pipelined.

2.5. Superpipelined Superscalar Machines

Since the number of instructions issued per cycle
and the cycle time are theoretically orthogonal, we could
have a superpipelined superscalar machine. A super-
pipelined superscalar machine of degree (m,n) has a
cycle time 1/m that of the base machine, and it can ex-
ecute n instructions every cycle. This is illustrated in
Figure 2-7.

Key:

fFetch Decode Execute WriteBack

|
1

N
197

0 1 2 3 4 5 6 7 8 9
Time in Base Cycles

i0 11 12

Figure 2-7: A superpipelined superscalar (n=3,m=3)

Formalizing a superpipelined superscalar machine
according to our definitions:
¢ Instructions issued per cycle = n, and the cycle time
is 1/m that of the base machine

e Simple operation latency measured in cycles = m

¢ Instruction-level parallelism required to fully utilize
=n*m

2.6. Vector Machines

Although vector machines also take advantage of
(unrolled-loop) instruction-level parallelism, whether a
machine supports vectors is really independent of

whether it is a superpipelined, superscalar, or base
machine. Each of these machines could have an attached
vector unit. However, to the extent that the highly paral-
lel code was run in vector mode, it would reduce the use
of superpipelined or superscalar aspects of the machine
to the code that had only moderate instruction-level
parallelism. Figure 2-8 shows serial issue (for diagram
readability only) and parallel execution of vector instruc-
tions. Each vector instruction results in a string of opera-
tions, one for each element in the vector.

Successive
Instrugtions

o 1 2 3 4 5 6 7 8 9
Time in Base Cycles

Figure 2-8: Execution in a vector machine

2.7. Supersymmetry

The most important thing to keep in mind when
comparing superscalar and superpipelined machines of
equal degree is that they have basically the same perfor-
mance.

A superscalar machine of degree three can have
three instructions executing at the same time by issuing
three at the same time. The superpipelined machine can
have three instructions executing at the same time by
having a cycle time 1/3 that of the superscalar machine,
and issuing three instructions in successive cycles. Each
of these machines issues instructions at the same rate, so
superscalar and superpipelined machines of equal degree
have basically the same performance.

So far our assumption has been that the latency of all
operations, or at least the simple operations, is one base
machine cycle. As we discussed previously, no known
machines have this characteristic. For example, few
machines have one cycle loads without a possible data
interlock either before or after the load. Similarly, few
machines can execute floating-point operations in one
cycle. What are the effects of longer latencies? Con-
sider the MultiTitan [9], where ALU operations are one
cycle, but loads, stores, and branches are two cycles, and
all floating-point operations are three cycles. The Mul-
tiTitan is therefore a slightly superpipelined machine. If
we multiply the latency of each instruction class by the
frequency we observe for that instruction class when we
perform our benchmark set, we get the average degree of
superpipelining. The average degree of superpipelining
is computed in Table 2-1 for the MultiTitan and the
CRAY-1. To the extent that some operation latencies are
greater than one base machine cycle, the remaining
amount of exploitable instruction-level parallelism will
be reduced. In this example, if the average degree of
instruction-level parallelism in slightly parallel code is

276

around two, the MultiTitan should not stall often because
of data-dependency interlocks, but data-dependency in-
terlocks should occur frequently on the CRAY-1.

Instr. Fre- MultiTitan CRAY~1
class quency latency latency
logical 10% x1=20.1 x1=20.1
shift 10% x1=20.1 x 2 =0,2
add/sub 20% x 1 0.2 x 3 =20.6
load 20% x 2 0.4 x1ll = 2.2
store 15% x 2 =20.3 x 1 =20.15
branch 15% x 2 =20.3 x 3 = 0.45
FP 10% x 3 =10.3 x 7 =20.7
Average Degree

of Superpipelining 1.7 4.4

Table 2-1: Average degree of superpipelining

3. Machine Evaluation Environment

The language system for the MultiTitan consists of
an optimizing compiler (which includes the linker) and a
fast instruction-level simulator. The compiler includes
an intermodule register allocator and a pipeline instruc-
tion scheduler [16, 17]. For this study, we gave the sys-
tem an interface that allowed us to alter the characteris-
tics of the target machine. This interface allows us to
specify details about the pipeline, functional units, cache,
and register set. The language system then optimizes the
code, allocates registers, and schedules the instructions
for the pipeline, all according to this specification. The
simulator executes the program according to the same
specification.

To specify the pipeline structure and functional
units, we need to be able to talk about specific instruc-
tions. We therefore group the MultiTitan operations into
fourteen classes, selected so that operations in a given
class are likely to have identical pipeline behavior in any
machine. For example, integer add and subtract form
one class, integer multiply forms another class, and
single-word load forms a third class.

For each of these classes we can specify an opera-
tion latency. If an instruction requires the result of a
previous instruction, the machine will stall unless the
operation latency of the previous instruction has elapsed.
The compile-time pipeline instruction scheduler knows
this and schedules the instructions in a basic block so
that the resulting stall time will be minimized.

We can also group the operations into functional
units, and specify an issue latency and multiplicity for
each. For instance, suppose we want to issue an instruc-
tion associated with a functional unit with issue latency 3
and multiplicity 2. This means that there are two units
we might use to issue the instruction. If both are busy
then the machine will stall until one is idle. It then issues
the instruction on the idle unit, and that unit is unable to
issue another instruction until three cycles later. The
issue latency is independent of the operation latency; the
former affects later operations using the same functional

unit, and the latter affects later instructions using the
result of this one. In either case, the pipeline instruction
scheduler tries to minimize the resulting stall time.

Superscalar machines may have an upper limit on
the number of instructions that may be issued in the same
cycle, independent of the availability of functional units.
We can specify this upper limit. If no upper limit is
desired, we can set it to the total number of functional
units.

Our compiler divides the register set into two dis-
joint parts. It uses one part as temporaries for short-term
expressions, including values loaded from variables
residing in memory. It uses the other part as home loca-
tions for local and global variables that are used enough
to warrant keeping them in registers rather than in
memory. When number of operations executing in paral-
lel is large, it becomes important to increase the number
of registers used as temporaries. This is because using
the same temporary register for two different values in
the same basic block introduces an artificial dependency
that can interfere with pipeline scheduling. Our interface
lets us specify how the compiler should divide the
registers between these two uses.

4. Results

We used our programmable reorganization and
simulation system to investigate the performance of
various superpipelined and superscalar machine or-
ganizations. We ran eight different benchmarks on each
different configuration. All of the benchmarks are writ-
ten in Modula-2 except for yacc.
ccom Our own C compiler.

grr A PC board router.

linpack Linpack, double precision, unrolled 4x unless
noted otherwise.

livermore The first 14 Livermore Loops, double preci-
sion, not unrolled unless noted otherwise.

met Metronome, a board-level timing verifier.

stan The collection of Hennessy benchmarks from
Stanford (including puzzle, tower, queens,
etc.).

whet Whetsones.

yacc The Unix parser generator.

Unless noted otherwise, the effects of cache misses
and systems effects such as interrupts and TLB misses
are ignored in the simulations. Moreover, when avail-
able instruction-level parallelism is discussed, it is as-
sumed that all operations execute in one cycle. To deter-
mine the actual number of instructions issuable per cycle
in a specific machine, the available parallelism must be
divided by the average operation latency.

277

4.1. The Duality of Latency and Parallel Issue

In section 2.7 we stated that a superpipelined
machine and an ideal superscalar machine (i.e., without
class conflicts) should have the same performance, since
they both have the same number of instructions execut-
ing in parallel. To confirm this we simulated the eight
benchmarks on an ideal base machine, and on super-
pipelined and ideal superscalar machines of degrees 2
through 8. Figure 4-1 shows the results of this simula-
tion. The superpipelined machine actually has less per-
formance than the superscalar machine, but the perfor-
mance difference decreases with increasing degree.

25
Superscalar

o 2 " - ,tg:ﬁv D
2 Superpipelined
§ .
o 15
2
2
a
=
]
g 1
]
g
5
a& 0.5

0

1 2 3 4 5 6 7 8

Degree of Superscalar or Superpipeline
Figure 4-1: Supersymmetry

Consider a superscalar and superpipelined machine,
both of degree three, issuing a basic block of six inde-
pendent instructions (see Figure 4-2). The superscalar
machine will issue the last instruction at time t,
(assuming execution starts at t;). In contrast, the super-
pipelined machine will take 1/3 cycle to issue each in-
struction, so it will not issue the last instruction until time
ts;3. Thus although the superscalar and superpipelined
machines have the same number of instructions execut-
ing at the same time in the steady state, the super-
pipelined machine has a larger startup transient and it
gets behind the superscalar machine at the start of the
program and at each branch target. This effect
diminishes as the degree of the superpipelined machine
increases and all of the issuable instructions are issued
closer and closer together. This effect is seen in Figure
4-1 as the superpipelined performance approaches that of
the ideal superscalar machine with increasing degree.

Another difference between superscalar and super-
pipelined machines involves operation latencies that are
non-integer multiples of a base machine cycle time. In
particular, consider operations which can be performed
in less time than a base machine cycle set by the integer
add latency, such as logical operations or register-to-
register moves. In a base or superscalar machine these
operations would require an entire clock because that is

by definition the smallest time unit. In a superpipelined
machine these instructions might be executed in one su-
perpipelined cycle. Then in a superscalar machine of
degree 3 the latency of a logical or move operation might
be 2/3 longer than in a superpipelined machine of degree
3. Since the latency is longer for the superscalar
machine, the superpipelined machine will perform better
than a superscalar machine of equal degree. In general,
when the inherent operation latency is divided by the
clock period, the remainder is less on average for
machines with shorter clock periods. We have not quan-
tified the effect of this difference to date.

Superscalar Key:

1 IFstch Decode Execute WriteBack

Superpipelined

N
13

0 1 3 4 5 6 7 8 9 10 11 12

Time in Base Cycles
Figure 4-2: Start-up in superscalar vs. superpipelined

4.2, Limits to Instruction-Level Parallelism

Studies dating from the late 1960’s and early 1970’s
[14, 15] and continuing today have observed average
instruction-level parallelism of around 2 for code without
loop unrolling. Thus, for these codes there is not much
benefit gained from building a machine with super-
pipelining greater than degree 3 or a superscalar machine
of degree greater than 3. The instruction-level paral-
lelism required to fully utilize machines is plotted in
Figure 4-3. On this graph, the X dimension is the degree
of superscalar machine, and the Y dimension is the de-
gree of superpipelining. Since a superpipelined super-
scalar machine of only degree (2,2) would require an
instruction-level parallelism of 4, it seems unlikely that it
would ever be worth building a superpipelined super-
scalar machine for moderately or slightly parallel code.
The superpipelining axis is marked with the average de-
gree of superpipelining in the CRAY-1 that was com-
puted in Section 2.7. From this it is clear that vast
amounts of instruction-level parallelism would be re-
quired before the issuing of multiple instructions per
cycle would be warranted in the CRAY-1.

Unfortunately, latency is often ignored. For ex-
ample, every time peak performance is quoted, max-
imum bandwidth independent of latency is given.
Similarly, latency is often ignored in simulation studies.
For example, instruction issue methods have been com-
pared for the CRAY-1 assuming all functional units have
1 cycle latency [1]. This results in speedups of up to 2.7
from parallel issue of instructions, and leads to the mis-
taken conclusion that the CRAY-1 would benefit sub-
stantially from concurrent instruction issuing. In reality,
based on Figure 4-3, we would expect the performance
of the CRAY-1 to benefit very little from parallel in-

278

struction issue. We simulated the performance of the
CRAY-1 assuming single cycle functional unit latency
and actual functional unit latencies, and the results are
given in Figure 4-4.

superpipelined
|
5 | 10 15 20 25
|
CRAY-1{
4 | 8 12 16 20
cycles {
per op |
(i.e., 3| 6 9 12 15
1/cycle | superpipelined
time) | superscalar machines
2 | 4 6 8 10
MultiTitan|
I
1l 4 e super-
1 2 3 4 5 scalar

issued per cycle

Figure 4-3: Parallelism required for full utilization

120

all latencies = 1

100

o0
(=

=)
(=

Performance (MIPS)

S
(=

20 actual CRAY-1 latencies

0

1 2 3 4 5 6 7 8
Instruction issue multiplicity

Figure 4-4: Parallel issue with unit and real latencies

As expected, since the CRAY-1 already executes
several instructions concurrently due to its average de-
gree of superpipelining of 4.4, there is almost no benefit
from issuing multiple instructions per cycle when the
actual functional unit latencies are taken into account.

4.3. Variations in Instruction-Level Parallelism

So far we have been plotting a single curve for the
harmonic mean of all eight benchmarks. The different
benchmarks actually have different amounts of
instruction-level parallelism. The performance improve-
ment in each benchmark when executed on an ideal su-
perscalar machine of varying degree is given in Figure
4-5. Yacc has the least amount of instruction-level paral-
lelism. Many programs have approximately two instruc-
tions executable in parallel on the average, including the
C compiler, PC board router, the Stanford collection,
metronome, and whetstones. The Livermore loops ap-

proaches an instruction-level parallelism of 2.5. The of-
ficial version of Linpack has its inner loops unrolled four
times, and has an instruction-level parallelism of 3.2.
We can see that there is a factor of two difference in the
amount of instruction-level parallelism available in the
different benchmarks, but the ceiling is still quite low.

35
linpack.unrolldx

@
2 3
g
¥ .
3 25 livermore
[=3
14 ccom whetsones
% 2 ord g metronome
B acC
8 Y
g 15
i
5 1
[}
2
g
2 0.5
%)

0

1 2 3 4 5 6 7 8

Instruction issue multiplicity

Figure 4-5: Instruction-level parallelism by benchmark

4.4, Effects of Optimizing Compilers

Compilers have been useful in detecting and exploit-
ing instruction-level parallelism. Highly parallel loops
can be vectorized [3]. Somewhat less paralilel loops can
be unrolled and then trace-scheduled [5] or
software-pipelined [4, 11]. Even code that is only
slightly parallel can be scheduled [6, 7, 17] to exploit a
superscalar or superpipelined machine.

The effect of loop-unrolling on instruction-level
parallelism is shown in Figure 4-6. The Linpack and
Livermore benchmarks were simulated without loop un-
rolling and also unrolled two, four, and ten times. In
either case we did the unrolling in two ways: naively and
carefully. Naive unrolling consists simply of duplicating
the loop body inside the loop, and allowing the normal
code optimizer and scheduler to remove redundant com-
putations and to re-order the instructions to maximize
parallelism. Careful unrolling goes farther. In careful
unrolling, we reassociate long strings of additions or
multiplications to maximize the parallelism, and we
analyze the stores in the unrolled loop so that stores from
early copies of the loop do not interfere with loads in
later copies. Both the naive and the careful unrolling
were done by hand.

The parallelism improvement from naive unrolling
is mostly flat after unrolling by four. This is largely
because of false conflicts between the different copies of
an unrolled loop body, imposing a sequential framework
on some or all of the computation. Careful unrolling
gives us a more dramatic improvement, but the paral-
lelism available is still limited even for tenfold unrolling.

279

One reason for this is that we have only forty temporary
registers available, which limits the amount of paral-
lelism we can exploit.
7
6.5
6
55
5
4.5
4 o
35
3
2.5¢
2
15
1
0.5
0

linpack.naive

Instruction-level parallelism

1 2 4 6 8
Number of iterations unrolled

10

Figure 4-6: Parallelism vs. loop unrolling

In practice, the peak parallelism was quite high, The
parallelism was 11 for the carefully unrolled inner loop
of Linpack, and 22 for one of the carefully unrolled
Livermore loops. However, in either case there is still a
lot of inherently sequential computation, even in impor-
tant places. Three of the Livermore loops, for example,
implement recurrences that benefit little from unrolling.
If we spend half the time in a very parallel inner loop,
and we manage to make this inner loop take nearly zero
time by executing its code in parallel, we only double the
speed of the program.

In all cases, cache effects were ignored. If limited
instruction caches were present, the actual performance
would decline for large degrees of unrolling.

Although we see that moderate loop-unrolling can
increase the instruction-level parallelism, it is dangerous
to generalize this claim. Most classical optimizations [2]
have little effect on the amount of parallelism available,
and often actually decrease it. This makes sense; un-
optimized code often contains useless or redundant com-
putations that are removed by optimization. These use-
less computations give us an artificially high degree of
parallelism, but we are filling the parallelism with make-
work.

In general, however, classical optimizations can ei-
ther add to or subtract from parallelism. This is il-
lustrated by the expression graph in Figure 4-7. If our
computation consists of two branches of comparable
complexity that can be executed in parallel, then optimiz-
ing one branch reduces the parallelism. On the other
hand, if the computation contains a bottleneck on which
other operations wait, then optimizing the bottleneck. in-
creases the parallelism. This argument holds equally
well for most global optimizations, which are usually just
combinations of local optimizations that require global

information to detect. For example, to move invariant
code out of a loop, we just remove a large computation
and replace it with a reference to a single temporary. We
also insert a large computation before the loop, but if the
loop is executed many times then changing the paral-
lelism of code outside the loop won’t make much dif-
ference.

REELEELY.

Parallglism = 1.67 Paraflelism = 1.33 Parallelism = 1.50

Figure 4-7: Parallelism vs. compiler optimizations

Global allocation of registers to local and global
variables [16] is not usually considered a classical op-
timization, because it has been widespread only since the
advent of machines with large register sets. However, it
too can either increase or decrease parallelism. A basic
block in which all variables reside in memory must load
those variables into registers before it can operate on
them. Since these loads can be done in parallel, we
would expect to reduce the overall parallelism by
globally allocating the variables to registers and remov-
ing these loads. On the other hand, assignments of new
values to these variables may be easier for the pipeline
scheduler to re-order if they are assignments to registers
rather than stores to memory.

We simulated our test suite with various levels of
optimization. Figure 4-8 shows the results. The leftmost
point is the parallelism with no optimization at all. Each
time we move to the right, we add a new set of optimiza-
tions. In order, these are pipeline scheduling, intra-block
optimizations, global optimizations, and global register
allocation. In this comparison we used 16 registers for
expression temporaries and 26 for global register alloca-
tion. The dotted and dashed lines allow the different
benchmarks to be distinguished, and are not otherwise
significant.

Doing pipeline scheduling can increase the available
parallelism by 10% to 60%. Throughout the remainder
of this paper we assume that pipeline scheduling is per-
formed. For most programs, further optimization has
little effect on the instruction-level parallelism (although
of course it has a large effect on the performance). On
the average across our test suite, optimization reduces the
parallelism, but the average reduction is very close to
zero.

The behavior of the Livermore benchmark is
anomalous. A large decrease in parallelism occurs when
we add optimization because the inner loops of these
benchmarks contain redundant address calculations that
are recognized as common subexpressions. For example,
without common subexpression elimination the address
of A[I] would be computed twice in the expression "A[I]

280

= A[I] + 1". It happens that these redundant calculations
are not bottlenecks, so removing them decreases the
parallelism.

35

linpack .unroljdx

livermore

Base Machine Instruction-Level Parallelism

an
yacc
1
05 X scheduling
- X scheduling local opt
. scheduling local op! global opt
scheduling local opt global opt reg alloc
00 1 4

O%timizaﬁon Leee]
Figure 4-8: Effect of optimization on parallelism

Global register allocation causes a slight decrease in
parallelism for most of the benchmarks. This is because
operand loads can be done in parallel, and are removed
by register allocation.

The numeric benchmarks Livermore, Linpack, and
Whetstones are exceptions to this. Global register al-
location increases the parallelism of these three. This is
because key inner loops contain intermixed references to
scalars and to array elements. Loads from the former
may appear to depend on previous stores to the latter,
because the scheduler must assume that two memory
locations are the same unless it can prove otherwise. If
global register allocation chooses to keep a scalar in a
register instead of memory, this spurious dependency
disappears.

In any event, it is clear that very few programs will
derive an increase in the available parallelism from the
application of code optimization. Programs that make
heavy use of arrays may actually lose parallelism from
common subexpression removal, though they may also
gain parallelism from global register allocation. The net
result seems hard to predict. The single optimization that
does reliably increase parallelism is pipeline scheduling
itself, which makes manifest the parallelism that is al-
ready present. Even the benefit from scheduling varies
widely between programs.

5. Other Important Factors

The preceding simulations have concentrated on the
duality of latency and parallel instruction issue under
ideal circumstances. Unfortunately there are a number of
other factors which will have a very important effect on
machine performance in reality. In this section we will
briefly discuss some of these factors.

5.1. Cache Performance

Cache performance is becoming increasingly impor-
tant, and it can have a dramatic effect on speedups ob-
tained from parallel instruction execution. Figure 5-1
lists some cache miss times and the effect of a miss on
machine performance. Over the last decade, cycle time
has been decreasing much faster than main memory ac-
cess time, The average number of machine cycles per
instruction has also been decreasing dramatically, espe-
cially when the transition from CISC machines to RISC
machines is included. These two effects are multiplica-
tive and result in tremendous increases in miss cost. For
example, a cache miss on a VAX 11/780 only costs 60%
of the average instruction execution. Thus even if every
instruction had a cache miss, the machine performance
would only slow down by 60%! However, if a RISC
machine like the WRL Titan [13] has a miss, the cost is
almost ten instruction times. Moreover, these trends
seem to be continuing, especially the increasing ratio of
memory access time to machine cycle time. In the future
a cache miss on a superscalar machine executing two
instructions per cycle could cost well over 100 instruc-
tion times!

Machine cycles cycle mem miss miss

per time time cost cost
instr (ns) (ns) cycles instr
VAX11/780 10.0 200 1200 6 .6
WRL Titan 1.4 45 540 12 8.6
? 0.5 5 350 70 140.0

Table 5-1: The cost of cache misses

Cache miss effects decrease the benefit of parallel
instruction issue. Consider a 2.0cpi (i.e., 2.0 cycles per
instruction) machine, where 1.0cpi is from issuing one
instruction per cycle, and 1.0 cpi is cache miss burden.
Now assume the machine is given the capability to issue
three instructions per cycle, to get a net decrease down to
0.5cpi for issuing instructions when data dependencies
are taken into account. Performance is proportional to
the inverse of the cpi change. Thus the overall perfor-
mance improvement will be from 1/2.0cpi to 1/1.5¢pi, or
33%. This is much less than the improvement of
1/1.0cpi to 1/0.5cpi, or 100%, as when cache misses are
ignored.

5.2. Design Complexity and Technology Constraints
When machines are made more complicated in order
to exploit instruction-level parallelism, care must be
taken not to slow down the machine cycle time (as a
result of adding the complexity) more than the speedup
derived from the increased parallelism. This can happen
in two ways, both of which are hard to quantify. First,
the added complexity can slow down the machine by
adding to the critical path, not only in terms of logic
stages but in terms of greater distances to be traversed
when crossing a more complicated and bigger machine.
As we have seen from our analysis of the importance of

281

latency, hiding additional complexity by adding extra
pipeline stages will not make it go away. Also, the
machine can be slowed down by having a fixed resource
(e.g., good circuit designers) spread thinner because of a
larger design. Finally, added complexity can negate per-
formance improvements by increasing time to market. If
the implementation technologies are fixed at the start of a
design, and processor performance is quadrupling every
three years, a one or two year slip because of extra com-
plexity can easily negate any additional performance
gained from the complexity.

Since a superpipelined machine and a superscalar
machine have approximately the same performance, the
decision as to whether to implement a superscalar or a
superpipelined machine should be based largely on their
feasibility and cost in various technologies. For ex-
ample, if a TTL machine was being built from off-the-
shelf components, the designers would not have the
freedom to insert pipeline stages wherever they desired.
For example, they would be required to use several mul-
tiplier chips in parallel (i.e., superscalar), instead of
pipelining one multiplier chip more heavily (ie.,
superpipelined). Another factor is the shorter cycle times
required by the superpipelined machine. For example, if
short cycle times are possible though the use of fast in-
terchip signalling (e.g., ECL with terminated transmis-
sion lines), a superpipelined machine would be feasible.
However, relatively slow TTL off-chip signaling might
require the use of a superscalar organization. In general,
if it is feasible, a superpipelined machine would be
preferred since it only pipelines existing logic more
heavily by adding latches instead of duplicating func-
tional units as in the superscalar machine,

6. Concluding Comments

In this paper we have shown superscalar and super-
pipelined machines to be roughly equivalent ways to ex-
ploit instruction-level parallelism. The duality of latency
and parallel instruction issue was documented by simula-
tions. Ignoring class conflicts and implementation com-
plexity, a superscalar machine will have slightly better
performance (by less than 10% on our benchmarks) than
a superpipelined machine of the same degree due to the
larger startup transient of the superpipelined machine.
However, class conflicts and the extra complexity of
parallel over pipelined instruction decode could easily
negate this advantage. These tradeoffs merit investiga-
tion in future work.

The available parallelism after normal optimizations
and global register allocation ranges from a low of 1.6
for Yacc to 3.2 for Linpack. In heavily parallel programs
like the numeric benchmarks, we can improve the paral-
lelism somewhat by loop unrolling. However, dramatic
improvements are possible only when we carefully
restructure the unrolled loops. This restructuring re-
quires us to use knowledge of operator associativity, and
to do interprocedural alias analysis to determine when
memory references are independent. Even when we do

this, the performance improvements are limited by the
non-parallel code in the application, and the improve-
ments in parallelism are not as large as the degree of
unrolling. In any case, loop unrolling is of little use in
non-parallel applications like Yacc or the C compiler.

Pipeline scheduling is necessary in order to exploit
the parallelism that is available; it improved performance
by around 20%. However, classical code optimization
had very little effect on the parallelism available in non-
numeric applications, even when it had a large effect on
the performance. Optimization had a larger effect on the
parallelism of numeric benchmarks, but the size and even
the direction of the the effect depended heavily on the
code’s context and the availability of temporary
registers.

Finally, many machines already exploit most of the
parallelism available in non-numeric code because they
can issue an instruction every cycle but have operation
latencies greater than one. Thus for many applications,
significant performance improvements from parallel in-
struction issue or higher degrees of pipelining should not
be expected.

7. Acknowledgements

Jeremy Dion, Mary Jo Doherty, John Ousterhout,
Richard Swan, Neil Wilhelm, and the reviewers provided
valuable comments on an early draft of this paper.

References

1. Acosta, R. D., Kjelstrup, J., and Tomng, H. C. ““‘An
Instruction Issuing Approach to Enhancing Performance
in Multiple Functional Unit Processors.”” IEEE Trans-
actions on Computers C-35, 9 (September 1986),
815-828.

2. Aho, Alfred V., Sethi, Ravi, and Ullman, Jeffrey D..
Compilers: Principles, Techniques, and Tools. Addison-
Wesley, 1986. i

3. Allen, Randy, and Kennedy, Ken. ‘‘Automatic
Translation of FORTRAN Programs to Vector Form.”’
ACM Transactions on Programming Languages and Sys-
tems 9, 4 (October 1987), 491-542.

4. Charlesworth, Alan E. ‘‘An Approach to Scientific
Array Processing: The Architectural Design of the
AP-120B/FPS-164 Family.”” Computer 14,9
(September 1981), 18-27.

5. Ellis, John R. Bulldog: A Compiler for VLIW
Architectures. Ph.D. Th., Yale University, 1985.

6. Foster, Caxton C., and Riseman, Edward M.
‘‘Percolation of Code to Enhance Parallel Dispatching
and Execution.”> IEEE Transactions on Computers
C-21, 12 (December 1972), 1411-1415.

282

7. Gross, Thomas. Code Optimization of Pipeline Con-
straints. Tech. Rept. 83-255, Stanford University, Com-
puter Systems Lab, December, 1983.

8. Hennessy, John L., Jouppi, Norman P., Przybylski,
Steven, Rowen, Christopher, and Gross, Thomas.
Design of a High Performance VLSI Processor. Third
Caltech Conference on VLSI, Computer Science Press,
March, 1983, pp. 33-54.

9. Jouppi, Norman P., Dion, Jeremy, Boggs, David, and
Nielsen, Michael J. K. MultiTitan: Four Architecture
Papers. Tech. Rept. 87/8, Digital Equipment Corpora-
tion Western Research Lab, April, 1988.

10. Katevenis, Manolis G. H. Reduced Instruction Set
Architectures for VLSI. Tech. Rept. UCB/CSD 83/141,
University of California, Berkeley, Computer Science
Division of EECS, October, 1983.

11. Lam, Monica. Software Pipelining: An Effective
Scheduling Technique for VLIW Machines. SIGPLAN
’88 Conference on Programming Language Design and
Implementation, June, 1988, pp. 318-328.

12. Nicolau, Alexandru, and Fisher, Joseph A.
‘“Measuring the Parallelism Available for Very Long In-
struction Word Architectures.”” IEEE Transactions on
Computers C-33, 11 (November 1984), 968-976.

13. Nielsen, Michael J. K. Titan System Manual. Tech.
Rept. 86/1, Digital Equipment Corporation Western
Research Lab, September, 1986.

14. Riseman, Edward M., and Foster, Caxton C. ‘‘The
Inhibition of Potential Parallelism by Conditional
Jumps.”’ IEEE Transactions on Computers C-21,12
(December 1972), 1405-1411.

15. Tjaden, Garold S., and Flynn, Michael J.
‘‘Detection and Parallel Execution of Independent

Instructions.”” IEEE Transactions on Computers C-19,
10 (October 1970), 889-895.

16. Wall, David W. Global Register Allocation at Link-
Time. SIGPLAN ’86 Conference on Compiler Construc-
tion, June, 1986, pp. 264-275.

17. Wall, David W., and Powell, Michael L. The Mah-
ler Experience: Using an Intermediate Language as the
Machine Description. Second International Conference
on Architectural Support for Programming Languages
and Operating Systems, IEEE Computer Society Press,
October, 1987, pp. 100-104.

