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Readings
General introduction and basic concepts

Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec. 1995.
Hennessy and Patterson, Sections 2.1-2.10 (inclusive).

Modern designs
Stark, Brown, Patt, “On pipelining dynamic instruction scheduling logic,” MICRO 2000.
Boggs et al., “The microarchitecture of the Pentium 4 processor,” Intel Technology Journal, 
2001.
Kessler, “The Alpha 21264 microprocessor,” IEEE Micro, March-April 1999.

Yeager, “The MIPS R10000 Superscalar Microprocessor,” IEEE Micro, April 1996.

Seminal papers
Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale and introduction,” MICRO 
1985.
Patt et al., “Critical issues regarding HPS, a high performance microarchitecture,” MICRO 
1985.
Anderson, Sparacio, Tomasulo, “The IBM System/360 Model 91: Machine Philosophy and 
Instruction Handling,” IBM Journal of R&D, Jan. 1967.
Tomasulo, “An Efficient Algorithm for Exploiting Multiple Arithmetic Units,” IBM Journal of 
R&D, Jan. 1967.
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Reviews Due
Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proc. IEEE, Dec. 1995.
Stark, Brown, Patt, “On pipelining dynamic instruction scheduling 
logic,” MICRO 2000.

Due September 30
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Last Time …
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Branch mispredictions
Out-of-order execution

Register renaming
Tomasulo’s algorithm



Today and the Next Related Lectures
Exploiting Instruction Level Parallelism (ILP)

More in-depth out-of-order execution

Superscalar processing

Better instruction supply and control flow handling
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Tomasulo’s Machine: IBM 360/91
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Tomasulo’s Algorithm
If reservation station available before renaming

Instruction + renamed operands (source value/tag) inserted into the 
reservation station
Only rename if reservation station is available

Else stall
While in reservation station, each instruction:

Watches common data bus (CDB) for tag of its sources
When tag seen, grab value for the source and keep it in the reservation station
When both operands available, instruction ready to be dispatched

Dispatch instruction to the Functional Unit when instruction is ready
After instruction finishes in the Functional Unit

Arbitrate for CDB
Put tagged value onto CDB (tag broadcast)
Register file is connected to the CDB

Register contains a tag indicating the latest writer to the register
If the tag in the register file matches the broadcast tag, write broadcast value 
into register (and set valid bit)

Reclaim rename tag
no valid copy of tag in system!
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Register Renaming and OoO Execution
Architectural registers dynamically renamed

Mapped to reservation stations
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In-order vs. Out-of-order Dispatch
In order dispatch:

Tomasulo:

16 vs. 12 cycles
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An Exercise

Assume ADD (4 cycle execute), MUL (6 cycle execute)
Assume one adder and one multiplier
How many cycles

in a non-pipelined machine
in an in-order-dispatch pipelined machine with future file and 
reorder buffer
in an out-of-order dispatch pipelined machine with future file 
and reorder buffer
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MUL   R3 R1, R2
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Summary of OOO Execution Concepts
Renaming eliminates false dependencies

Tag broadcast enables value communication between 
instructions dataflow

An out-of-order engine dynamically builds the dataflow 
graph of a piece of the program

which piece?
Limited to the instruction window

Can we do it for the whole program? Why would we like to?
How can we have a large instruction window efficiently?
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Some Implementation Issues
Back to back dispatch of dependent operations

When should the tag be broadcast?

Is it a good idea to have the reservation stations also be 
the reorder buffer?
Is it a good idea to have values in the register alias table?
Is it a good idea to store values in reservation stations?
Is it a good idea to have a single, centralized reservation 
stations for all FUs?

Idea: Decoupling different buffers
Many modern processors decouple these buffers
Many have distributed reservation stations across FUs
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Buffer Decoupling in Pentium Pro
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Buffer Decoupling in Pentium 4
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Pentium Pro vs. Pentium 4

15
Pointers to architectural 
register values



Required/Recommended Reading
Hinton et al., “The Microarchitecture of the Pentium 4 
Processor,” Intel Technology Journal, 2001.

Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, 
March-April 1999.

Yeager, “The MIPS R10000 Superscalar Microprocessor,”
IEEE Micro, April 1996.

Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proc. IEEE, Dec. 1995.
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Buffer-Decoupled OoO Designs
Register Alias Table contains only tags and valid bits

Tag is a pointer to the physical register containing the value

During renaming, instruction allocates entries in different 
buffers (as needed):

Reorder buffer
Physical register file
Reservation stations (centralized vs. distributed)
Store/load buffer

Tradeoffs? 
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Physical Register Files
Register values stored only in physical register files 
(architectural register state is part of this file), e.g. Pentium 4

+ Smaller physical register file than ROB: Not all instructions write to 
registers more area efficient

+ No duplication of data values in reservation stations, arch register 
file, reorder buffer, rename table (space efficient)

+ Only one write and read path for register data values (simpler 
control for register read and writes)

-- Accessing register state always requires indirection (higher latency)
- Instructions with ready operands need to access register file
- Copying architectural register state takes time
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Physical Register Files in Pentium 4

Hinton et al., “The Microarchitecture of the Pentium 4 Processor,” Intel Technology Journal, 2001.
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Physical Register Files in Alpha 21264 

Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.
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Alpha 21264 Pipelines
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Source: Microprocessor Report, 10/28/96



Centralized Reservation Stations (Pentium Pro)
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Distributed Reservation Stations
Many processors: PowerPC 604, Pentium 4
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Centralized vs. Distributed Reservation Stations
Centralized (monolithic):
+ Reservation stations not statically partitioned (can adapt to changes in 

instruction mix, e.g., 100% adds)
-- All entries need to have all fields even though some fields might not be 

needed for some instructions (e.g. branches, stores, etc)
-- Number of ports = issue width
-- More complex control and routing logic

Distributed:
+ Each RS can be specialized to the functional unit it serves (more area 

efficient)
+ Number of ports can be 1 (RS per functional unit)
+ Simpler control and routing logic 
-- Other RS’s cannot be used if one functional unit’s RS is full (static 

partitioning)
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Issues in Scheduling Logic (I)
What if multiple instructions become ready in the same 
cycle?

Why does this happen?
An instruction with multiple dependents
Multiple instructions can complete in the same cycle

Which one to schedule?
Oldest
Random
Most dependents first
Most critical first (longest latency dependency chain)

Does not matter for performance unless the active window is very large
Butler and Patt, “An Investigation of the Performance of Various Dynamic 
Scheduling Techniques,” MICRO 1992.
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Issues in Scheduling Logic (II)
When to schedule the dependents of a multi-cycle execute 
instruction?

One cycle before the completion of the instruction
Example: IMUL, Pentium 4, 3-cycle ADD

When to schedule the dependents of a variable-latency 
execute instruction?

A load can hit or miss in the data cache
Option 1: Schedule dependents assuming load will hit
Option 2: Schedule dependents assuming load will miss

When do we take out an instruction from a reservation 
station?
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Scheduling of Load Dependents
Assume load will hit
+ No delay for dependents (load hit is the common case)
-- Need to squash and re-schedule if load actually misses 

Assume load will miss (i.e. schedule when load data ready)
+ No need to re-schedule (simpler logic)
-- Significant delay for load dependents if load hits

Predict load hit/miss
+ No delay for dependents on accurate prediction
-- Need to predict and re-schedule on misprediction

Yoaz et al., “Speculation Techniques for Improving Load Related 
Instruction Scheduling,” ISCA 1999.
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What to Do with Dependents on a Load Miss? (I)

A load miss can take hundreds of cycles
If there are many dependent instructions on a load miss, 
these can clog the scheduling window
Independent instructions cannot be allocated reservation 
stations and scheduling can stall
How to avoid this?

Idea: Move miss-dependent instructions into a separate 
buffer

Example: Pentium 4’s “scheduling loops”
Lebeck et al., “A Large, Fast Instruction Window for Tolerating 
Cache Misses,” ISCA 2002.
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What to Do with Dependents on a Load Miss? (II)

But, dependents still hold on to the physical registers
Cannot scale the size of the register file indefinitely since it is on the 
critical path
Possible solution: Deallocate physical registers of dependents

Difficult to re-allocate. See Srinivasan et al, “Continual Flow Pipelines,”
ASPLOS 2004.
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Questions
Why is OoO execution beneficial?

What if all operations take single cycle?
Latency tolerance: OoO execution tolerates the latency of 
multi-cycle operations by executing independent operations 
concurrently

What if the first IMUL was a cache-miss LD?
If it took 500 cycles, how large of a scheduling window do we 
need to continue decoding?
How many cycles of latency can OoO tolerate?
What limits the latency tolerance scalability of Tomasulo’s 
algorithm?

Active/instruction window size: determined by register file, 
scheduling window, reorder buffer, store buffer, load buffer
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