
18-740 Fall 2010
Computer Architecture

Lecture 6: Caching Basics

Prof. Onur Mutlu
Carnegie Mellon University

Readings
  Required:

  Hennessy and Patterson, Appendix C.2 and C.3
  Jouppi, “Improving Direct-Mapped Cache Performance by the

Addition of a Small Fully-Associative Cache and Prefetch
Buffers,” ISCA 1990.

  Qureshi et al., “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.

  Recommended:
  Wilkes, “Slave Memories and Dynamic Storage Allocation,”

IEEE Trans. On Electronic Computers, 1965.

2

Memory Latency
  We would like to have small CPI (cycles per instruction)
  But it takes 100s of CPU cycles to access main memory
  How do we bridge the gap?

  Put all data into registers?

3

CPU
Main

Memory
(DRAM) RF

Why Not A Lot of Registers?
  Have a large number of architectural registers

  Increases access time of register file
  Cannot make memories large and fast

  Increases bits used in instruction format for register ID
  1024 registers in a 3-address machine 30 bits to specify IDs

  Multi-level register files
  CRAY-1 had this
  A small, fast register file connected to a large, slower file
  Movement between files/memory explicitly managed by code
  Explicit management not simple

  Not easy to figure out which data is
 frequently used

  Cache: automatic management of data

4

Memory Hierarchy
  Fundamental tradeoff

  Fast memory: small
  Large memory: slow

  Idea: Memory hierarchy

  Latency, cost, size,
 bandwidth

5

CPU
Main

Memory
(DRAM) RF

Cache

Hard Disk

Caching in a Pipelined Design
  The cache needs to be tightly integrated into the pipeline

  Ideally, access in 1-cycle so that dependent operations do not
stall

  High frequency pipeline Cannot make the cache large
  But, we want a large cache AND a pipelined design

  Idea: Cache hierarchy

6

CPU

Main
Memory
(DRAM)

RF
Level1
Cache

Level 2
Cache

Caching Basics: Temporal Locality
  Idea: Store recently accessed data in automatically

managed fast memory (called cache)
  Anticipation: the data will be accessed again soon

  Temporal locality principle
  Recently accessed data will be again accessed in the near

future
  This is what Maurice Wilkes had in mind:

  Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE
Trans. On Electronic Computers, 1965.

  “The use is discussed of a fast core memory of, say 32000 words
as a slave to a slower core memory of, say, one million words in
such a way that in practical cases the effective access time is
nearer that of the fast memory than that of the slow memory.”

7

Caching Basics: Spatial Locality
  Idea: Store addresses adjacent to the recently accessed

one in automatically managed fast memory
  Logically divide memory into equal size blocks
  Fetch to cache the accessed block in its entirety

  Anticipation: nearby data will be accessed soon

  Spatial locality principle
  Nearby data in memory will be accessed in the near future

  E.g., sequential instruction access, array traversal

  This is what IBM 360/85 implemented
  16 Kbyte cache with 64 byte blocks
  Liptay, “Structural aspects of the System/360 Model 85 II: the

cache,” IBM Systems Journal, 1968.

8

The Bookshelf Analogy
  Book in your hand
  Desk
  Bookshelf
  Boxes at home
  Boxes in storage

  Recently-used books tend to stay on desk
  Comp Arch books, books for classes you are currently taking
  Until the desk gets full

  Adjacent books in the shelf needed around the same time
  If I have organized/categorized my books well in the shelf

9

Caching Basics
  When data referenced

  HIT: If in cache, use cached data instead of accessing memory
  MISS: If not in cache, bring into cache

  Maybe have to kick something else out to do it

  Important decisions
  Placement: where and how to place/find a block in cache?
  Replacement: what data to remove to make room in cache?
  Write policy: what do we do about writes?
  Instructions/data

  Block (line): Unit of storage in the cache
  IBM vs. DEC terminology

10

Cache Abstraction and Metrics

  Cache hit rate = (# hits) / (# hits + # misses) = (# hits) / (# accesses)
  Average memory access time (AMAT)

 = (hit-rate * hit-latency) + (miss-rate * miss-latency)
  Aside: Can reducing AMAT reduce performance?

11

Address
Tag Store

(is the address
in the cache?)

Data Store

Hit/miss? Data

Placement and Access
  Assume byte-addressable memory:

256 bytes, 8-byte blocks 32 blocks
  Assume cache: 64 bytes, 8 blocks

  Direct-mapped: A block can only go to one location

  Addresses with same index contend for the same location
  Cause conflict misses

12

Tag store Data store

Address

tag index byte in block

3 bits 3 bits 2b

V tag

=? MUX
byte in block

Hit? Data

Set Associativity
  Addresses 0 and 8 always conflict in direct mapped cache
  Instead of having one column of 8, have 2 columns of 4 blocks

13

Tag store Data store

V tag

=?

V tag

=?

Address
tag index byte in block

3 bits 2 bits 3b

Logic

MUX

MUX
byte in block

Associative memory within the set
-- More complex, slower access, larger tag store
+ Accommodates conflicts better (fewer conflict misses)

SET

Hit?

Higher Associativity
  4-way

-- More tag comparators and wider data mux; larger tags
+ Likelihood of conflict misses even lower

14

Tag store

Data store

=? =? =? =?

MUX

MUX
byte in block

Logic Hit?

Full Associativity
  Fully associative cache

  A block can be placed in any cache location

15

Tag store

Data store

=? =? =? =? =? =? =? =?

MUX

MUX
byte in block

Logic

Hit?

Associativity
  How many blocks can map to the same index (or set)?

  Larger associativity
  lower miss rate, less variation among programs
  diminishing returns

  Smaller associativity
  lower cost
  faster hit time

  Especially important for L1 caches

16

associativity

hit rate

Set-Associative Caches (I)
  Diminishing returns in hit rate from higher associativity
  Longer access time with higher associativity
  Which block in the set to replace on a cache miss?

  Any invalid block first
  If all are valid, consult the replacement policy

  Random
  FIFO
  Least recently used (how to implement?)
  Not most recently used
  Least frequently used?
  Least costly to re-fetch?

  Why would memory accesses have different cost?

  Hybrid replacement policies
  Optimal replacement policy?

17

Replacement Policy
  LRU vs. Random

  Set thrashing: When the “program working set” in a set is
larger than set associativity

  4-way: Cyclic references to A, B, C, D, E
  0% hit rate with LRU policy

  Random replacement policy is better when thrashing occurs

  In practice:
  Depends on workload
  Average hit rate of LRU and Random are similar

  Hybrid of LRU and Random
  How to choose between the two? Set sampling

  See Qureshi et al., “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.

18

Set-Associative Caches (II)
  Belady’s OPT

  Replace the block that is going to be referenced furthest in the
future by the program

  Belady, “A study of replacement algorithms for a virtual-
storage computer,” IBM Systems Journal, 1966.

  How do we implement this? Simulate?

  Is this optimal for minimizing miss rate?
  Is this optimal for minimizing execution time?

  No. Cache miss latency/cost varies from block to block!
  Two reasons: Remote vs. local caches and miss overlapping
  Qureshi et al. “A Case for MLP-Aware Cache Replacement,“

ISCA 2006.

19

Handling Writes (Stores)
  When do we write the modified data in a cache to the next level?

  Write through: At the time the write happens
  Write back: When the block is evicted

  Write-back
-- Need a bit in the tag store indicating the block is “modified”
+ Can consolidate multiple writes to the same block before eviction

  Potentially saves bandwidth between cache levels + saves energy

  Write-through
+ Simpler
+ All levels are up to date. Consistency: Simpler cache coherence

because no need to check lower-level caches
-- More bandwidth intensive

20

Handling Writes (Stores)
  Do we allocate a cache block on a write miss?

  Allocate on write miss: Yes
  No-allocate on write miss: No

  Allocate on write miss
+ Can consolidate writes instead of writing each of them

individually to next level
-- Requires (?) transfer of the whole cache block
+ Simpler because write misses can be treated the same way as

read misses

  No-allocate
+ Conserves cache space if locality of writes is low

21

Inclusion vs. Exclusion
  Inclusive caches

  Every block existing in the first level also exists in the next level
  When fetching a block, place it in all cache levels. Tradeoffs:

-- Leads to duplication of data in the hierarchy: less efficient
-- Maintaining inclusion takes effort (forced evictions)
+ But makes cache coherence in multiprocessors easier

  Need to track other processors’ accesses only in the highest-level cache

  Exclusive caches
  The blocks contained in cache levels are mutually exclusive
  When evicting a block, do you write it back to the next level?
+ More efficient utilization of cache space
+ (Potentially) More flexibility in replacement/placement
-- More blocks/levels to keep track of to ensure cache coherence; takes effort

  Non-inclusive caches
  No guarantees for inclusion or exclusion: simpler design
  Most Intel processors

22

Maintaining Inclusion and Exclusion
  When does maintaining inclusion take effort?

  L1 block size < L2 block size
  L1 associativity > L2 associativity
  Prefetching into L2
  When a block is evicted from L2, need to evict all corresponding

subblocks from L1 keep 1 bit per subblock in L2
  When a block is inserted, make sure all higher levels also have it

  When does maintaining exclusion take effort?
  L1 block size != L2 block size
  Prefetching into any cache level
  When a block is inserted into any level, ensure it is not in any

other

23

