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Readings

General introduction and basic concepts

a

a

Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec. 1995.
Hennessy and Patterson, Sections 2.1-2.10 (inclusive).

Modern designs

a

a

a

a

Stark, Brown, Patt, “On pipelining dynamic instruction scheduling logic,” MICRO 2000.

Boggs et al., “The microarchitecture of the Pentium 4 processor,” Intel Technology Journal,
2001.

Kessler, “The Alpha 21264 microprocessor,” IEEE Micro, March-April 1999.
Yeager, “The MIPS R10000 Superscalar Microprocessor,” IEEE Micro, April 1996.

Seminal papers

a

Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale and introduction,” MICRO
1985.

Patt et al., “Critical issues regarding HPS, a high performance microarchitecture,” MICRO
1985.

Anderson, Sparacio, Tomasulo, “The IBM System/360 Model 91: Machine Philosophy and
Instruction Handling,” IBM Journal of R&D, Jan. 1967.

Tomasulo, “An Efficient Algorithm for Exploiting Multiple Arithmetic Units,” IBM Journal of
R&D, Jan. 1967.
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Reviews Due

2 Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proc. IEEE, Dec. 1995.

o Stark, Brown, Patt, “On pipelining dynamic instruction scheduling
logic,” MICRO 2000.

o Due September 30




Last Time ...

Branch mispredictions

Out-of-order execution
o Register renaming
o Tomasulo’s algorithm



Today and the Next Related Lectures

Exploiting Instruction Level Parallelism (ILP)

More in-depth out-of-order execution
Superscalar processing

Better instruction supply and control flow handling



Tomasulo’s Machine: IBM 360/91
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Tomasulo’s Algorithm

If reservation station available before renaming

o Instruction + renamed operands (source value/tag) inserted into the
reservation station

o Only rename if reservation station is available
Else stall

While in reservation station, each instruction:

o Watches common data bus (CDB) for tag of its sources

o When tag seen, grab value for the source and keep it in the reservation station
o When both operands available, instruction ready to be dispatched

Dispatch instruction to the Functional Unit when instruction is ready

After instruction finishes in the Functional Unit
o Arbitrate for CDB
o Put tagged value onto CDB (tag broadcast)
o Register file is connected to the CDB
Register contains a tag indicating the latest writer to the register

If the tag in the register file matches the broadcast tag, write broadcast value
into register (and set valid bit)

o Reclaim rename tag
no valid copy of tag in system!



Register Renaming and OoO Execution

RO
R1
R2
R3
R4
R5
R6
R7
R8
R9

Architectural registers dynamically renamed

o Mapped to reservation stations
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In-order vs. Out-of-order Dispatch

In order dispatch:

F|ID|E|E|E|E|R|W
F|D| STALL |[E |R|W
F| STALL |D|E |R |W
FID|E|E|E|E
F |D STALL
Tomasulo:
F|D|E|E|E|E|R|W
FID| WAT |E|R|W
F|D|E|R W
F|ID|E|E|E|E|R|W
F|D| WAT |E|R|W

16 vs. 12 cycles

IMUL R3 € R1, R2
ADD R3 € R3,R1
ADD R1 € R6, R7
IMUL R3 € R6, R8
ADD R7 € R3,R9



An Exercise

MUL
ADD
ADD
ADD
MUL
ADD

R3 < R1, R2

R5 < R3, R4

R7 < R2, R6 FIDIEIRI|W
R10 € R8, R9
R11 < R7, R10
R5 < R5, R11

Assume ADD (4 cycle execute), MUL (6 cycle execute)
Assume one adder and one multiplier
How many cycles

Q

Q

In a non-pipelined machine

In an in-order-dispatch pipelined machine with future file and
reorder buffer

In an out-of-order dispatch pipelined machine with future file
and reorder buffer
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Summary ot OOO Execution Concepts

= Renaming eliminates false dependencies

= Tag broadcast enables value communication between
Instructions - dataflow

= An out-of-order engine dynamically builds the dataflow
graph of a piece of the program
o which piece?
= Limited to the instruction window
o Can we do it for the whole program? Why would we like to?
= How can we have a large instruction window efficiently?
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Some Implementation Issues

Back to back dispatch of dependent operations
o When should the tag be broadcast?

Is it a good idea to have the reservation stations also be
the reorder buffer?

Is it a good idea to have values in the register alias table?
Is it a good idea to store values in reservation stations?

Is it a good idea to have a single, centralized reservation
stations for all FUs?

Idea: Decoupling different buffers
o Many modern processors decouple these buffers

o Many have distributed reservation stations across FUs
12



Butter Decoupling in Penttum Pro
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Figure courtesy of Prof. Wen-mei Hwu, University of lllinois
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Butter Decoupling in Pentium 4
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Pentium Pro vs. Penttum 4

Basic Pentium lll Processor Misprediction Pipeline
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Required/Recommended Reading

= Hinton et al., “The Microarchitecture of the Pentium 4
Processor,” Intel Technology Journal, 2001.

» Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro,
March-April 1999.

= Yeager, “The MIPS R10000 Superscalar Microprocessor,”
IEEE Micro, April 1996.

= Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proc. IEEE, Dec. 1995.
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Butter-Decoupled OoO Designs

Register Alias Table contains only tags and valid bits
o Tag Is a pointer to the physical register containing the value

During renaming, instruction allocates entries in different
buffers (as needed):

o Reorder buffer

o Physical register file

o Reservation stations (centralized vs. distributed)
o Store/load buffer

Tradeoffs?
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Physical Register Files

Register values stored only in physical register files
(architectural register state is part of this file), e.g. Pentium 4

+ Smaller physical register file than ROB: Not all instructions write to
registers - more area efficient

+ No duplication of data values in reservation stations, arch register
file, reorder buffer, rename table (space efficient)

+ Only one write and read path for register data values (simpler
control for register read and writes)

-- Accessing register state always requires indirection (higher latency)
- Instructions with ready operands need to access register file
- Copying architectural register state takes time
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Physical Register Files in Pentium 4
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Physical Register Files in Alpha 21264
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Alpha 21264 Pipelines

Mispredicted branch penalty: 7 cycles minimum

Transit | Calc PC |4
Possible delay
l In instr queue
Fetch | Transit | Map | Queue | Register | Execute | Write
Access  Send to  Rename  Insert Read "Integer Write
|-cache  decoder registers inqueue | operands| calc result
Load-use penalty:
2 cycles minimum
Register | Address | Cache1 | Cache2 | ‘Write
Read Calculate Access Getresult, ‘Write
operands address D-cache check tags result
Register| FP1 FP2 EF3 FP4 Write
Read Start FF op FF op Round Write
operands  FF op result result

Source: Microprocessor Report, 10/28/96




Centralized Reservation Stations (Pentium Pro)
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Distributed Reservation Stations

Many processors: PowerPC 604, Pentium 4

Add

ID/
Reg

Br

FPU

FPU

FPU

WB

Mul

LSU
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Centralized vs. Distributed Reservation Stations

Centralized (monolithic):

+ Reservation stations not statically partitioned (can adapt to changes in
instruction mix, e.g., 100% adds)

-- All entries need to have all fields even though some fields might not be
needed for some instructions (e.g. branches, stores, etc)

-- Number of ports = issue width
-- More complex control and routing logic

Distributed:

+ Each RS can be specialized to the functional unit it serves (more area
efficient)

+ Number of ports can be 1 (RS per functional unit)
+ Simpler control and routing logic

-- Other RS’s cannot be used if one functional unit’'s RS is full (static
partitioning)
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Issues in Scheduling Logic (I)

What if multiple instructions become ready in the same
cycle?
o Why does this happen?

An instruction with multiple dependents

Multiple instructions can complete in the same cycle

Which one to schedule?

o Oldest

o Random

o Most dependents first

o Most critical first (longest latency dependency chain)

Does not matter for performance unless the active window is very large

o Butler and Patt, “An Investigation of the Performance of Various Dynamic
Scheduling Techniques,” MICRO 1992.
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Issues in Scheduling Logic (1I)

When to schedule the dependents of a multi-cycle execute
Instruction?

o One cycle before the completion of the instruction

o Example: IMUL, Pentium 4, 3-cycle ADD

When to schedule the dependents of a variable-latency
execute instruction?

o A load can hit or miss in the data cache
o Option 1: Schedule dependents assuming load will hit
o Option 2: Schedule dependents assuming load will miss

When do we take out an instruction from a reservation
station?
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Scheduling of LLoad Dependents

Assume load will hit
+ No delay for dependents (load hit is the common case)
-- Need to squash and re-schedule if load actually misses

Assume load will miss (i.e. schedule when load data ready)
+ No need to re-schedule (simpler logic)
-- Significant delay for load dependents if load hits

Predict load hit/miss
+ No delay for dependents on accurate prediction
-- Need to predict and re-schedule on misprediction

Yoaz et al., “Speculation Techniques for Improving Load Related
Instruction Scheduling,” ISCA 1999.

27



What to Do with Dependents on a L.oad Miss? (I)

A load miss can take hundreds of cycles

If there are many dependent instructions on a load miss,
these can clog the scheduling window

Independent instructions cannot be allocated reservation
stations and scheduling can stall

How to avoid this?

Idea: Move miss-dependent instructions into a separate

buffer

o Example: Pentium 4’s “scheduling loops”

o Lebeck et al., “A Large, Fast Instruction Window for Tolerating
Cache Misses,” ISCA 2002.
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What to Do with Dependents on a Load Miss? (11)
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But, dependents still hold on to the physical registers

Cannot scale the size of the register file indefinitely since it is on the
critical path

Possible solution: Deallocate physical registers of dependents

o Difficult to re-allocate. See Srinivasan et al, “Continual Flow Pipelines,”
ASPLOS 2004.
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Questions

Why is 000 execution beneficial?
o What if all operations take single cycle?

o Latency tolerance: OoO execution tolerates the latency of
multi-cycle operations by executing independent operations
concurrently

What if the first IMUL was a cache-miss LD?

o If it took 500 cycles, how large of a scheduling window do we
need to continue decoding?

o How many cycles of latency can OoO tolerate?

o What limits the latency tolerance scalability of Tomasulo’s
algorithm?
Active/instruction window size: determined by register file,
scheduling window, reorder buffer, store buffer, load buffer

30



