18-740 Fall 2010

Computer Architecture
Lecture 6: Caching Basics

Prof. Onur Mutlu
Carnegie Mellon University

Readings

Required:
o Hennessy and Patterson, Appendix C.2 and C.3

a Jouppi, “Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully-Associative Cache and Prefetch
Buffers,” ISCA 1990.

o Qureshi et al., "A Case for MLP-Aware Cache Replacement,”
ISCA 2006.

Recommended:

o Wilkes, “Slave Memories and Dynamic Storage Allocation,”
IEEE Trans. On Electronic Computers, 1965.

Memory Latency

We would like to have small CPI (cycles per instruction)
But it takes 100s of CPU cycles to access main memory

How do we bridge the gap?
o Put all data into registers?

Main
CPU Memory
RF (DRAM)

v

Why Not A Lot ot Registers?

Have a large number of architectural registers

o Increases access time of register file
Cannot make memories large and fast

o Increases bits used in instruction format for register ID

1024 registers in a 3-address machine - 30 bits to specify IDs
Multi-level register files
o CRAY-1 had this
o A small, fast register file connected to a large, slower file
o Movement between files/memory explicitly managed by code
a

Explicit management not simple
p g.] p . 64 (7_8?) —> 'III chéar
NOt easy to flgure Out WhICh data |S Single- T-Registers Sregistersl

Ported

Memory

freq Uently used (320 MW/ _I Address

: T — FU's
o Cache: automatic management of data oRegsts| [pregtes]

Provide operations to explicitly move

data between S/T and A/B registers

Memory Hierarchy

Fundamental tradeoff
o Fast memory: small
o Large memory: slow

Idea: Memory hierarchy

CPU & Cache
RF

Latency, cost, size,
bandwidth

Main
Memory
(DRAM)

Hard Disk

Caching in a Pipelined Design

The cache needs to be tightly integrated into the pipeline

o Ideally, access in 1-cycle so that dependent operations do not
stall

High frequency pipeline - Cannot make the cache large

o But, we want a large cache AND a pipelined design
Idea: Cache hierarchy

Main

Level 2 Memory
CPU Levell Cache > (DRAM)

RF Cache

Caching Basics: Temporal Locality

Idea: Store recently accessed data in automatically
managed fast memory (called cache)

Anticipation: the data will be accessed again soon

Temporal locality principle

o Recently accessed data will be again accessed in the near
future

o This is what Maurice Wilkes had in mind:

Wilkes, "Slave Memories and Dynamic Storage Allocation,” IEEE
Trans. On Electronic Computers, 1965.

“The use is discussed of a fast core memory of, say 32000 words
as a slave to a slower core memory of, say, one million words in
such a way that in practical cases the effective access time is
nearer that of the fast memory than that of the slow memory.”

Caching Basics: Spatial Locality

Idea: Store addresses adjacent to the recently accessed
one in automatically managed fast memory

o Logically divide memory into equal size blocks

o Fetch to cache the accessed block in its entirety

Anticipation: nearby data will be accessed soon

Spatial locality principle

o Nearby data in memory will be accessed in the near future
E.g., sequential instruction access, array traversal

o This is what IBM 360/85 implemented

16 Kbyte cache with 64 byte blocks

Liptay, "“Structural aspects of the System/360 Model 85 II: the
cache,” IBM Systems Journal, 1968.

The Bookshelt Analogy

Book in your hand
Desk
Bookshelf

Boxes at home
Boxes in storage

Recently-used books tend to stay on desk

o Comp Arch books, books for classes you are currently taking
o Until the desk gets full

Adjacent books in the shelf needed around the same time
a If I have organized/categorized my books well in the shelf

Caching Basics

When data referenced

o HIT: If in cache, use cached data instead of accessing memory
o MISS: If not in cache, bring into cache
Maybe have to kick something else out to do it

Important decisions

o Placement: where and how to place/find a block in cache?
o Replacement: what data to remove to make room in cache?
o Write policy: what do we do about writes?

o Instructions/data

Block (line): Unit of storage in the cache
o IBM vs. DEC terminology

10

Cache Abstraction and Metrics

Address > >
Tag Store Data Store

(is the address
in the cache?)

l |

Hit/miss? Data

Cache hit rate = (# hits) / (# hits + # misses) = (# hits) / (# accesses)
Average memory access time (AMAT)
= (hit-rate * hit-latency) + (miss-rate * miss-latency)
Aside: Can reducing AMAT reduce performance?
11

Placement and Access

Assume byte-addressable memory:
256 bytes, 8-byte blocks - 32 blocks

Assume cache: 64 bytes, 8 blocks

o Direct-mapped: A block can only go to one location
tag index bytein block

2b | 3 bits| 3 bits Tag store Data store
Address
V tag
x‘ :byte in block

v v

Hit? Data

o Addresses with same index contend for the same location

Cause conflict misses
12

Set Associativity

Addresses 0 and 8 always conflict in direct mapped cache
Instead of having one column of 8, have 2 columns of 4 blocks

Tag store Data store
SET | J ()
V tag V tag
& E v l
=? =? Mux "
Logic \ M£X :ibyte in block
Address Hit? i

tag index byte in block
3b | 2 bits| 3 bits

Associative memory within the set
-- More complex, slower access, larger tag store
+ Accommodates conflicts better (fewer conflict misses)

13

Higher Associativity

4-way Tag store

v v v

=7 =’ =? =

Logic —> Hit?

Data store

v

>\ MUX - —

v byte in block
MUX <£—
\ L

-- More tag comparators and wider data mux; larger tags
+ Likelihood of conflict misses even lower

Full Associativity

Fully associative cache
o A block can be placed in any cache location

Tag store | | I I I | I I |
v v
= =7 =" = =7 =7 = ! =7?
\L v v v \l'
Logic
¢' Hit?
Data store| | | | | | | |
v y/ v J(v
o MUX

\ MJX 7 byte in block
v

15

Associativity

How many blocks can map to the same index (or set)?

Larger associativity
o lower miss rate, less variation among programs
o diminishing returns

hit rate
Smaller associativity
o lower cost

o faster hit time
Especially important for L1 caches

associativity

16

Set-Assoclative Caches (1)

Diminishing returns in hit rate from higher associativity
Longer access time with higher associativity
Which block in the set to replace on a cache miss?

o Any invalid block first

o If all are valid, consult the replacement policy
Random
FIFO
Least recently used (how to implement?)
Not most recently used
Least frequently used?

Least costly to re-fetch?
o Why would memory accesses have different cost?

Hybrid replacement policies
Optimal replacement policy?
17

Replacement Policy

LRU vs. Random

o Set thrashing: When the “program working set” in a set is
larger than set associativity

o 4-way: Cyclic referencesto A, B, C, D, E
0% hit rate with LRU policy
o Random replacement policy is better when thrashing occurs
In practice:
o Depends on workload
o Average hit rate of LRU and Random are similar

Hybrid of LRU and Random

o How to choose between the two? Set sampling

See Qureshi et al., “A Case for MLP-Aware Cache Replacement,
ISCA 2006.

A\

18

Set-Assoclative Caches (1I)

Belady's OPT

o Replace the block that is going to be referenced furthest in the
future by the program

o Belady, “A study of replacement algorithms for a virtual-
storage computer,” IBM Systems Journal, 1966.

o How do we implement this? Simulate?

Is this optimal for minimizing miss rate?
Is this optimal for minimizing execution time?
o No. Cache miss latency/cost varies from block to block!
o Two reasons: Remote vs. local caches and miss overlapping

o Qureshi et al. “A Case for MLP-Aware Cache Replacement,”
ISCA 2006.

19

Handling Writes (Stores)

When do we write the modified data in a cache to the next level?
Write through: At the time the write happens
Write back: When the block is evicted

o Write-back

-- Need a bit in the tag store indicating the block is “modified”

+ Can consolidate multiple writes to the same block before eviction
0 Potentially saves bandwidth between cache levels + saves energy

o Write-through
+ Simpler

+ All levels are up to date. Consistency: Simpler cache coherence
because no need to check lower-level caches

-- More bandwidth intensive

20

Handling Writes (Stores)

Do we allocate a cache block on a write miss?
o Allocate on write miss: Yes
o No-allocate on write miss: No

Allocate on write miss

+ Can consolidate writes instead of writing each of them
individually to next level

-- Requires (?) transfer of the whole cache block

+ Simpler because write misses can be treated the same way as
read misses

No-allocate
+ Conserves cache space if locality of writes is low

21

Inclusion vs. Exclusion

Inclusive caches
o Every block existing in the first level also exists in the next level
o When fetching a block, place it in all cache levels. Tradeoffs:

-- Leads to duplication of data in the hierarchy: less efficient

-- Maintaining inclusion takes effort (forced evictions)

+ But makes cache coherence in multiprocessors easier
0 Need to track other processors’ accesses only in the highest-level cache

Exclusive caches

o The blocks contained in cache levels are mutually exclusive

o When evicting a block, do you write it back to the next level?

+ More efficient utilization of cache space

+ (Potentially) More flexibility in replacement/placement

-- More blocks/levels to keep track of to ensure cache coherence; takes effort

Non-inclusive caches
o No guarantees for inclusion or exclusion: simpler design

o Most Intel processors
22

Maintaining Inclusion and Exclusion

When does maintaining inclusion take effort?
L1 block size < L2 block size

L1 associativity > L2 associativity

Prefetching into L2

When a block is evicted from L2, need to evict all corresponding
subblocks from L1 = keep 1 bit per subblock in L2

o When a block is inserted, make sure all higher levels also have it

L O 0O O

When does maintaining exclusion take effort?
o L1 block size '= L2 block size
o Prefetching into any cache level

o When a block is inserted into any level, ensure it is not in any
other

23

