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Last Time …
Addressing modes
Other ISA-level tradeoffs
Programmer vs. microarchitect

Virtual memory
Unaligned access
Transactional memory

Control flow vs. data flow
The Von Neumann Model
The Performance Equation
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Review: Other ISA-level Tradeoffs
Load/store vs. Memory/Memory
Condition codes vs. condition registers vs. compare&test
Hardware interlocks vs. software-guaranteed interlocking
VLIW vs. single instruction
0, 1, 2, 3 address machines
Precise vs. imprecise exceptions
Virtual memory vs. not
Aligned vs. unaligned access
Supported data types
Software vs. hardware managed page fault handling
Granularity of atomicity
Cache coherence (hardware vs. software)
…
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Review: The Von-Neumann Model
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Review: The Von-Neumann Model
Stored program computer (instructions in memory)
One instruction at a time
Sequential execution
Unified memory

The interpretation of a stored value depends on the control 
signals

All major ISAs today use this model
Underneath (at uarch level), the execution model is very 
different

Multiple instructions at a time
Out-of-order execution
Separate instruction and data caches
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Review: Fundamentals of Uarch Performance Tradeoffs
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Instruction
Supply

Data Path
(Functional
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Data
Supply

- Zero-cycle latency 
(no cache miss)

- No branch mispredicts

- No fetch breaks

- Perfect data flow 
(reg/memory dependencies)

- Zero-cycle interconnect
(operand communication)

- Enough functional units

- Zero latency compute?

- Zero-cycle latency

- Infinite capacity

- Zero cost

We will examine all these throughout the course (especially data supply)



Review: How to Evaluate Performance Tradeoffs
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Improving Performance (Reducing Exec Time)

Reducing instructions/program
More efficient algorithms and programs
Better ISA?

Reducing cycles/instruction (CPI)
Better microarchitecture design

Execute multiple instructions at the same time
Reduce latency of instructions (1-cycle vs. 100-cycle memory 
access)

Reducing time/cycle (clock period)
Technology scaling
Pipelining
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Other Performance Metrics: IPS
Machine A: 10 billion instructions per second
Machine B: 1 billion instructions per second
Which machine has higher performance?

Instructions Per Second (IPS, MIPS, BIPS)

How does this relate to execution time?
When is this a good metric for comparing two machines?

Same instruction set, same binary (i.e., same compiler), same 
operating system
Meaningless if “Instruction count” does not correspond to “work”

E.g., some optimizations add instructions, but do not change “work”
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Other Performance Metrics: FLOPS
Machine A: 10 billion FP instructions per second
Machine B: 1 billion FP instructions per second
Which machine has higher performance?

Floating Point Operations per Second (FLOPS, MFLOPS, 
GFLOPS)

Popular in scientific computing
FP operations used to be very slow (think Amdahl’s law)

Why not a good metric?
Ignores all other instructions 

what if your program has 0 FP instructions?

Not all FP ops are the same
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Other Performance Metrics: Perf/Frequency
SPEC/MHz
Remember 
Performance/Frequency

What is wrong with comparing only “cycle count”?
Unfairly penalizes machines with high frequency

For machines of equal frequency, fairly reflects 
performance assuming equal amount of “work” is done

Fair if used to compare two different same-ISA processors on the same binaries 
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An Example

Ronen et al, IEEE Proceedings 2001
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Amdahl’s Law: Bottleneck Analysis
Speedup= timewithout enhancement / timewith enhancement

Suppose an enhancement speeds up a fraction f of a task 
by a factor of S

timeenhanced = timeoriginal·(1-f) + timeoriginal·(f/S)
Speedupoverall = 1 / ( (1-f) + f/S )
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Focus on bottlenecks with large f (and large S)



Microarchitecture Design Principles
Bread and butter design

Spend time and resources on where it matters (i.e. improving 
what the machine is designed to do)
Common case vs. uncommon case

Balanced design
Balance instruction/data flow through uarch components
Design to eliminate bottlenecks

Critical path design
Find the maximum speed path and decrease it

Break a path into multiple cycles?
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Cycle Time (Frequency) vs. CPI (IPC)
Usually at odds with each other

Why?
Memory access latency: Increased frequency increases the 
number of cycles it takes to access main memory

Pipelining: A deeper pipeline increases frequency, but also 
increases the “stall” cycles:

Data dependency stalls 
Control dependency stalls
Resource contention stalls
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Intro to Pipelining (I)
Single-cycle machines

Each instruction executed in one cycle
The slowest instruction determines cycle time 

Multi-cycle machines 
Instruction execution divided into multiple cycles

Fetch, decode, eval addr, fetch operands, execute, store result
Advantage: the slowest “stage” determines cycle time

Microcoded machines
Microinstruction: Control signals for the current cycle
Microcode: Set of all microinstructions needed to implement 
instructions  Translates each instruction into a set of 
microinstructions
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Microcoded Execution of an ADD
ADD DR SR1, SR2
Fetch:

MAR IP
MDR MEM[MAR]
IR MDR

Decode:
Control Signals 
DecodeLogic(IR)

Execute:
TEMP SR1 + SR2

Store result (Writeback):
DR TEMP
IP IP + 4
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Intro to Pipelining (II)
In the microcoded machine, some resources are idle in 
different stages of instruction processing

Fetch logic is idle when ADD is being decoded or executed

Pipelined machines
Use idle resources to process other instructions
Each stage processes a different instruction
When decoding the ADD, fetch the next instruction
Think “assembly line”

Pipelined vs. multi-cycle machines
Advantage: Improves instruction throughput (reduces CPI)
Disadvantage: Requires more logic, higher power consumption
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A Simple Pipeline
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Execution of Four Independent ADDs
Multi-cycle: 4 cycles per instruction

Pipelined: 4 cycles per 4 instructions (steady state)
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Data dependency stall: what if the next ADD is dependent

Solution: data forwarding. Can this always work? 
How about memory operations? Cache misses?
If data is not available by the time it is needed: STALL

What if the pipeline was like this?

R3 cannot be forwarded until read from memory
Is there a way to make ADD not stall?

Issues in Pipelining: Increased CPI
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Implementing Stalling

Hardware based interlocking
Common way: scoreboard
i.e. valid bit associated with each register in the register file
Valid bits also associated with each forwarding/bypass path
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Data Dependency Types

Types of data-related dependencies
Flow dependency (true data dependency – read after write)
Output dependency (write after write)
Anti dependency (write after read)

Which ones cause stalls in a pipelined machine?
Answer: It depends on the pipeline design
In our simple strictly-4-stage pipeline, only flow dependencies 
cause stalls
What if instructions completed out of program order?
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Control dependency stall: what to fetch next

Solution: predict which instruction comes next
What if prediction is wrong?

Another solution: hardware-based fine-grained multithreading
Can tolerate both data and control dependencies
Read: James Thornton, “Parallel operation in the Control Data 
6600,” AFIPS 1964.
Read: Burton Smith, “A pipelined, shared resource MIMD 
computer,” ICPP 1978.

Issues in Pipelining: Increased CPI
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