
15-740/18-740 
Computer Architecture

Lecture 7: Out-of-Order Execution

Prof. Onur Mutlu
Carnegie Mellon University



Readings
General introduction and basic concepts

Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec. 1995.
Hennessy and Patterson, Sections 2.1-2.10 (inclusive).

Modern designs
Stark, Brown, Patt, “On pipelining dynamic instruction scheduling logic,” MICRO 2000.
Boggs et al., “The microarchitecture of the Pentium 4 processor,” Intel Technology Journal, 
2001.
Kessler, “The Alpha 21264 microprocessor,” IEEE Micro, March-April 1999.

Yeager, “The MIPS R10000 Superscalar Microprocessor,” IEEE Micro, April 1996.

Seminal papers
Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale and introduction,” MICRO 
1985.
Patt et al., “Critical issues regarding HPS, a high performance microarchitecture,” MICRO 
1985.
Anderson, Sparacio, Tomasulo, “The IBM System/360 Model 91: Machine Philosophy and 
Instruction Handling,” IBM Journal of R&D, Jan. 1967.
Tomasulo, “An Efficient Algorithm for Exploiting Multiple Arithmetic Units,” IBM Journal of 
R&D, Jan. 1967.

2



Reviews Due
Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proc. IEEE, Dec. 1995.
Stark, Brown, Patt, “On pipelining dynamic instruction scheduling 
logic,” MICRO 2000.

Due September 30

3



Last Time …

4

Exceptions vs. Interrupts
Precise Exceptions

What 
How

Reorder buffer
History buffer
Future file
Checkpointing

Register renaming: architectural vs. physical registers
Handling out-of-order completion of stores

Store buffer



Today and the Next Related Lectures
Exploiting Instruction Level Parallelism (ILP)

Out-of-order execution
Tomasulo’s algorithm
Precise exceptions

Superscalar processing
Instruction dependency checking/detection

Better instruction supply
Control flow handling: branch prediction, predication, etc

5



Summary: Precise Exceptions in Pipelining

When the oldest instruction ready-to-be-retired is detected 
to have caused an exception, the control logic

Recovers architectural state (register file, IP, and memory)
Flushes all younger instructions in the pipeline
Saves IP and registers (as specified by the ISA)
Redirects the fetch engine to the exception handling routine

6



Pipelining Issues: Branch Mispredictions
A branch misprediction resembles an “exception”

Except it is not visible to software

What about branch misprediction recovery?
Similar to exception handling except can be initiated before 
the branch is the oldest instruction
All three state recovery methods can be used 

Difference between exceptions and branch mispredictions?
Branch mispredictions more common: need fast recovery

7



Pipelining Issues: Stores
Handling out-of-order completion of memory operations

UNDOing a memory write more difficult than UNDOing a 
register write. Why?
One idea: Keep store address/data in reorder buffer

How does a load instruction find its data?

Store/write buffer: Similar to reorder buffer, but used only for 
store instructions

Program-order list of un-committed store operations
When store is decoded: Allocate a store buffer entry 
When store address and data become available: Record in store 
buffer entry
When the store is the oldest instruction in the pipeline: Update
the memory address (i.e. cache) with store data

8



Putting It Together: In-Order Pipeline with Future File

Decode (D): Access future file, allocate entry in reorder buffer, store 
buffer, check if instruction can execute, if so dispatch instruction
Execute (E): Instructions can complete out-of-order, store-load 
dependencies determined
Completion (R): Write result to reorder/store buffer
Retirement/Commit (W): Write result to architectural register file or 
memory
In-order dispatch/execution, out-of-order completion, in-order retirement 

9

F D

E

W
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R



Review: In-order pipeline

Problem: A true data dependency stalls dispatch of younger 
instructions into functional (execution) units
Dispatch: Act of sending an instruction to a functional unit

10

F D

E

W
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Cache miss



Can We Do Better?
What do the following two pieces of code have in common 
(with respect to execution in the previous design)?

Answer: First ADD stalls the whole pipeline!
ADD cannot dispatch because its source registers unavailable
Later independent instructions cannot get executed

How are the above code portions different?
Answer: Load latency is variable (unknown until runtime)
What does this affect? Think compiler vs. microarchitecture

11

IMUL  R3 R1, R2
ADD   R3 R3, R1
ADD   R1 R6, R7
IMUL  R3 R6, R8
ADD   R7 R3, R9

LD      R3 R1 (0)
ADD   R3 R3, R1
ADD   R1 R6, R7
IMUL  R3 R6, R8
ADD   R7 R3, R9



Preventing Dispatch Stalls
Multiple ways of doing it
You have already seen THREE:

1. Fine-grained multithreading
2. Value prediction
3. Compile-time instruction scheduling/reordering

What are the disadvantages of the above three?

Any other way to prevent dispatch stalls?
Actually, you have briefly seen the basic idea before

Dataflow: fetch and “fire” an instruction when its inputs are ready

Problem: in-order dispatch (issue, execution)
Solution: out-of-order dispatch (issue, execution)

12



Terminology

Issue vs. dispatch

Scheduling

Execution, completion, retirement/commit

Graduation

Out-of-order execution versus superscalar processing

13



Out-of-order Execution (Dynamic Scheduling)

Idea: Move the dependent instructions out of the way of 
independent ones

Rest areas for dependent instructions: Reservation stations 

Monitor the source “values” of each instruction in the 
resting area
When all source “values” of an instruction are available, 
“fire” (i.e. dispatch) the instruction

Instructions dispatched in dataflow (not control-flow) order 

Benefit:
Latency tolerance: Allows independent instructions to execute 
and complete in the presence of a long latency operation

14



In-order vs. Out-of-order Dispatch
In order dispatch:

Tomasulo + precise exceptions:

16 vs. 12 cycles
15

F D WE E E E R
F D E R W

F

IMUL  R3 R1, R2
ADD   R3 R3, R1
ADD   R1 R6, R7
IMUL  R3 R6, R8
ADD   R7 R3, R9

D E R W
F D E R W

F D E R W

F D WE E E E R
F D

STALL
STALL

E R W
F D

E E E E
STALL

E R
F D E E E E R W

F D E R W

WAIT

WAIT

W



Enabling OoO Execution
1. Need to link the consumer of a value to the producer

Register renaming: Associate a “tag” with each data value 
2. Need to buffer instructions until they are ready

Insert instruction into reservation stations after renaming
3. Instructions need to keep track of readiness of source values

Broadcast the “tag” when the value is produced
Instructions compare their “source tags” to the broadcast tag 

if match, source value becomes ready
4. When all source values of an instruction are ready, dispatch 

the instruction to functional unit (FU)
What if more instructions become ready than available FUs?

16



Tomasulo’s Algorithm
OoO with register renaming invented by Robert Tomasulo

Used in IBM 360/91 Floating Point Units
Read: Tomasulo, “An Efficient Algorithm for Exploiting Multiple 
Arithmetic Units,” IBM Journal of R&D, Jan. 1967.

Variants of it used in most high-performance processors
Most notably Pentium Pro, Pentium M, Intel Core(2)
Alpha 21264, MIPS R10000, IBM POWER5

What is the major difference today?
Precise exceptions: IBM 360/91 did NOT have this
Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale and 
introduction,” MICRO 1985.
Patt et al., “Critical issues regarding HPS, a high performance 
microarchitecture,” MICRO 1985.

17



Two Humps in a  Modern Pipeline

Hump 1: Reservation stations (scheduling window)
Hump 2: Reordering (reorder buffer, aka instruction window 
or active window)

18

F D

E

W
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R
E
O
R
D
E
R

S
C
H
E
D
U
L
E

TAG and VALUE Broadcast Bus

in order out of order in order



General Organization of an OOO Processor

Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec. 
1995.

19



Tomasulo’s Machine: IBM 360/91

20

FP FU FP FU

from memory

load
buffers

from instruction unit
FP registers

store buffers

to memory

operation bus

reservation 
stations

Common data bus



Register Renaming
Output and anti dependencies are not true dependencies

WHY? The same register refers to values that have nothing to 
do with each other
They exist because not enough register ID’s (i.e. 
names) in the ISA

The register ID is renamed to the reservation station entry 
that will hold the register’s value

Register ID RS entry ID
Architectural register ID Physical register ID
After renaming, RS entry ID used to refer to the register

This eliminates anti- and output- dependencies
Approximates the performance effect of a large number of 
registers even though ISA has a small number

21



Register rename table (register alias table)

Tomasulo’s Algorithm: Renaming

22

R0

R1

R2

R3

tag value valid?

R4

R5

R6

R7

R8

R9

1

1
1

1

1

1
1

1
1
1



Tomasulo’s Algorithm
If reservation station available before renaming

Instruction + renamed operands (source value/tag) inserted into the 
reservation station
Only rename if reservation station is available

Else stall
While in reservation station, each instruction:

Watches common data bus (CDB) for tag of its sources
When tag seen, grab value for the source and keep it in the reservation station
When both operands available, instruction ready to be dispatched

Dispatch instruction to the Functional Unit when instruction is ready
After instruction finishes in the Functional Unit

Arbitrate for CDB
Put tagged value onto CDB (tag broadcast)
Register file is connected to the CDB

Register contains a tag indicating the latest writer to the register
If the tag in the register file matches the broadcast tag, write broadcast value 
into register (and set valid bit)

Reclaim rename tag
no valid copy of tag in system!

23



An Exercise

Assume ADD (4 cycle execute), MUL (6 cycle execute)
Assume one adder and one multiplier
How many cycles

in a non-pipelined machine
in an in-order-dispatch pipelined machine with future file and 
reorder buffer
in an out-of-order dispatch pipelined machine with future file 
and reorder buffer

24

MUL   R3 R1, R2
ADD   R5 R3, R4
ADD   R7 R2, R6
ADD   R10 R8, R9
MUL   R11 R7, R10
ADD   R5 R5, R11

F D E R W


