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Announcements

Project Poster Session
December 10
NSH Atrium

2:30-6:30pm

Project Report Due
December 12
The report should be like a good conference paper

Focus on Projects
All group members should contribute
Use the milestone feedback from the TAs
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Final Project Report and Logistics
Follow the guidelines in project handout for report

We will provide the Latex format
Good papers should be similar to the best conference 
papers you have been reading throughout the semester

Submit all code, documentation, supporting documents and 
data

Provide instructions as to how to compile and use your code in 
a README file
This will determine part of your grade
We will provide the directory to upload

This is the single most important part of the project
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Best Projects
Best projects will be encouraged for a top conference 
submission

Talk with me if you are interested in this

Examples from past:

Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter,
"ATLAS: A Scalable and High-Performance Scheduling Algorithm for Multiple 
Memory Controllers,” HPCA 2010 Best Paper Session

George Nychis, Chris Fallin, Thomas Moscibroda, and Onur Mutlu,
"Next Generation On-Chip Networks: What Kind of Congestion Control Do 
We Need?,” HotNets 2010. 

Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,
"Thread Cluster Memory Scheduling: Exploiting Differences in Memory 
Access Behavior,” MICRO 2010. (IEEE Micro Top Picks 2010) 
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Please Fill Out Course Evaluations
Please fill them out online until December 14, 4pm

Very important for feedback, course 
development/improvement, administration

I read each of these carefully to improve the future course 
contents, logistics, etc.

http://cmu.onlinecourseevaluations.com
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TA Evaluations
Please fill them out online until December 10, 5pm

Vivek 
Seshadri: http://www.surveymonkey.com/s/PRW7DDJ

Lavanya 
Subramanian: http://www.surveymonkey.com/s/PRTCNBD

Evangelos Vlachos: 
http://www.surveymonkey.com/s/XZ88LVF
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Last Time

VLIW
Concepts and Philosophy
Encoding and NOPs
Static Scheduling Concepts

Trace Scheduling
Superblock Scheduling
Hyperblock Scheduling

EPIC: Explicitly Parallel Instruction Computing
IA-64
Static store-load scheduling
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Today

Data Parallel (SIMD) Execution Model
GPU Basics
GPU Programming 18-742
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Readings: SIMD and GPUs
Required

Lindholm et al., “NVIDIA Tesla: A Unified Graphics and 
Computing Architecture,” IEEE Micro 2008.
Russell, “The CRAY-1 computer system,” CACM 1978.

Recommended
Fung et al., “Dynamic Warp Formation and Scheduling for 
Efficient GPU Control Flow,” MICRO 2007.
Luk et al., “Qilin: Exploiting Parallelism on Heterogeneous 
Multiprocessors with Adaptive Mapping,” MICRO 2009.
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Data Parallelism
Concurrency arises from performing the same operations 
on different pieces of data

Single instruction multiple data (SIMD)
E.g., dot product of two vectors

Contrast with thread (“control”) parallelism
Concurrency arises from executing different threads of control in 
parallel

Contrast with data flow
Concurrency arises from executing different operations in parallel (in 
a data driven manner)

SIMD exploits instruction-level parallelism
Multiple instructions concurrent: instructions happen to be the same 
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SIMD Processing
Single instruction operates on multiple data elements

In time or in space
Multiple processing elements 

Time-space duality
Array processor: Instruction operates on multiple data 
elements at the same time
Vector processor: Instruction operates on multiple data 
elements in consecutive time steps
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SIMD Processing
Single instruction operates on multiple data elements

In time or in space
Multiple processing elements 

Time-space duality
Array processor: Instruction operates on multiple data 
elements at the same time
Vector processor: Instruction operates on multiple data 
elements in consecutive time steps
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Array vs. Vector Processors
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ARRAY PROCESSOR VECTOR PROCESSOR

LD     VR A[3:0]
ADD  VR VR, 1 
MUL  VR VR, 2
ST     A[3:0] VR

Instruction Stream

Time

LD0 LD1 LD2 LD3
AD0 AD1 AD2 AD3
MU0 MU1 MU2 MU3
ST0 ST1 ST2 ST3

LD0
LD1 AD0
LD2 AD1 MU0
LD3 AD2 MU1 ST0

AD3 MU2 ST1
MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space



SIMD Array Processing vs. VLIW
VLIW
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SIMD Array Processing vs. VLIW
Array processor
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Vector Processors
A vector is a one-dimensional array of numbers
Many scientific/commercial programs use vectors

for (i = 0; i<=49; i++)
C[i] = (A[i] + B[i]) / 2

A vector processor is one whose instructions operate on 
vectors rather than scalar (single data) values
Basic requirements

Need to load/store vectors vector registers (contain vectors)
Need to operate on vectors of different lengths vector length 
register (VLEN)
Elements of a vector might be stored apart from each other in 
memory vector stride register (VSTR)

Stride: distance between two elements of a vector
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Vector Processors (II)
A vector instruction performs an operation on each element 
in consecutive cycles

Vector functional units are pipelined
Each pipeline stage operates on a different data element

Vector instructions allow deeper pipelines
No intra-vector dependencies no hardware interlocking 
within a vector
No control flow within a vector
Known stride allows prefetching of vectors into memory
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Vector Processor Advantages
+ No dependencies within a vector 

Pipelining, parallelization work well
Can have very deep pipelines, no dependencies! 

+ Each instruction generates a lot of work 
Reduces instruction fetch bandwidth

+ Highly regular memory access pattern 
Interleaving multiple banks for higher memory bandwidth
Prefetching

+ No need to explicitly code loops 
Fewer branches in the instruction sequence
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Vector ISA Advantages
Compact encoding

one short instruction encodes N operations

Expressive, tells hardware that these N operations:
are independent
use the same functional unit
access disjoint registers
access registers in same pattern as previous instructions
access a contiguous block of memory
(unit-stride load/store)
access memory in a known pattern 
(strided load/store) 

Scalable
can run the same code in parallel pipelines (lanes)
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Vector Processor Disadvantages
-- Works (only) if parallelism is regular (data/SIMD parallelism)

++ Vector operations
-- Very inefficient if parallelism is irregular

-- How about searching for a key in a linked list?
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Vector Processor Limitations
-- Memory (bandwidth) can easily become a bottleneck, 

especially if
1. compute/memory operation balance is not maintained
2. data is not mapped appropriately to memory banks
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Vector Functional Units
Use deep pipeline (=> fast 
clock) to execute element 
operations
Simplifies control of deep 
pipeline because elements in 
vector are independent (=> 
no hazards!) 
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V
1

V
2

V
3

V3 <- v1 * v2

Six stage multiply pipeline

Slide credit: Krste Asanovic



Vector Instruction Execution
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ADDV C,A,B

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using one 
pipelined functional 
unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using 
four pipelined 
functional units

Slide credit: Krste Asanovic



Vector Memory System
Cray-1, 16 banks, 4 cycle bank busy time, 12 cycle latency

Bank busy time: Cycles between accesses to same bank
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0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Bas
e Stride

Vector Registers

Memory Banks

Address 
Generator

Slide credit: Krste Asanovic



Vector Unit Structure
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Lane

Functional Unit

Vector
Registers

Memory Subsystem

Elements 0, 
4, 8, …

Elements 1, 
5, 9, …

Elements 2, 
6, 10, …

Elements 3, 
7, 11, …

Slide credit: Krste Asanovic



Vector Instruction Level Parallelism
Can overlap execution of multiple vector instructions

example machine has 32 elements per vector register and 8 lanes
Complete 24 operations/cycle while issuing 1 short instruction/cycle
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load

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction 
issue

Slide credit: Krste Asanovic



Vector Registers
Each vector data register holds N M-bit values
Vector control registers: VLEN, VSTR, VMASK
Vector Mask Register (VMASK)

Indicates which elements of vector to operate on
Set by vector test instructions

e.g., VMASK[i] = (Vk[i] == 0)

Maximum VLEN can be N
Maximum number of elements stored in a vector register
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V0,0
V0,1

V0,N-1

V1,0
V1,1

V1,N-1

M-bit wide M-bit wide



Vector Machine Organization (CRAY-1)
CRAY-1
Russell, “The CRAY-1 
computer system,”
CACM 1978.

Scalar and vector modes
8 64-element vector 
registers
64 bits per element
16 memory banks
8 64-bit scalar registers
8 24-bit address registers
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Memory Banking in CRAY-1
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Bank
0

Bank
1

MDR MAR

Bank
2

Bank
15

MDR MAR MDR MAR MDR MAR

Data bus

Address bus

CPU

Slide credit: Derek Chiou



Scalar Code Example
For I = 1 to 50

C[i] = (A[i] + B[i]) / 2

Scalar code
MOVI R0 = 50 1
MOVA R1 = A 1
MOVA R2 = B 1
MOVA R3 = C 1

X:  LD R4 = MEM[R1++] 11  ;autoincrement addressing
LD R5 = MEM[R2++] 11
ADD R6 = R4 + R5 4
SHFR R7 = R6 >> 1 1
ST MEM[R3++] = R7 11
DECBNZ --R0, X 2   ;decrement and branch if NZ

30

304 dynamic instructions



Scalar Code Execution Time
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Scalar execution time on an in-order processor with 1 bank
First two loads in the loop cannot be pipelined 2*11 cycles
4 + 50*40 = 2004 cycles

Scalar execution time on an in-order processor with 16 
banks (word-interleaved)

First two loads in the loop can be pipelined
4 + 50*30 = 1504 cycles

Why 16 banks?
11 cycle memory access latency
Having 16 (>11) banks ensures there are enough banks to 
overlap enough memory operations to cover memory latency



Vectorizable Loops
A loop is vectorizable if each iteration is independent of any 
other
For I = 0 to 49

C[i] = (A[i] + B[i]) / 2
Vectorized loop:

MOVI VLEN = 50 1
MOVI VSTR = 1 1
VLD V0 = A 11 + VLN - 1
VLD V1 = B 11 + VLN – 1
VADD V2 = V0 + V1 4 + VLN - 1
VSHFR V3 = V2 >> 1 1 + VLN - 1
VST C = V3 11 + VLN – 1
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7 dynamic instructions



Vector Code Performance
No chaining 

i.e., output of a vector functional unit cannot be used as the 
input of another (i.e., no vector data forwarding)

16 memory banks (word-interleaved)

285 cycles
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Vector Code Performance - Chaining
Vector chaining: Data forwarding from one vector 
functional unit to another

182 cycles
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1 1 11 49 11 49

4 49

1 49

11 49

These two VLDs cannot be 
pipelined. WHY?

VLD and VST cannot be 
pipelined. WHY?

Each memory bank 
has a single port 
(memory bandwidth
bottleneck)



Vector Chaining
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Memory

V
1

Load 
Unit

Mult.

V
2

V
3

Chain

Add

V
4

V
5

Chain

LV   v1
MULV v3,v1,v2
ADDV v5, v3, v4

Slide credit: Krste Asanovic



Vector Code Performance – Multiple Memory Ports

Chaining and 2 load ports, 1 store port in each bank

79 cycles
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Questions (I)
What if # data elements > # elements in a vector register?

Need to break loops so that each iteration operates on # 
elements in a vector register

E.g., 527 data elements, 64-element VREGs
8 iterations where VLEN = 64
1 iteration where VLEN = 15 (need to change value of VLEN)

Called vector stripmining

What if vector data is not stored in a strided fashion in 
memory? (irregular memory access to a vector)

Use indirection to combine elements into vector registers
Called scatter/gather operations
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Scatter/Gather Operations
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Want to vectorize loops with indirect accesses:
for (i=0; i<N; i++)

A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)
LV vD, rD       # Load indices in D vector
LVI vC, rC, vD  # Load indirect from rC base
LV vB, rB       # Load B vector
ADDV.D vA,vB,vC # Do add
SV vA, rA       # Store result



Scatter/Gather Operations
Scatter/Gather operations often implemented in hardware 
to handle sparse matrices 
Vector loads and stores use an index vector which is added 
to the base register to generate the addresses
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Index Vector Data Vector Equivalent

1 3.14 3.14
3 6.5 0.0
7 71.2 6.5
8 2.71 0.0

0.0
0.0
0.0

71.2
2.7 



Conditional Operations in a Loop
What if some operations should not be executed on a vector 
(based on a dynamically-determined condition)?
loop: if a[i] then b[i]=a[i]*b[i]

goto loop

Idea: Masked operations 
VMASK register is a bit mask determining which data element 
should not be acted upon

VLD V0 = A
VLD V1 = B
VMASK = (V0 != 0)
VMUL V1 = V0 * V1
VST B = V1

Does this look familiar? This is essentially predicated execution.
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Another Example with Masking
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for (i = 0; i < 64; ++i)
if (a[i] >= b[i]) then c[i] = a[i]
else c[i] = b[i]

A B VMASK    
1 2 0                 
2 2 1
3 2 1
4 10 0
-5 -4 0
0 -3 1
6 5 1
-7 -8 1

Steps to execute loop

1. Compare A, B to get 
VMASK

2. Selective store of 
A,VMASK into C

3. Complement VMASK

4. Selective store of
B, VMASK into C



Masked Vector Instructions

42

C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

Density-Time Implementation
– scan mask vector and only execute 

elements with non-zero masks

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data portWrite Enable

A[7] B[7]M[7]=1

Simple Implementation
– execute all N operations, turn off 

result writeback according to mask

Slide credit: Krste Asanovic



Compress and Expand Operations
Compress packs non-masked elements from one vector register contiguously at 
start of destination vector register

population count of mask vector gives packed vector length

Expand performs inverse operation
Used for density-time conditionals and also for general selection 
operations
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M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

A[3]

A[4]

A[5]

A[6]

A[7]

A[0]

A[1]

A[2]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

B[3]

A[4]

A[5]

B[6]

A[7]

B[0]

A[1]

B[2]

ExpandCompress

Slide credit: Krste Asanovic



Reduction Operations
Problem: Loop-carried dependence on reduction variables

sum = 0;
for (i=0; i<N; i++)

sum += A[i];  # Loop-carried dependence on sum

Solution: Re-associate operations if possible, use binary tree to perform 
reduction
# Rearrange as:
sum[0:VL-1] = 0              # Vector of VL partial sums
for(i=0; i<N; i+=VL)         # Stripmine VL-sized chunks

sum[0:VL-1] += A[i:i+VL-1]; # Vector sum
# Now have VL partial sums in one vector register
do {

VL = VL/2;                    # Halve vector length
sum[0:VL-1] += sum[VL:2*VL-1] # Halve no. of partials

} while (VL>1)

44Slide credit: Krste Asanovic



Automatic Code Vectorization
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for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a compile-time reordering of 
operation sequencing
⇒ requires extensive loop dependence analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2

Vectorized Code

Ti
m

e

Slide credit: Krste Asanovic



Vector Processing Summary
Vector machines good at exploiting regular data-level 
parallelism

Same operation performed on many data elements
Improve performance, simplify design (no intra-vector 
dependencies)

Performance improvement limited by vectorizability of code
Scalar operations limit vector machine performance
Amdahl’s Law
CRAY-1 was the fastest SCALAR machine at its time!

Many existing ISAs include (vector-like) SIMD operations
Intel MMX/SSEn, PowerPC AltiVec, ARM Advanced SIMD
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Intel Pentium MMX Operations
Idea: One instruction operates on multiple data elements 
simultaneously

Ala array processing (yet much more limited)
Designed with multimedia (graphics) operations in mind

47

Peleg and Weiser, “MMX Technology
Extension to the Intel Architecture,”
IEEE Micro, 1996.

No VLEN register
Opcode determines data type:
8 8-bit bytes
4 16-bit words
2 32-bit doublewords
1 64-bit quadword

Stride always equal to 1.



MMX Example: Image Overlaying (I)
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MMX Example: Image Overlaying (II)
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Graphics Processing Units



High-Level View of a GPU
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Concept of “Thread Warps”
Warp: A set of threads that execute the same instruction 
(on different data elements)
All threads run the same kernel
Warp: The threads that run lengthwise in a woven fabric …
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Thread Warp 3
Thread Warp 8

Thread Warp 7
Thread Warp

Scalar
Thread

W

Scalar
Thread

X

Scalar
Thread

Y

Scalar
Thread

Z

Common PC

SIMD Pipeline



Latency Hiding with “Thread Warps”
Warp: A set of threads that 
execute the same instruction 
(on different data elements)

Fine-grained multithreading
One instruction per thread in 
pipeline at a time (No branch 
prediction)
Interleave warp execution to 
hide latencies

Register values of all threads stay 
in register file
No OS context switching
Memory latency hiding

Graphics has millions of pixels
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Decode

RF RFRF

ALU

ALU

ALU

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2DataAll Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

Slide credit: Tor Aamodt



Warp-based SIMD vs. Traditional SIMD
Traditional SIMD contains a single thread 

Lock step
Programming model is SIMD (no threads) SW needs to know vector 
length
ISA contains vector/SIMD instructions

Warp-based SIMD consists of multiple scalar threads executing in 
a SIMD manner (i.e., same instruction executed by all threads)

Does not have to be lock step
Each thread can be treated individually (i.e., placed in a different 
warp) programming model not SIMD

SW does not need to know vector length
Enables memory and branch latency tolerance

ISA is scalar vector instructions formed dynamically
Essentially, it is MIMD/SPMD programming model implemented on 
SIMD hardware
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Branch Divergence Problem in Warp-based SIMD

SPMD Execution on SIMD Hardware 
NVIDIA calls this “Single Instruction, Multiple Thread” (“SIMT”) 
execution
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Thread Warp Common PC

Thread
2

Thread
3

Thread
4

Thread
1

B

C D

E

F

A

G

Slide credit: Tor Aamodt



Control Flow Problem in GPUs/SIMD
GPU uses SIMD 
pipeline to save area 
on control logic.

Group scalar threads into 
warps

Branch divergence 
occurs when threads 
inside warps branch to 
different execution 
paths.
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Branch

Path A

Path B

Branch

Path A

Path B

Slide credit: Tor Aamodt



Branch Divergence Handling (I)
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- G 1111TOS

B

C D

E

F

A

G

Thread Warp Common PC

Thread
2

Thread
3

Thread
4

Thread
1

B/1111

C/1001 D/0110

E/1111

A/1111

G/1111

- A 1111TOS
E D 0110
E C 1001TOS

- E 1111
E D 0110TOS
- E 1111

A D G A

Time

CB E

- B 1111TOS - E 1111TOS
Reconv. PC Next PC Active Mask

Stack

E D 0110
E E 1001TOS

- E 1111

Slide credit: Tor Aamodt



Branch Divergence Handling (II)
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A

B C

D

A -- 1111
B D 1110
C D 0001

Next PC Recv PC Amask
D -- 1111

Control Flow Stack

One per warp

A;
if (some condition) {

B;
} else {

C;
}
D; TOS

D

1
1
1
1

A
0
0
0
1

C
1
1
1
0

B
1
1
1
1

D

Time

Execution Sequence

Slide credit: Tor Aamodt



Dynamic Warp Formation
Idea: Dynamically merge threads executing the same 
instruction (after branch divergence)
Form new warp at divergence

Enough threads branching to each path to create full new 
warps
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Dynamic Warp Formation/Merging
Idea: Dynamically merge threads executing the same 
instruction (after branch divergence)

Fung et al., “Dynamic Warp Formation and Scheduling for 
Efficient GPU Control Flow,” MICRO 2007.
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Branch

Path A

Path B

Branch

Path A



Dynamic Warp Formation Example
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A A B B G G A AC C D D E E F F

Time

A A B B G G A AC D E E F

Time

A x/1111
y/1111

B x/1110
y/0011

C x/1000
y/0010 D x/0110

y/0001 F x/0001
y/1100

E x/1110
y/0011

G x/1111
y/1111

A new warp created from scalar 
threads of both Warp x and y 
executing at Basic Block D

D

Execution of Warp x
at Basic Block A

Execution of Warp y
at Basic Block A

Legend
AA

Baseline

Dynamic
Warp
Formation

Slide credit: Tor Aamodt



How to Fill Holes in Warps?
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Memory Access within A Warp
“To improve memory bandwidth and reduce overhead, the 
local and global load/ store instructions coalesce individual 
parallel thread accesses from the same warp into fewer 
memory block accesses.”

Highest efficiency achieved if individual threads within a 
warp access consecutive locations in memory same row

If threads within a warp conflict with each other, SIMD 
efficiency degrades significantly similar to traditional 
SIMD machines
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What About Memory Divergence?
Modern GPUs have caches
Ideally: Want all threads in the warp to hit (without 
conflicting with each other)
Problem: One thread in a warp can stall the entire warp if it 
misses in the cache.

Dynamic warp formation can cause bank conflicts between 
threads within a warp (if the warp is not formed in a bank-
aware manner)

Need techniques to 
Tolerate memory divergence
Integrate solutions to branch and memory divergence
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NVIDIA GeForce GTX 285
NVIDIA-speak:

240 stream processors
“SIMT execution”

Generic speak:
30 cores
8 SIMD functional units per core

65
Slide credit: Kayvon Fatahalian



NVIDIA GeForce GTX 285 “core”
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…

= instruction stream decode= SIMD functional unit, control 
shared across 8 units

= execution context storage = multiply-add
= multiply

64 KB of storage 
for fragment 
contexts (registers)

Slide credit: Kayvon Fatahalian



NVIDIA GeForce GTX 285 “core”
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…
64 KB of storage 
for fragment 
contexts (registers)

Groups of 32 [fragments/vertices/threads/etc.] share 
instruction stream (each group is a Warp)
Up to 32 warps are simultaneously interleaved
Up to 1024 thread contexts can be stored   

Slide credit: Kayvon Fatahalian



NVIDIA GeForce GTX 285
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There are 30 of these things on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian



A More Detailed View
Lindholm et al., 
“NVIDIA Tesla: A 
Unified Graphics and 
Computing 
Architecture,” IEEE 
Micro 2008.
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NVIDIA GeForce GTX 285
Generic speak:

30 processing cores
8 SIMD functional units per core
Best case: 240 mul-adds + 240 muls per clock
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Food for Thought
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