15-740/18-740

Computer Architecture
Lecture 7: Out-of-Order Execution

Prof. Onur Mutlu
Carnegie Mellon University

Readings

General introduction and basic concepts

a

a

Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec. 1995.
Hennessy and Patterson, Sections 2.1-2.10 (inclusive).

Modern designs

a

a

a

a

Stark, Brown, Patt, “On pipelining dynamic instruction scheduling logic,” MICRO 2000.

Boggs et al., “The microarchitecture of the Pentium 4 processor,” Intel Technology Journal,
2001.

Kessler, “The Alpha 21264 microprocessor,” IEEE Micro, March-April 1999.
Yeager, “The MIPS R10000 Superscalar Microprocessor,” IEEE Micro, April 1996.

Seminal papers

a

Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale and introduction,” MICRO
1985.

Patt et al., “Critical issues regarding HPS, a high performance microarchitecture,” MICRO
1985.

Anderson, Sparacio, Tomasulo, “The IBM System/360 Model 91: Machine Philosophy and
Instruction Handling,” IBM Journal of R&D, Jan. 1967.

Tomasulo, “An Efficient Algorithm for Exploiting Multiple Arithmetic Units,” IBM Journal of
R&D, Jan. 1967.

2

Reviews Due

2 Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proc. IEEE, Dec. 1995.

o Stark, Brown, Patt, “On pipelining dynamic instruction scheduling
logic,” MICRO 2000.

o Due September 30

Last Time ...

Exceptions vs. Interrupts

Precise Exceptions
o What

o How
Reorder buffer
History buffer
Future file
Checkpointing

Register renaming: architectural vs. physical registers

Handling out-of-order completion of stores
o Store buffer

Today and the Next Related Lectures

Exploiting Instruction Level Parallelism (ILP)

Out-of-order execution
o Tomasulo’s algorithm
o Precise exceptions

Superscalar processing
o Instruction dependency checking/detection

Better instruction supply
o Control flow handling: branch prediction, predication, etc

Summary: Precise Exceptions in Pipelining

When the oldest instruction ready-to-be-retired is detected
to have caused an exception, the control logic

o Recovers architectural state (register file, 1P, and memory)
o Flushes all younger instructions in the pipeline

o Saves IP and registers (as specified by the ISA)

o Redirects the fetch engine to the exception handling routine

Pipelining Issues: Branch Mispredictions

A branch misprediction resembles an “exception”
o Except it is not visible to software

What about branch misprediction recovery?

o Similar to exception handling except can be initiated before
the branch is the oldest instruction

o All three state recovery methods can be used

Difference between exceptions and branch mispredictions?
Branch mispredictions more common: need fast recovery

Pipelining Issues: Stores

Handling out-of-order completion of memory operations

Q

UNDOing a memory write more difficult than UNDOIng a
register write. Why?
One idea: Keep store address/data in reorder buffer

How does a load instruction find its data?
Store/write buffer: Similar to reorder buffer, but used only for
store instructions

Program-order list of un-committed store operations

When store is decoded: Allocate a store buffer entry

When store address and data become available: Record in store
buffer entry

When the store is the oldest instruction in the pipeline: Update
the memory address (i.e. cache) with store data

Putting It Together: In-Order Pipeline with Future File

Decode (D): Access future file, allocate entry in reorder buffer, store
buffer, check if instruction can execute, if so dispatch instruction

Execute (E): Instructions can complete out-of-order, store-load

dependencies determined
Completion (R): Write result to reorder/store buffer

Retirement/Commit (W): Write result to architectural register file or

memory
In-order dispatch/execution, out-of-order completion, in-order retirement
E Integer add
Integer mul
E|E |E|E
F |D FP mul R W
E | E|E|E |E|E|E
E | E|E|E E|E|E - >

Load/store

Review: In-order pipeline

Integer add
E
Integer mul
E|E |E|E
F |ID FP mul A
E|E|E|E|E|E|E|E

E/E|E|E|E|E|E|E|--—

Cache miss

Problem: A true data dependency stalls dispatch of younger
Instructions into functional (execution) units

Dispatch: Act of sending an instruction to a functional unit

10

Can We Do Better?

What do the following two pieces of code have in common
(with respect to execution in the previous design)?

IMUL R3 € R1, R2 LD R3 < R1(0)
ADD R3 € R3,R1 ADD R3 € R3,R1
ADD R1 € R6, R7 ADD R1 € R6, R7
IMUL R3 € R6, R8 IMUL R3 € R6, R8
ADD R7 € R3, R9 ADD R7 € R3, R9

Answer: First ADD stalls the whole pipeline!
o ADD cannot dispatch because its source registers unavailable
o Later independent instructions cannot get executed

How are the above code portions different?
o Answer: Load latency is variable (unknown until runtime)
o What does this affect? Think compiler vs. microarchitecture

11

Preventing Dispatch Stalls

Multiple ways of doing it

You have already seen THREE:
o 1.
o 2.
o 3.

What are the disadvantages of the above three?

Any other way to prevent dispatch stalls?

o Actually, you have briefly seen the basic idea before
Dataflow: fetch and “fire” an instruction when its inputs are ready

o Problem: in-order dispatch (issue, execution)
o Solution: out-of-order dispatch (issue, execution)

12

Terminology

Issue vs. dispatch
Scheduling

Execution, completion, retirement/commit

Graduation

Out-of-order execution versus superscalar processing

13

Out-of-order Execution (Dynamic Scheduling)

Idea: Move the dependent instructions out of the way of
Independent ones

o Rest areas for dependent instructions: Reservation stations

Monitor the source “values” of each instruction in the
resting area

When all source “values” of an instruction are available,
“fire” (i.e. dispatch) the instruction

o Instructions dispatched in dataflow (not control-flow) order

Benefit:

o Latency tolerance: Allows independent instructions to execute
and complete in the presence of a long latency operation

14

In-order vs. Out-of-order Dispatch

In order dispatch:

F|D|E|E|E|E|R|W
F|D| STALL |[E |R|W
F| STALL |D |E |R|W
F|D|E|E|E|E
F |D STALL
Tomasulo + precise exceptions:
F|D|E|E|E|E|R|W
F|D| WAT |E|R|W
F|D|E|R W
F|D|E|E|E|E|R|W
F|D| WAIT |E|R|W

16 vs. 12 cycles

IMUL R3 € R1, R2
ADD R3 € R3,R1
ADD R1 € R6, R7
IMUL R3 € R6, R8
ADD R7 € R3,R9

15

Enabling OoO Execution

1. Need to link the consumer of a value to the producer
o Register renaming: Associate a “tag” with each data value
2. Need to buffer instructions until they are ready
o Insert instruction into reservation stations after renaming
3. Instructions need to keep track of readiness of source values

o Broadcast the “tag” when the value is produced

o Instructions compare their “source tags” to the broadcast tag
-> If match, source value becomes ready

4. When all source values of an instruction are ready, dispatch
the instruction to functional unit (FU)

o What if more instructions become ready than available FUs?

16

Tomasulo’s Algorithm

000 with register renaming invented by Robert Tomasulo
o Used in IBM 360/91 Floating Point Units

o Read: Tomasulo, “An Efficient Algorithm for Exploiting Multiple
Arithmetic Units,” IBM Journal of R&D, Jan. 1967.

Variants of it used in most high-performance processors
o Most notably Pentium Pro, Pentium M, Intel Core(2)
o Alpha 21264, MIPS R10000, IBM POWER5

What is the major difference today?

o Precise exceptions: IBM 360/91 did NOT have this

o Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale and
Introduction,” MICRO 1985.

o Patt et al., “Critical issues regarding HPS, a high performance
microarchitecture,” MICRO 1985.

17

Two Humps in a Modern Pipeline

TAG and VALUE Broadcast Bus

pd
~

S
R
C E Integer add -
H Integer mul 0
c b E E |E|E|E R Tw
D FP mul D
U E | E|E|E |E|E |E|E e
L R
E E E|E|E|E|E|E|E]|-—
Load/store
In order out of order In order

Hump 1: Reservation stations (scheduling window)

Hump 2: Reordering (reorder buffer, aka instruction window
or active window)

18

General Organization of an OOQO Processor

pre-
decode

1nstr.
cache

¥

floating pt.

register

file

TET!

instr.
buffer

decode,
rename,

==
=
=
|

floating pt.
Instruction
buffers

&dispatch

integer

functional units

- memory

interface

Ga

integer/address

instruction
buffers

functional units
and
data cache

)

register

file

i

re-order and commit

Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec.

1995.

19

Tomasulo’s Machine: IBM 360/91

: : : FP registers
from memory from instruction unit

load l l

buffers

store buffers

operation bus

reservation
stations

|

to memory

Common data bus

20

Register Renaming

Output and anti dependencies are not true dependencies

o WHY? The same register refers to values that have nothing to
do with each other

o They exist because not enough register ID’s (i.e.
names) in the ISA

The register ID is renamed to the reservation station entry
that will hold the register’s value

o Register ID - RS entry ID

o Architectural register ID - Physical register ID

o After renaming, RS entry ID used to refer to the register

This eliminates anti- and output- dependencies

o Approximates the performance effect of a large number of
registers even though ISA has a small number

21

Tomasulo’s Algorithm: Renaming

Register rename table (register alias table)

tag value valid?

RO 1
R1 1
R2 1
R3 1
R4 1
RS 1
1
1
1
1

R6
R7
R8
R9

Tomasulo’s Algorithm

If reservation station available before renaming

o Instruction + renamed operands (source value/tag) inserted into the
reservation station

o Only rename if reservation station is available
Else stall

While in reservation station, each instruction:

o Watches common data bus (CDB) for tag of its sources

o When tag seen, grab value for the source and keep it in the reservation station
o When both operands available, instruction ready to be dispatched

Dispatch instruction to the Functional Unit when instruction is ready

After instruction finishes in the Functional Unit
o Arbitrate for CDB
o Put tagged value onto CDB (tag broadcast)
o Register file is connected to the CDB
Register contains a tag indicating the latest writer to the register

If the tag in the register file matches the broadcast tag, write broadcast value
into register (and set valid bit)

o Reclaim rename tag
no valid copy of tag in system!

23

An Exercise

MUL
ADD
ADD
ADD
MUL
ADD

R3 < R1, R2

R5 < R3, R4

R7 < R2, R6 FIDIEIRI|W
R10 € R8, R9
R11 < R7, R10
R5 < R5, R11

Assume ADD (4 cycle execute), MUL (6 cycle execute)
Assume one adder and one multiplier
How many cycles

Q

Q

In a non-pipelined machine

In an in-order-dispatch pipelined machine with future file and
reorder buffer

In an out-of-order dispatch pipelined machine with future file
and reorder buffer

24

