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Readings 
  Required: 

  Hennessy and Patterson, Appendix C.2 and C.3 
  Jouppi, “Improving Direct-Mapped Cache Performance by the 

Addition of a Small Fully-Associative Cache and Prefetch 
Buffers,” ISCA 1990. 

  Qureshi et al., “A Case for MLP-Aware Cache Replacement,“ 
ISCA 2006. 

  Recommended: 
  Wilkes, “Slave Memories and Dynamic Storage Allocation,” 

IEEE Trans. On Electronic Computers, 1965. 
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Memory Latency 
  We would like to have small CPI (cycles per instruction) 
  But it takes 100s of CPU cycles to access main memory 
  How do we bridge the gap? 

  Put all data into registers? 

3 

CPU 
Main 

Memory 
(DRAM) RF 



Why Not A Lot of Registers? 
  Have a large number of architectural registers 

  Increases access time of register file 
  Cannot make memories large and fast 

  Increases bits used in instruction format for register ID 
  1024 registers in a 3-address machine  30 bits to specify IDs 

  Multi-level register files 
  CRAY-1 had this 
  A small, fast register file connected to a large, slower file 
  Movement between files/memory explicitly managed by code 
  Explicit management not simple 

  Not easy to figure out which data is 
     frequently used 

  Cache: automatic management of data 
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Memory Hierarchy 
  Fundamental tradeoff 

  Fast memory: small 
  Large memory: slow 

  Idea: Memory hierarchy 

  Latency, cost, size,  
    bandwidth 
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Caching in a Pipelined Design 
  The cache needs to be tightly integrated into the pipeline  

  Ideally, access in 1-cycle so that dependent operations do not 
stall 

  High frequency pipeline  Cannot make the cache large 
  But, we want a large cache AND a pipelined design 

  Idea: Cache hierarchy 
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Caching Basics: Temporal Locality 
  Idea: Store recently accessed data in automatically 

managed fast memory (called cache) 
  Anticipation: the data will be accessed again soon 

  Temporal locality principle 
  Recently accessed data will be again accessed in the near 

future 
  This is what Maurice Wilkes had in mind: 

  Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE 
Trans. On Electronic Computers, 1965. 

  “The use is discussed of a fast core memory of, say 32000 words 
as a slave to a slower core memory of, say, one million words in 
such a way that in practical cases the effective access time is 
nearer that of the fast memory than that of the slow memory.” 
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Caching Basics: Spatial Locality 
  Idea: Store addresses adjacent to the recently accessed 

one in automatically managed fast memory 
  Logically divide memory into equal size blocks 
  Fetch to cache the accessed block in its entirety 

  Anticipation: nearby data will be accessed soon 

  Spatial locality principle 
  Nearby data in memory will be accessed in the near future 

  E.g., sequential instruction access, array traversal 

  This is what IBM 360/85 implemented 
  16 Kbyte cache with 64 byte blocks 
  Liptay, “Structural aspects of the System/360 Model 85 II: the 

cache,” IBM Systems Journal, 1968. 
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The Bookshelf Analogy 
  Book in your hand 
  Desk 
  Bookshelf 
  Boxes at home 
  Boxes in storage 

  Recently-used books tend to stay on desk 
  Comp Arch books, books for classes you are currently taking 
  Until the desk gets full 

  Adjacent books in the shelf needed around the same time 
  If I have organized/categorized my books well in the shelf 
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Caching Basics 
  When data referenced 

  HIT: If in cache, use cached data instead of accessing memory 
  MISS: If not in cache, bring into cache 

  Maybe have to kick something else out to do it 

  Important decisions 
  Placement: where and how to place/find a block in cache? 
  Replacement: what data to remove to make room in cache? 
  Write policy: what do we do about writes? 
  Instructions/data 

  Block (line): Unit of storage in the cache 
  IBM vs. DEC terminology 
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Cache Abstraction and Metrics 

  Cache hit rate = (# hits) / (# hits + # misses) = (# hits) / (# accesses) 
  Average memory access time (AMAT) 

 = ( hit-rate * hit-latency ) + ( miss-rate * miss-latency ) 
  Aside: Can reducing AMAT reduce performance? 
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Placement and Access 
  Assume byte-addressable memory:           

256 bytes, 8-byte blocks  32 blocks 
  Assume cache: 64 bytes, 8 blocks 

  Direct-mapped: A block can only go to one location 

  Addresses with same index contend for the same location 
  Cause conflict misses 
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Set Associativity 
  Addresses 0 and 8 always conflict in direct mapped cache 
  Instead of having one column of 8, have 2 columns of 4 blocks 

13 

Tag store Data store 

V tag 

=? 

V tag 

=? 

Address 
tag index byte in block 

3 bits 2 bits 3b 

Logic 

MUX 

MUX 
byte in block 

Associative memory within the set 
-- More complex, slower access, larger tag store 
+ Accommodates conflicts better (fewer conflict misses) 

SET 

Hit? 



Higher Associativity 
  4-way 

-- More tag comparators and wider data mux; larger tags 
+ Likelihood of conflict misses even lower 
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Full Associativity 
  Fully associative cache 

  A block can be placed in any cache location 
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Associativity 
  How many blocks can map to the same index (or set)? 

  Larger associativity 
  lower miss rate, less variation among programs 
  diminishing returns 

  Smaller associativity 
  lower cost 
  faster hit time 

  Especially important for L1 caches 
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Set-Associative Caches  (I) 
  Diminishing returns in hit rate from higher associativity 
  Longer access time with higher associativity 
  Which block in the set to replace on a cache miss? 

  Any invalid block first 
  If all are valid, consult the replacement policy 

  Random 
  FIFO 
  Least recently used (how to implement?) 
  Not most recently used 
  Least frequently used? 
  Least costly to re-fetch? 

  Why would memory accesses have different cost? 

  Hybrid replacement policies 
  Optimal replacement policy?  
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Replacement Policy 
  LRU vs. Random 

  Set thrashing: When the “program working set” in a set is 
larger than set associativity 

  4-way: Cyclic references to A, B, C, D, E  
  0% hit rate with LRU policy 

  Random replacement policy is better when thrashing occurs 

  In practice: 
  Depends on workload 
  Average hit rate of LRU and Random are similar 

  Hybrid of LRU and Random 
  How to choose between the two? Set sampling 

  See Qureshi et al., “A Case for MLP-Aware Cache Replacement,“ 
ISCA 2006. 
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Set-Associative Caches (II) 
  Belady’s OPT 

  Replace the block that is going to be referenced furthest in the 
future by the program 

  Belady, “A study of replacement algorithms for a virtual-
storage computer,” IBM Systems Journal, 1966. 

  How do we implement this? Simulate? 

  Is this optimal for minimizing miss rate? 
  Is this optimal for minimizing execution time? 

  No. Cache miss latency/cost varies from block to block! 
  Two reasons: Remote vs. local caches and miss overlapping 
  Qureshi et al. “A Case for MLP-Aware Cache Replacement,“ 

ISCA 2006. 
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Handling Writes (Stores) 
  When do we write the modified data in a cache to the next level? 

  Write through: At the time the write happens 
  Write back: When the block is evicted 

  Write-back 
-- Need a bit in the tag store indicating the block is “modified” 
+ Can consolidate multiple writes to the same block before eviction 

  Potentially saves bandwidth between cache levels + saves energy 

  Write-through 
+ Simpler 
+ All levels are up to date. Consistency: Simpler cache coherence 

because no need to check lower-level caches 
-- More bandwidth intensive 
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Handling Writes (Stores) 
  Do we allocate a cache block on a write miss? 

  Allocate on write miss: Yes 
  No-allocate on write miss: No 

  Allocate on write miss 
+ Can consolidate writes instead of writing each of them 

individually to next level 
-- Requires (?) transfer of the whole cache block 
+ Simpler because write misses can be treated the same way as 

read misses 

  No-allocate 
+ Conserves cache space if locality of writes is low 
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Inclusion vs. Exclusion 
  Inclusive caches 

  Every block existing in the first level also exists in the next level 
  When fetching a block, place it in all cache levels. Tradeoffs: 

-- Leads to duplication of data in the hierarchy: less efficient 
-- Maintaining inclusion takes effort (forced evictions) 
+ But makes cache coherence in multiprocessors easier 

  Need to track other processors’ accesses only in the highest-level cache 

  Exclusive caches 
  The blocks contained in cache levels are mutually exclusive 
  When evicting a block, do you write it back to the next level? 
+ More efficient utilization of cache space 
+ (Potentially) More flexibility in replacement/placement 
-- More blocks/levels to keep track of to ensure cache coherence; takes effort 

  Non-inclusive caches 
  No guarantees for inclusion or exclusion: simpler design 
  Most Intel processors 

22 



Maintaining Inclusion and Exclusion 
  When does maintaining inclusion take effort? 

  L1 block size < L2 block size 
  L1 associativity > L2 associativity 
  Prefetching into L2 
  When a block is evicted from L2, need to evict all corresponding 

subblocks from L1  keep 1 bit per subblock in L2 
  When a block is inserted, make sure all higher levels also have it 

  When does maintaining exclusion take effort? 
  L1 block size != L2 block size 
  Prefetching into any cache level 
  When a block is inserted into any level, ensure it is not in any 

other 
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