
15-740/18-740
Computer Architecture

Lecture 8: Issues in Out-of-order Execution

Prof. Onur Mutlu
Carnegie Mellon University

Readings
General introduction and basic concepts

Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec. 1995.
Hennessy and Patterson, Sections 2.1-2.10 (inclusive).

Modern designs
Stark, Brown, Patt, “On pipelining dynamic instruction scheduling logic,” MICRO 2000.
Boggs et al., “The microarchitecture of the Pentium 4 processor,” Intel Technology Journal,
2001.
Kessler, “The Alpha 21264 microprocessor,” IEEE Micro, March-April 1999.

Yeager, “The MIPS R10000 Superscalar Microprocessor,” IEEE Micro, April 1996.

Seminal papers
Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale and introduction,” MICRO
1985.
Patt et al., “Critical issues regarding HPS, a high performance microarchitecture,” MICRO
1985.
Anderson, Sparacio, Tomasulo, “The IBM System/360 Model 91: Machine Philosophy and
Instruction Handling,” IBM Journal of R&D, Jan. 1967.
Tomasulo, “An Efficient Algorithm for Exploiting Multiple Arithmetic Units,” IBM Journal of
R&D, Jan. 1967.

2

Reviews Due
Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proc. IEEE, Dec. 1995.
Stark, Brown, Patt, “On pipelining dynamic instruction scheduling
logic,” MICRO 2000.

Due September 30

3

Last Time …

4

Branch mispredictions
Out-of-order execution

Register renaming
Tomasulo’s algorithm

Today and the Next Related Lectures
Exploiting Instruction Level Parallelism (ILP)

More in-depth out-of-order execution

Superscalar processing

Better instruction supply and control flow handling

5

Tomasulo’s Machine: IBM 360/91

6

FP FU FP FU

from memory

load
buffers

from instruction unit
FP registers

store buffers

to memory

operation bus

reservation
stations

Common data bus

Tomasulo’s Algorithm
If reservation station available before renaming

Instruction + renamed operands (source value/tag) inserted into the
reservation station
Only rename if reservation station is available

Else stall
While in reservation station, each instruction:

Watches common data bus (CDB) for tag of its sources
When tag seen, grab value for the source and keep it in the reservation station
When both operands available, instruction ready to be dispatched

Dispatch instruction to the Functional Unit when instruction is ready
After instruction finishes in the Functional Unit

Arbitrate for CDB
Put tagged value onto CDB (tag broadcast)
Register file is connected to the CDB

Register contains a tag indicating the latest writer to the register
If the tag in the register file matches the broadcast tag, write broadcast value
into register (and set valid bit)

Reclaim rename tag
no valid copy of tag in system!

7

Register Renaming and OoO Execution
Architectural registers dynamically renamed

Mapped to reservation stations

8

R0

R1

R2

R3

tag value valid?

R4

R5

R6

R7

R8

R9

1
1

1

1

1

1
1

1
1
1

IMUL R3 R1, R2
ADD R3 R3, R1
ADD R1 R6, R7
IMUL R3 R6, R8
ADD R7 R3, R9

IMUL S0 V1, V2

S0

S1

S2

S3

S4

1 1V1 V2- - mul

-

-

-
-
-

-
-
-

-

-

V0

V1
V2

V3

V4

V5
V6

V7

V8

V9

S0 0

ADD S1 S0, V4

0 1V3 V1S0 - add

Src1 tag Src1 value V? Src2 tag Src2 value V? Ctl

S1

1 1V6 V7- - add

ADD S2 V6, V7S2

1

1

S?

0
IMUL S3 V6, V8

1 1V6 V8- - add

S3

1
BROADCAST S2 and new1V1

1new1V1

ADD S4 S3, V9

Completed --- Wait for Retirement

0 1V3 V9S3 - add

S4 0

BROADCAST S0 and new1V3
1new2V3

Completed --- Wait for Retirement
1BROADCAST S1 and new2V3

Retired --- Entry Deallocated

BROADCAST S3 and new3V3

Completed --- Wait for RetirementRetired --- Entry Deallocated

1new3V3

1new3V3

In-order vs. Out-of-order Dispatch
In order dispatch:

Tomasulo:

16 vs. 12 cycles

9

F D WE E E E R
F D E R W

F

IMUL R3 R1, R2
ADD R3 R3, R1
ADD R1 R6, R7
IMUL R3 R6, R8
ADD R7 R3, R9

D E R W
F D E R W

F D E R W

F D WE E E E R
F D

STALL
STALL

E R W
F D

E E E E
STALL

E R
F D E E E E R W

F D E R W

WAIT

WAIT

W

An Exercise

Assume ADD (4 cycle execute), MUL (6 cycle execute)
Assume one adder and one multiplier
How many cycles

in a non-pipelined machine
in an in-order-dispatch pipelined machine with future file and
reorder buffer
in an out-of-order dispatch pipelined machine with future file
and reorder buffer

10

MUL R3 R1, R2
ADD R5 R3, R4
ADD R7 R2, R6
ADD R10 R8, R9
MUL R11 R7, R10
ADD R5 R5, R11

F D E R W

Summary of OOO Execution Concepts
Renaming eliminates false dependencies

Tag broadcast enables value communication between
instructions dataflow

An out-of-order engine dynamically builds the dataflow
graph of a piece of the program

which piece?
Limited to the instruction window

Can we do it for the whole program? Why would we like to?
How can we have a large instruction window efficiently?

11

Some Implementation Issues
Back to back dispatch of dependent operations

When should the tag be broadcast?

Is it a good idea to have the reservation stations also be
the reorder buffer?
Is it a good idea to have values in the register alias table?
Is it a good idea to store values in reservation stations?
Is it a good idea to have a single, centralized reservation
stations for all FUs?

Idea: Decoupling different buffers
Many modern processors decouple these buffers
Many have distributed reservation stations across FUs

12

Buffer Decoupling in Pentium Pro

13Figure courtesy of Prof. Wen-mei Hwu, University of Illinois

Buffer Decoupling in Pentium 4

14

Pentium Pro vs. Pentium 4

15
Pointers to architectural
register values

Required/Recommended Reading
Hinton et al., “The Microarchitecture of the Pentium 4
Processor,” Intel Technology Journal, 2001.

Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro,
March-April 1999.

Yeager, “The MIPS R10000 Superscalar Microprocessor,”
IEEE Micro, April 1996.

Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proc. IEEE, Dec. 1995.

16

Buffer-Decoupled OoO Designs
Register Alias Table contains only tags and valid bits

Tag is a pointer to the physical register containing the value

During renaming, instruction allocates entries in different
buffers (as needed):

Reorder buffer
Physical register file
Reservation stations (centralized vs. distributed)
Store/load buffer

Tradeoffs?

17

Physical Register Files
Register values stored only in physical register files
(architectural register state is part of this file), e.g. Pentium 4

+ Smaller physical register file than ROB: Not all instructions write to
registers more area efficient

+ No duplication of data values in reservation stations, arch register
file, reorder buffer, rename table (space efficient)

+ Only one write and read path for register data values (simpler
control for register read and writes)

-- Accessing register state always requires indirection (higher latency)
- Instructions with ready operands need to access register file
- Copying architectural register state takes time

18

Physical Register Files in Pentium 4

Hinton et al., “The Microarchitecture of the Pentium 4 Processor,” Intel Technology Journal, 2001.

19

Physical Register Files in Alpha 21264

Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.

20

Alpha 21264 Pipelines

21

Source: Microprocessor Report, 10/28/96

Centralized Reservation Stations (Pentium Pro)

22

IF ID/
Reg

Add

Br

FPU

Mul

LSU

WB
FPU FPU

R
es

er
va

tio
n

St
at

io
ns

Distributed Reservation Stations
Many processors: PowerPC 604, Pentium 4

23

IF ID/
Reg

Add

Br

FPU

Mul

LSU

WB
FPU FPU

Centralized vs. Distributed Reservation Stations
Centralized (monolithic):
+ Reservation stations not statically partitioned (can adapt to changes in

instruction mix, e.g., 100% adds)
-- All entries need to have all fields even though some fields might not be

needed for some instructions (e.g. branches, stores, etc)
-- Number of ports = issue width
-- More complex control and routing logic

Distributed:
+ Each RS can be specialized to the functional unit it serves (more area

efficient)
+ Number of ports can be 1 (RS per functional unit)
+ Simpler control and routing logic
-- Other RS’s cannot be used if one functional unit’s RS is full (static

partitioning)

24

Issues in Scheduling Logic (I)
What if multiple instructions become ready in the same
cycle?

Why does this happen?
An instruction with multiple dependents
Multiple instructions can complete in the same cycle

Which one to schedule?
Oldest
Random
Most dependents first
Most critical first (longest latency dependency chain)

Does not matter for performance unless the active window is very large
Butler and Patt, “An Investigation of the Performance of Various Dynamic
Scheduling Techniques,” MICRO 1992.

25

Issues in Scheduling Logic (II)
When to schedule the dependents of a multi-cycle execute
instruction?

One cycle before the completion of the instruction
Example: IMUL, Pentium 4, 3-cycle ADD

When to schedule the dependents of a variable-latency
execute instruction?

A load can hit or miss in the data cache
Option 1: Schedule dependents assuming load will hit
Option 2: Schedule dependents assuming load will miss

When do we take out an instruction from a reservation
station?

26

Scheduling of Load Dependents
Assume load will hit
+ No delay for dependents (load hit is the common case)
-- Need to squash and re-schedule if load actually misses

Assume load will miss (i.e. schedule when load data ready)
+ No need to re-schedule (simpler logic)
-- Significant delay for load dependents if load hits

Predict load hit/miss
+ No delay for dependents on accurate prediction
-- Need to predict and re-schedule on misprediction

Yoaz et al., “Speculation Techniques for Improving Load Related
Instruction Scheduling,” ISCA 1999.

27

What to Do with Dependents on a Load Miss? (I)

A load miss can take hundreds of cycles
If there are many dependent instructions on a load miss,
these can clog the scheduling window
Independent instructions cannot be allocated reservation
stations and scheduling can stall
How to avoid this?

Idea: Move miss-dependent instructions into a separate
buffer

Example: Pentium 4’s “scheduling loops”
Lebeck et al., “A Large, Fast Instruction Window for Tolerating
Cache Misses,” ISCA 2002.

28

What to Do with Dependents on a Load Miss? (II)

But, dependents still hold on to the physical registers
Cannot scale the size of the register file indefinitely since it is on the
critical path
Possible solution: Deallocate physical registers of dependents

Difficult to re-allocate. See Srinivasan et al, “Continual Flow Pipelines,”
ASPLOS 2004.

29

Questions
Why is OoO execution beneficial?

What if all operations take single cycle?
Latency tolerance: OoO execution tolerates the latency of
multi-cycle operations by executing independent operations
concurrently

What if the first IMUL was a cache-miss LD?
If it took 500 cycles, how large of a scheduling window do we
need to continue decoding?
How many cycles of latency can OoO tolerate?
What limits the latency tolerance scalability of Tomasulo’s
algorithm?

Active/instruction window size: determined by register file,
scheduling window, reorder buffer, store buffer, load buffer

30

