
18-740 Fall 2010
Computer Architecture

Lecture 6: Caching Basics

Prof. Onur Mutlu
Carnegie Mellon University

Readings
  Required:

  Hennessy and Patterson, Appendix C.2 and C.3
  Jouppi, “Improving Direct-Mapped Cache Performance by the

Addition of a Small Fully-Associative Cache and Prefetch
Buffers,” ISCA 1990.

  Qureshi et al., “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.

  Recommended:
  Wilkes, “Slave Memories and Dynamic Storage Allocation,”

IEEE Trans. On Electronic Computers, 1965.

2

Memory Latency
  We would like to have small CPI (cycles per instruction)
  But it takes 100s of CPU cycles to access main memory
  How do we bridge the gap?

  Put all data into registers?

3

CPU
Main

Memory
(DRAM) RF

Why Not A Lot of Registers?
  Have a large number of architectural registers

  Increases access time of register file
  Cannot make memories large and fast

  Increases bits used in instruction format for register ID
  1024 registers in a 3-address machine  30 bits to specify IDs

  Multi-level register files
  CRAY-1 had this
  A small, fast register file connected to a large, slower file
  Movement between files/memory explicitly managed by code
  Explicit management not simple

  Not easy to figure out which data is
 frequently used

  Cache: automatic management of data

4

Memory Hierarchy
  Fundamental tradeoff

  Fast memory: small
  Large memory: slow

  Idea: Memory hierarchy

  Latency, cost, size,
 bandwidth

5

CPU
Main

Memory
(DRAM) RF

Cache

Hard Disk

Caching in a Pipelined Design
  The cache needs to be tightly integrated into the pipeline

  Ideally, access in 1-cycle so that dependent operations do not
stall

  High frequency pipeline  Cannot make the cache large
  But, we want a large cache AND a pipelined design

  Idea: Cache hierarchy

6

CPU

Main
Memory
(DRAM)

RF
Level1
Cache

Level 2
Cache

Caching Basics: Temporal Locality
  Idea: Store recently accessed data in automatically

managed fast memory (called cache)
  Anticipation: the data will be accessed again soon

  Temporal locality principle
  Recently accessed data will be again accessed in the near

future
  This is what Maurice Wilkes had in mind:

  Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE
Trans. On Electronic Computers, 1965.

  “The use is discussed of a fast core memory of, say 32000 words
as a slave to a slower core memory of, say, one million words in
such a way that in practical cases the effective access time is
nearer that of the fast memory than that of the slow memory.”

7

Caching Basics: Spatial Locality
  Idea: Store addresses adjacent to the recently accessed

one in automatically managed fast memory
  Logically divide memory into equal size blocks
  Fetch to cache the accessed block in its entirety

  Anticipation: nearby data will be accessed soon

  Spatial locality principle
  Nearby data in memory will be accessed in the near future

  E.g., sequential instruction access, array traversal

  This is what IBM 360/85 implemented
  16 Kbyte cache with 64 byte blocks
  Liptay, “Structural aspects of the System/360 Model 85 II: the

cache,” IBM Systems Journal, 1968.

8

The Bookshelf Analogy
  Book in your hand
  Desk
  Bookshelf
  Boxes at home
  Boxes in storage

  Recently-used books tend to stay on desk
  Comp Arch books, books for classes you are currently taking
  Until the desk gets full

  Adjacent books in the shelf needed around the same time
  If I have organized/categorized my books well in the shelf

9

Caching Basics
  When data referenced

  HIT: If in cache, use cached data instead of accessing memory
  MISS: If not in cache, bring into cache

  Maybe have to kick something else out to do it

  Important decisions
  Placement: where and how to place/find a block in cache?
  Replacement: what data to remove to make room in cache?
  Write policy: what do we do about writes?
  Instructions/data

  Block (line): Unit of storage in the cache
  IBM vs. DEC terminology

10

Cache Abstraction and Metrics

  Cache hit rate = (# hits) / (# hits + # misses) = (# hits) / (# accesses)
  Average memory access time (AMAT)

 = (hit-rate * hit-latency) + (miss-rate * miss-latency)
  Aside: Can reducing AMAT reduce performance?

11

Address
Tag Store

(is the address
in the cache?)

Data Store

Hit/miss? Data

Placement and Access
  Assume byte-addressable memory:

256 bytes, 8-byte blocks  32 blocks
  Assume cache: 64 bytes, 8 blocks

  Direct-mapped: A block can only go to one location

  Addresses with same index contend for the same location
  Cause conflict misses

12

Tag store Data store

Address

tag index byte in block

3 bits 3 bits 2b

V tag

=? MUX
byte in block

Hit? Data

Set Associativity
  Addresses 0 and 8 always conflict in direct mapped cache
  Instead of having one column of 8, have 2 columns of 4 blocks

13

Tag store Data store

V tag

=?

V tag

=?

Address
tag index byte in block

3 bits 2 bits 3b

Logic

MUX

MUX
byte in block

Associative memory within the set
-- More complex, slower access, larger tag store
+ Accommodates conflicts better (fewer conflict misses)

SET

Hit?

Higher Associativity
  4-way

-- More tag comparators and wider data mux; larger tags
+ Likelihood of conflict misses even lower

14

Tag store

Data store

=? =? =? =?

MUX

MUX
byte in block

Logic Hit?

Full Associativity
  Fully associative cache

  A block can be placed in any cache location

15

Tag store

Data store

=? =? =? =? =? =? =? =?

MUX

MUX
byte in block

Logic

Hit?

Associativity
  How many blocks can map to the same index (or set)?

  Larger associativity
  lower miss rate, less variation among programs
  diminishing returns

  Smaller associativity
  lower cost
  faster hit time

  Especially important for L1 caches

16

associativity

hit rate

Set-Associative Caches (I)
  Diminishing returns in hit rate from higher associativity
  Longer access time with higher associativity
  Which block in the set to replace on a cache miss?

  Any invalid block first
  If all are valid, consult the replacement policy

  Random
  FIFO
  Least recently used (how to implement?)
  Not most recently used
  Least frequently used?
  Least costly to re-fetch?

  Why would memory accesses have different cost?

  Hybrid replacement policies
  Optimal replacement policy?

17

Replacement Policy
  LRU vs. Random

  Set thrashing: When the “program working set” in a set is
larger than set associativity

  4-way: Cyclic references to A, B, C, D, E
  0% hit rate with LRU policy

  Random replacement policy is better when thrashing occurs

  In practice:
  Depends on workload
  Average hit rate of LRU and Random are similar

  Hybrid of LRU and Random
  How to choose between the two? Set sampling

  See Qureshi et al., “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.

18

Set-Associative Caches (II)
  Belady’s OPT

  Replace the block that is going to be referenced furthest in the
future by the program

  Belady, “A study of replacement algorithms for a virtual-
storage computer,” IBM Systems Journal, 1966.

  How do we implement this? Simulate?

  Is this optimal for minimizing miss rate?
  Is this optimal for minimizing execution time?

  No. Cache miss latency/cost varies from block to block!
  Two reasons: Remote vs. local caches and miss overlapping
  Qureshi et al. “A Case for MLP-Aware Cache Replacement,“

ISCA 2006.

19

Handling Writes (Stores)
  When do we write the modified data in a cache to the next level?

  Write through: At the time the write happens
  Write back: When the block is evicted

  Write-back
-- Need a bit in the tag store indicating the block is “modified”
+ Can consolidate multiple writes to the same block before eviction

  Potentially saves bandwidth between cache levels + saves energy

  Write-through
+ Simpler
+ All levels are up to date. Consistency: Simpler cache coherence

because no need to check lower-level caches
-- More bandwidth intensive

20

Handling Writes (Stores)
  Do we allocate a cache block on a write miss?

  Allocate on write miss: Yes
  No-allocate on write miss: No

  Allocate on write miss
+ Can consolidate writes instead of writing each of them

individually to next level
-- Requires (?) transfer of the whole cache block
+ Simpler because write misses can be treated the same way as

read misses

  No-allocate
+ Conserves cache space if locality of writes is low

21

Inclusion vs. Exclusion
  Inclusive caches

  Every block existing in the first level also exists in the next level
  When fetching a block, place it in all cache levels. Tradeoffs:

-- Leads to duplication of data in the hierarchy: less efficient
-- Maintaining inclusion takes effort (forced evictions)
+ But makes cache coherence in multiprocessors easier

  Need to track other processors’ accesses only in the highest-level cache

  Exclusive caches
  The blocks contained in cache levels are mutually exclusive
  When evicting a block, do you write it back to the next level?
+ More efficient utilization of cache space
+ (Potentially) More flexibility in replacement/placement
-- More blocks/levels to keep track of to ensure cache coherence; takes effort

  Non-inclusive caches
  No guarantees for inclusion or exclusion: simpler design
  Most Intel processors

22

Maintaining Inclusion and Exclusion
  When does maintaining inclusion take effort?

  L1 block size < L2 block size
  L1 associativity > L2 associativity
  Prefetching into L2
  When a block is evicted from L2, need to evict all corresponding

subblocks from L1  keep 1 bit per subblock in L2
  When a block is inserted, make sure all higher levels also have it

  When does maintaining exclusion take effort?
  L1 block size != L2 block size
  Prefetching into any cache level
  When a block is inserted into any level, ensure it is not in any

other

23

