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Readings 
  Required: 

  Hennessy and Patterson, Appendix C.2 and C.3 
  Jouppi, “Improving Direct-Mapped Cache Performance by the 

Addition of a Small Fully-Associative Cache and Prefetch 
Buffers,” ISCA 1990. 

  Qureshi et al., “A Case for MLP-Aware Cache Replacement,“ 
ISCA 2006. 

  Recommended: 
  Wilkes, “Slave Memories and Dynamic Storage Allocation,” 

IEEE Trans. On Electronic Computers, 1965. 
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Memory Latency 
  We would like to have small CPI (cycles per instruction) 
  But it takes 100s of CPU cycles to access main memory 
  How do we bridge the gap? 

  Put all data into registers? 
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Why Not A Lot of Registers? 
  Have a large number of architectural registers 

  Increases access time of register file 
  Cannot make memories large and fast 

  Increases bits used in instruction format for register ID 
  1024 registers in a 3-address machine  30 bits to specify IDs 

  Multi-level register files 
  CRAY-1 had this 
  A small, fast register file connected to a large, slower file 
  Movement between files/memory explicitly managed by code 
  Explicit management not simple 

  Not easy to figure out which data is 
     frequently used 

  Cache: automatic management of data 
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Memory Hierarchy 
  Fundamental tradeoff 

  Fast memory: small 
  Large memory: slow 

  Idea: Memory hierarchy 

  Latency, cost, size,  
    bandwidth 
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Caching in a Pipelined Design 
  The cache needs to be tightly integrated into the pipeline  

  Ideally, access in 1-cycle so that dependent operations do not 
stall 

  High frequency pipeline  Cannot make the cache large 
  But, we want a large cache AND a pipelined design 

  Idea: Cache hierarchy 
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Caching Basics: Temporal Locality 
  Idea: Store recently accessed data in automatically 

managed fast memory (called cache) 
  Anticipation: the data will be accessed again soon 

  Temporal locality principle 
  Recently accessed data will be again accessed in the near 

future 
  This is what Maurice Wilkes had in mind: 

  Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE 
Trans. On Electronic Computers, 1965. 

  “The use is discussed of a fast core memory of, say 32000 words 
as a slave to a slower core memory of, say, one million words in 
such a way that in practical cases the effective access time is 
nearer that of the fast memory than that of the slow memory.” 
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Caching Basics: Spatial Locality 
  Idea: Store addresses adjacent to the recently accessed 

one in automatically managed fast memory 
  Logically divide memory into equal size blocks 
  Fetch to cache the accessed block in its entirety 

  Anticipation: nearby data will be accessed soon 

  Spatial locality principle 
  Nearby data in memory will be accessed in the near future 

  E.g., sequential instruction access, array traversal 

  This is what IBM 360/85 implemented 
  16 Kbyte cache with 64 byte blocks 
  Liptay, “Structural aspects of the System/360 Model 85 II: the 

cache,” IBM Systems Journal, 1968. 
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The Bookshelf Analogy 
  Book in your hand 
  Desk 
  Bookshelf 
  Boxes at home 
  Boxes in storage 

  Recently-used books tend to stay on desk 
  Comp Arch books, books for classes you are currently taking 
  Until the desk gets full 

  Adjacent books in the shelf needed around the same time 
  If I have organized/categorized my books well in the shelf 
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Caching Basics 
  When data referenced 

  HIT: If in cache, use cached data instead of accessing memory 
  MISS: If not in cache, bring into cache 

  Maybe have to kick something else out to do it 

  Important decisions 
  Placement: where and how to place/find a block in cache? 
  Replacement: what data to remove to make room in cache? 
  Write policy: what do we do about writes? 
  Instructions/data 

  Block (line): Unit of storage in the cache 
  IBM vs. DEC terminology 
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Cache Abstraction and Metrics 

  Cache hit rate = (# hits) / (# hits + # misses) = (# hits) / (# accesses) 
  Average memory access time (AMAT) 

 = ( hit-rate * hit-latency ) + ( miss-rate * miss-latency ) 
  Aside: Can reducing AMAT reduce performance? 
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Placement and Access 
  Assume byte-addressable memory:           

256 bytes, 8-byte blocks  32 blocks 
  Assume cache: 64 bytes, 8 blocks 

  Direct-mapped: A block can only go to one location 

  Addresses with same index contend for the same location 
  Cause conflict misses 
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Set Associativity 
  Addresses 0 and 8 always conflict in direct mapped cache 
  Instead of having one column of 8, have 2 columns of 4 blocks 
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Higher Associativity 
  4-way 

-- More tag comparators and wider data mux; larger tags 
+ Likelihood of conflict misses even lower 
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Full Associativity 
  Fully associative cache 

  A block can be placed in any cache location 
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Associativity 
  How many blocks can map to the same index (or set)? 

  Larger associativity 
  lower miss rate, less variation among programs 
  diminishing returns 

  Smaller associativity 
  lower cost 
  faster hit time 

  Especially important for L1 caches 
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Set-Associative Caches  (I) 
  Diminishing returns in hit rate from higher associativity 
  Longer access time with higher associativity 
  Which block in the set to replace on a cache miss? 

  Any invalid block first 
  If all are valid, consult the replacement policy 

  Random 
  FIFO 
  Least recently used (how to implement?) 
  Not most recently used 
  Least frequently used? 
  Least costly to re-fetch? 

  Why would memory accesses have different cost? 

  Hybrid replacement policies 
  Optimal replacement policy?  
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Replacement Policy 
  LRU vs. Random 

  Set thrashing: When the “program working set” in a set is 
larger than set associativity 

  4-way: Cyclic references to A, B, C, D, E  
  0% hit rate with LRU policy 

  Random replacement policy is better when thrashing occurs 

  In practice: 
  Depends on workload 
  Average hit rate of LRU and Random are similar 

  Hybrid of LRU and Random 
  How to choose between the two? Set sampling 

  See Qureshi et al., “A Case for MLP-Aware Cache Replacement,“ 
ISCA 2006. 
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Set-Associative Caches (II) 
  Belady’s OPT 

  Replace the block that is going to be referenced furthest in the 
future by the program 

  Belady, “A study of replacement algorithms for a virtual-
storage computer,” IBM Systems Journal, 1966. 

  How do we implement this? Simulate? 

  Is this optimal for minimizing miss rate? 
  Is this optimal for minimizing execution time? 

  No. Cache miss latency/cost varies from block to block! 
  Two reasons: Remote vs. local caches and miss overlapping 
  Qureshi et al. “A Case for MLP-Aware Cache Replacement,“ 

ISCA 2006. 
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Handling Writes (Stores) 
  When do we write the modified data in a cache to the next level? 

  Write through: At the time the write happens 
  Write back: When the block is evicted 

  Write-back 
-- Need a bit in the tag store indicating the block is “modified” 
+ Can consolidate multiple writes to the same block before eviction 

  Potentially saves bandwidth between cache levels + saves energy 

  Write-through 
+ Simpler 
+ All levels are up to date. Consistency: Simpler cache coherence 

because no need to check lower-level caches 
-- More bandwidth intensive 
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Handling Writes (Stores) 
  Do we allocate a cache block on a write miss? 

  Allocate on write miss: Yes 
  No-allocate on write miss: No 

  Allocate on write miss 
+ Can consolidate writes instead of writing each of them 

individually to next level 
-- Requires (?) transfer of the whole cache block 
+ Simpler because write misses can be treated the same way as 

read misses 

  No-allocate 
+ Conserves cache space if locality of writes is low 
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Inclusion vs. Exclusion 
  Inclusive caches 

  Every block existing in the first level also exists in the next level 
  When fetching a block, place it in all cache levels. Tradeoffs: 

-- Leads to duplication of data in the hierarchy: less efficient 
-- Maintaining inclusion takes effort (forced evictions) 
+ But makes cache coherence in multiprocessors easier 

  Need to track other processors’ accesses only in the highest-level cache 

  Exclusive caches 
  The blocks contained in cache levels are mutually exclusive 
  When evicting a block, do you write it back to the next level? 
+ More efficient utilization of cache space 
+ (Potentially) More flexibility in replacement/placement 
-- More blocks/levels to keep track of to ensure cache coherence; takes effort 

  Non-inclusive caches 
  No guarantees for inclusion or exclusion: simpler design 
  Most Intel processors 

22 



Maintaining Inclusion and Exclusion 
  When does maintaining inclusion take effort? 

  L1 block size < L2 block size 
  L1 associativity > L2 associativity 
  Prefetching into L2 
  When a block is evicted from L2, need to evict all corresponding 

subblocks from L1  keep 1 bit per subblock in L2 
  When a block is inserted, make sure all higher levels also have it 

  When does maintaining exclusion take effort? 
  L1 block size != L2 block size 
  Prefetching into any cache level 
  When a block is inserted into any level, ensure it is not in any 

other 
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