15-740/18-740
Computer Architecture
Lecture 8: Issues in Out-of-order Execution

Prof. Onur Mutlu
Carnegie Mellon University

Readings

General introduction and basic concepts

a

a

Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec. 1995.
Hennessy and Patterson, Sections 2.1-2.10 (inclusive).

Modern designs

a

a

a

a

Stark, Brown, Patt, “On pipelining dynamic instruction scheduling logic,” MICRO 2000.

Boggs et al., “The microarchitecture of the Pentium 4 processor,” Intel Technology Journal,
2001.

Kessler, “The Alpha 21264 microprocessor,” IEEE Micro, March-April 1999.
Yeager, “The MIPS R10000 Superscalar Microprocessor,” IEEE Micro, April 1996.

Seminal papers

a

Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale and introduction,” MICRO
1985.

Patt et al., “Critical issues regarding HPS, a high performance microarchitecture,” MICRO
1985.

Anderson, Sparacio, Tomasulo, “The IBM System/360 Model 91: Machine Philosophy and
Instruction Handling,” IBM Journal of R&D, Jan. 1967.

Tomasulo, “An Efficient Algorithm for Exploiting Multiple Arithmetic Units,” IBM Journal of
R&D, Jan. 1967.

2

Reviews Due

2 Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proc. IEEE, Dec. 1995.

o Stark, Brown, Patt, “On pipelining dynamic instruction scheduling
logic,” MICRO 2000.

o Due September 30

Last Time ...

Branch mispredictions

Out-of-order execution
o Register renaming
o Tomasulo’s algorithm

Today and the Next Related Lectures

Exploiting Instruction Level Parallelism (ILP)

More in-depth out-of-order execution
Superscalar processing

Better instruction supply and control flow handling

Tomasulo’s Machine: IBM 360/91

: : : FP registers
from memory from instruction unit

load l l

buffers

store buffers

operation bus

reservation
stations

|

to memory

Common data bus

Tomasulo’s Algorithm

If reservation station available before renaming

o Instruction + renamed operands (source value/tag) inserted into the
reservation station

o Only rename if reservation station is available
Else stall

While in reservation station, each instruction:

o Watches common data bus (CDB) for tag of its sources

o When tag seen, grab value for the source and keep it in the reservation station
o When both operands available, instruction ready to be dispatched

Dispatch instruction to the Functional Unit when instruction is ready

After instruction finishes in the Functional Unit
o Arbitrate for CDB
o Put tagged value onto CDB (tag broadcast)
o Register file is connected to the CDB
Register contains a tag indicating the latest writer to the register

If the tag in the register file matches the broadcast tag, write broadcast value
into register (and set valid bit)

o Reclaim rename tag
no valid copy of tag in system!

Register Renaming and OoO Execution

RO
R1
R2
R3
R4
R5
R6
R7
R8
R9

Architectural registers dynamically renamed

o Mapped to reservation stations

tag

value

valid?

VO

=

S2

nelWlvV1l

V2

Sk

nevaVv3

V4

V5

V6

S4

V7

V8

V9

e = R e e N =)

SO
S1
S2
S3
S4

IMUL
ADD
ADD

R3 € R1, R2
R3 ¢ R3,R1
R1 € R6, R7

IMUL R3 € R6, R8

ADD

R7 € R3, R9

Srcltag Srcl value V?

IMUL SO € V1,V2
ADD S1 <« S0, V4
ADD S2 < V6, V7
IMUL S3 <€ V6, V8
ADD 5S4 < S3,V9

Src2tag Src2value V? Ctl S?

SO0 Retired --- Entry Deallocated ent add

Retired --- Entry Deallocated 1ent nul

Completed --- Wait for Retirement add

1

BROADCAST S3 and new3V3 | 1| add

1
1
1

S3

new®v/3 |0

V9 1| add

In-order vs. Out-of-order Dispatch

In order dispatch:

F|ID|E|E|E|E|R|W
F|D| STALL |[E |R|W
F| STALL |D|E |R |W
FID|E|E|E|E
F |D STALL
Tomasulo:
F|D|E|E|E|E|R|W
FID| WAT |E|R|W
F|D|E|R W
F|ID|E|E|E|E|R|W
F|D| WAT |E|R|W

16 vs. 12 cycles

IMUL R3 € R1, R2
ADD R3 € R3,R1
ADD R1 € R6, R7
IMUL R3 € R6, R8
ADD R7 € R3,R9

An Exercise

MUL
ADD
ADD
ADD
MUL
ADD

R3 < R1, R2

R5 < R3, R4

R7 < R2, R6 FIDIEIRI|W
R10 € R8, R9
R11 < R7, R10
R5 < R5, R11

Assume ADD (4 cycle execute), MUL (6 cycle execute)
Assume one adder and one multiplier
How many cycles

Q

Q

In a non-pipelined machine

In an in-order-dispatch pipelined machine with future file and
reorder buffer

In an out-of-order dispatch pipelined machine with future file
and reorder buffer

10

Summary ot OOO Execution Concepts

= Renaming eliminates false dependencies

= Tag broadcast enables value communication between
Instructions - dataflow

= An out-of-order engine dynamically builds the dataflow
graph of a piece of the program
o which piece?
= Limited to the instruction window
o Can we do it for the whole program? Why would we like to?
= How can we have a large instruction window efficiently?

11

Some Implementation Issues

Back to back dispatch of dependent operations
o When should the tag be broadcast?

Is it a good idea to have the reservation stations also be
the reorder buffer?

Is it a good idea to have values in the register alias table?
Is it a good idea to store values in reservation stations?

Is it a good idea to have a single, centralized reservation
stations for all FUs?

Idea: Decoupling different buffers
o Many modern processors decouple these buffers

o Many have distributed reservation stations across FUs
12

Butter Decoupling in Penttum Pro

R
S

(20 Entries)

Port O

Port 1

Port 2

Port 3,4

[FMU

FDIV

IDIV

FAU

———3! IEU

Fetch

2
Fetch

3
Decode

Decode

5 | 6

Decode ‘ Rename

7 | 8
ROB Rd | Rdy/Sch

9
Dispatch

10
Exec

—a RAT

ROB
| (40 Slots)
¥
| 31 RRF

Figure courtesy of Prof. Wen-mei Hwu, University of lllinois

13

Butter Decoupling in Pentium 4

/T

[= 3
P PHYSICAL EXEC
¥ FP Usp Queus [f™e et r BR — UNITS /\
/ REORDER
TRACE Fromtend il
[winl
INT A INT (
E;fg; _@ RaT _-| t Uop [ueng |_-FSCHEDU]'_EI?‘. mr | EXEC -
UMIT pHYSICAL | [[UNITS \)
SR AER REG. FILE
T FADDER P
P m Uap Que MEM] GEN - - !
. SCHEDULE] UNITS L1
i EigﬁE = RETIREMENT
: heo- E o w N\ s i e o) el tich RAT
: : Hream—bassd : e] Logil
G : Hardwarz ""——————1I : :]
i i Ereetenn i | i STORE e
' | | | BUFFER
[* 1 1 [—
I | : : |
: - L2 Acce= Quous e e e e e B e e e e e ! i
| . |
1 T g bR e i e R R R 1
1‘2 3‘4 5| 6 7‘3 9 | 10| 11| 12 13|1415‘1e‘17 18 20
TC NxtIP | TC Fetch |DrivelAlloc, Rename | Que | Sch | Sch | Sch |Disp/Disp RF | RF | Ex |Flgs Drive
| | | |
‘ ______________ - Front Side Bus ______'I'Emfn._cEnEu}r

Acczzs Quens

14

Pentium Pro vs. Penttum 4

Basic Pentium lll Processor Misprediction Pipeline

3 4 5 | 6 7 | 8 9 10
Decode | Decode | Decode ‘Rename ROB RledylSch Dispatch| Exec

1 2
Fetch Fetch

Basic Pentium 4 Processor Misprediction Pipeline

1‘23456789 17 |18 | 19 | 20

10| 11| 12] 13 14 15‘16

TC hll)d IP | TC Fletch Drive|Alloc Rer:ama Que | Sch | Sch | Sch |Disp Disp | RF | RF | Ex |Flgs |Br Ck Drive
|
L]
Pentium III Rop NetBurst RF ROB
Data Status Data Status
Frontend RAT
EBX
ECX
EDX
RAT ESI

E A X EDI

EBX ESP

ECX | EBP |

EDX |

Egll etirement RATY .-A_v;;;j‘_f'"' ----------------------

ESP [V e

EBP EBX
ECX
T
ESl |-
EOL_fos

RRF EBP |
T |

e\t V-CArehr O 9

Required/Recommended Reading

= Hinton et al., “The Microarchitecture of the Pentium 4
Processor,” Intel Technology Journal, 2001.

» Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro,
March-April 1999.

= Yeager, “The MIPS R10000 Superscalar Microprocessor,”
IEEE Micro, April 1996.

= Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proc. IEEE, Dec. 1995.

16

Butter-Decoupled OoO Designs

Register Alias Table contains only tags and valid bits
o Tag Is a pointer to the physical register containing the value

During renaming, instruction allocates entries in different
buffers (as needed):

o Reorder buffer

o Physical register file

o Reservation stations (centralized vs. distributed)
o Store/load buffer

Tradeoffs?

17

Physical Register Files

Register values stored only in physical register files
(architectural register state is part of this file), e.g. Pentium 4

+ Smaller physical register file than ROB: Not all instructions write to
registers - more area efficient

+ No duplication of data values in reservation stations, arch register
file, reorder buffer, rename table (space efficient)

+ Only one write and read path for register data values (simpler
control for register read and writes)

-- Accessing register state always requires indirection (higher latency)
- Instructions with ready operands need to access register file
- Copying architectural register state takes time

18

Physical Register Files in Pentium 4

1
- =3
o FP | —» PHYSICAL|—w %?1‘_33
S s
¥ <P SCHEDULER REG. HLE
REORDER
= EUFFER
TRACE Frontend r
yoi I My R o
SRR SCHEDULER T _eEXEC
UNIT PHYSICAL UINITS
RENAMER RED. FILE 3
i T / —mADDE
P m Uap Que MEM] GEN - !
. SCHEDULER UNITS L1
i EigﬁE = RETIREMENT
: heo- 1 it Lo e e e p e e} el tich RAT
: : Hream—bassd : e] Logil
s ; : Hardwarz - ; : : —
ractiom 1 1
FPrafatcher | 1
Ciecoder i ! ! ! | | STORE a
| | BEUFFER
! } ! : ! |
I : . ! :
1
: - L2 Acce= Quous e e e e e B e e e e e ! :
1 1
1
| ; |
: : [I !
1
; ¥ |
)
From me
L2 CACHE Tttt e g g
Fromt 3ide BEus To memery
_______________ 1 Access Queos .

Hinton et al., “The Microarchitecture of the Pentium 4 Processor,” Intel Technology Journal, 2001.
19

Physical Register Files in Alpha 21264

Fetch ESlCI[E Rename lssLe Reqister read Execute Memory
0 T 2 3 4 5 i
- Integer
kB : Integer INteger et oyontion |
Eranch - Integer | : Issue |'eu%|.||5ter é | Addr
G - ogister |- - = ile : - s AdC
predictor i —#= register —e queue ket B : Integer | ¢ o]
o rename | : (20 (80 """"' execution | ¢
: entries) :
. : Data g
e : meEger cache ok
Integer -t ooontion | (64 Khytes, (= cache
P EGEE T O and system
: : D Addr| two-way) .
file : Integer | i 0Har) TR interface
|'E|:|'| H AN -.:I-. _._-
VB : execution | :
Line/set)
prediction * : =
i . : Floating- ———
| Instruction i | Floating- | : o t"j Floating-| Floating-point
zHphe S oint | S int ™™ multiply execution
(64 Kbytes, r.-alz.gis.t-ﬁr —- issue Hiww r_F':'l:;'g:_r 5 o
WO-WaY) =l e fuaLe cdlale : , :
bawio-way) rename | -1” £ file lugtpme Floating-point
+ 5 o (72) add execution

Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.

20

Alpha 21264 Pipelines

Mispredicted branch penalty: 7 cycles minimum

Transit | Calc PC |4
Possible delay
l In instr queue
Fetch | Transit | Map | Queue | Register | Execute | Write
Access Send to Rename Insert Read "Integer Write
|-cache decoder registers inqueue | operands| calc result
Load-use penalty:
2 cycles minimum
Register | Address | Cache1 | Cache2 | ‘Write
Read Calculate Access Getresult, ‘Write
operands address D-cache check tags result
Register| FP1 FP2 EF3 FP4 Write
Read Start FF op FF op Round Write
operands FF op result result

Source: Microprocessor Report, 10/28/96

Centralized Reservation Stations (Pentium Pro)

ID/
Reg

Reservation Stations

Add

Br

FPU

FPU

FPU

WB

Mul

LSU

22

Distributed Reservation Stations

Many processors: PowerPC 604, Pentium 4

Add

ID/
Reg

Br

FPU

FPU

FPU

WB

Mul

LSU

23

Centralized vs. Distributed Reservation Stations

Centralized (monolithic):

+ Reservation stations not statically partitioned (can adapt to changes in
instruction mix, e.g., 100% adds)

-- All entries need to have all fields even though some fields might not be
needed for some instructions (e.g. branches, stores, etc)

-- Number of ports = issue width
-- More complex control and routing logic

Distributed:

+ Each RS can be specialized to the functional unit it serves (more area
efficient)

+ Number of ports can be 1 (RS per functional unit)
+ Simpler control and routing logic

-- Other RS’s cannot be used if one functional unit’'s RS is full (static
partitioning)

24

Issues in Scheduling Logic (I)

What if multiple instructions become ready in the same
cycle?
o Why does this happen?

An instruction with multiple dependents

Multiple instructions can complete in the same cycle

Which one to schedule?

o Oldest

o Random

o Most dependents first

o Most critical first (longest latency dependency chain)

Does not matter for performance unless the active window is very large

o Butler and Patt, “An Investigation of the Performance of Various Dynamic
Scheduling Techniques,” MICRO 1992.

25

Issues in Scheduling Logic (1I)

When to schedule the dependents of a multi-cycle execute
Instruction?

o One cycle before the completion of the instruction

o Example: IMUL, Pentium 4, 3-cycle ADD

When to schedule the dependents of a variable-latency
execute instruction?

o A load can hit or miss in the data cache
o Option 1: Schedule dependents assuming load will hit
o Option 2: Schedule dependents assuming load will miss

When do we take out an instruction from a reservation
station?

26

Scheduling of LLoad Dependents

Assume load will hit
+ No delay for dependents (load hit is the common case)
-- Need to squash and re-schedule if load actually misses

Assume load will miss (i.e. schedule when load data ready)
+ No need to re-schedule (simpler logic)
-- Significant delay for load dependents if load hits

Predict load hit/miss
+ No delay for dependents on accurate prediction
-- Need to predict and re-schedule on misprediction

Yoaz et al., “Speculation Techniques for Improving Load Related
Instruction Scheduling,” ISCA 1999.

27

What to Do with Dependents on a L.oad Miss? (I)

A load miss can take hundreds of cycles

If there are many dependent instructions on a load miss,
these can clog the scheduling window

Independent instructions cannot be allocated reservation
stations and scheduling can stall

How to avoid this?

Idea: Move miss-dependent instructions into a separate

buffer

o Example: Pentium 4’s “scheduling loops”

o Lebeck et al., “A Large, Fast Instruction Window for Tolerating
Cache Misses,” ISCA 2002.

28

What to Do with Dependents on a Load Miss? (11)

Fetch Slotg Rename Issue Fegister Read Execute Memory
Waitmng Instruction Buffer
: Integer Integer ImL 1 Integer
i —= Register Issue Reg File T Exec
; Fename QUEUE e _________.i
| N 5 Col + 3
IntL2 e 5
N , Reg File ¥ i Data
Instruction | | : : i i L : Cache
Cache [! i P FPL2 i (32Kb 4Way)
(GAkb4Way)| i | i : : Reg File DETE—
Floating : Floating I I ___________ I
L] pe T . | Pomt | :
L o T Tssue : FPLI L l| FP
: : Register Queue : Reg File Exec
Rename i (32) :

But, dependents still hold on to the physical registers

Cannot scale the size of the register file indefinitely since it is on the
critical path

Possible solution: Deallocate physical registers of dependents

o Difficult to re-allocate. See Srinivasan et al, “Continual Flow Pipelines,”
ASPLOS 2004.

29

Questions

Why is 000 execution beneficial?
o What if all operations take single cycle?

o Latency tolerance: OoO execution tolerates the latency of
multi-cycle operations by executing independent operations
concurrently

What if the first IMUL was a cache-miss LD?

o If it took 500 cycles, how large of a scheduling window do we
need to continue decoding?

o How many cycles of latency can OoO tolerate?

o What limits the latency tolerance scalability of Tomasulo’s
algorithm?
Active/instruction window size: determined by register file,
scheduling window, reorder buffer, store buffer, load buffer

30

