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Announcements

Project Poster Session
December 10
NSH Atrium

2:30-6:30pm

Project Report Due
December 12
The report should be like a good conference paper

Focus on Projects
All group members should contribute
Use the milestone feedback from the TAs
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Final Project Report and Logistics

Follow the guidelines in project handout
We will provide the Latex format

Good papers should be similar to the best conference 
papers you have been reading throughout the semester

Submit all code, documentation, supporting documents and 
data

Provide instructions as to how to compile and use your code
This will determine part of your grade

This is the single most important part of the project
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Best Projects
Best projects will be encouraged for a top conference 
submission

Talk with me if you are interested in this

Examples from past:
Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter,
"ATLAS: A Scalable and High-Performance Scheduling Algorithm for Multiple 
Memory Controllers,” HPCA 2010 Best Paper Session
George Nychis, Chris Fallin, Thomas Moscibroda, and Onur Mutlu,
"Next Generation On-Chip Networks: What Kind of Congestion Control Do 
We Need?,” HotNets 2010. 
Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,
"Thread Cluster Memory Scheduling: Exploiting Differences in Memory 
Access Behavior,” MICRO 2010. (IEEE Micro Top Picks 2010) 
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Today

Alternative approaches to concurrency
SISD/SIMD/MISD/MIMD classification
Decoupled Access/Execute
VLIW 
Vector Processors and Array Processors
Data Flow
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Alternative Approaches to 
Concurrency
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Readings
Required:

Fisher, “Very Long Instruction Word architectures and the ELI-
512,” ISCA 1983.
Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro 
2000.

Recommended:
Russell, “The CRAY-1 computer system,” CACM 1978.
Rau and Fisher, “Instruction-level parallel processing: history, 
overview, and perspective,” Journal of Supercomputing, 1993.
Faraboschi et al., “Instruction Scheduling for Instruction Level 
Parallel Processors,” Proc. IEEE, Nov. 2001.
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Decoupled Access/Execute
Motivation: Tomasulo’s algorithm too complex to implement 

1980s before HPS, Pentium Pro

Idea: Decouple operand 
access and execution via 
two separate instruction 
streams that communicate 
via ISA-visible queues. 

Smith, “Decoupled Access/Execute 
Computer Architectures,” ISCA 1982, 
ACM TOCS 1984.
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Loop Unrolling

Idea: Replicate loop body multiple times within an iteration
+ Reduces loop maintenance overhead

Induction variable increment or loop condition test

+ Enlarges basic block (and analysis scope)
Enables code optimization and scheduling opportunities

-- What if iteration count not a multiple of unroll factor? (need extra code to detect 
this)

-- Increases code size
9



VLIW (Very Long Instruction Word)
A very long instruction word consists of multiple 
independent instructions packed together by the compiler

Packed instructions can be logically unrelated (contrast with 
SIMD)

Idea: Compiler finds independent instructions and statically 
schedules (i.e. packs/bundles) them into a single VLIW 
instruction

Traditional Characteristics
Multiple functional units
Each instruction in a bundle executed in lock step
Instructions in a bundle statically aligned to be directly fed 
into the functional units
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VLIW Concept

Fisher, “Very Long Instruction Word architectures and the 
ELI-512,” ISCA 1983.

ELI: Enormously longword instructions (512 bits)
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SIMD Array Processing vs. VLIW
Array processor

12



VLIW Philosophy
Philosophy similar to RISC (simple instructions)

Except multiple instructions in parallel

RISC (John Cocke, 1970s, IBM 801 minicomputer)
Compiler does the hard work to translate high-level language 
code to simple instructions (John Cocke: control signals)

And, to reorder simple instructions for high performance

Hardware does little translation/decoding very simple

VLIW (Fisher, ISCA 1983)
Compiler does the hard work to find instruction level parallelism 
Hardware stays as simple and streamlined as possible

Executes each instruction in a bundle in lock step
Simple higher frequency, easier to design
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Commercial VLIW Machines
Multiflow TRACE, Josh Fisher
Cydrome Cydra 5, Bob Rau
Transmeta Crusoe: x86 binary-translated into internal VLIW
TI C6000, Trimedia, STMicro (DSP & embedded processors)

Most successful commercially

Intel IA-64
Not fully VLIW, but based on VLIW principles
EPIC (Explicitly Parallel Instruction Computing)
Instruction bundles can have dependent instructions
A few bits in the instruction format specify explicitly which 
instructions in the bundle are dependent on which other ones
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VLIW Tradeoffs
Advantages
+ No need for dynamic scheduling hardware simple hardware
+ No need for dependency checking within a VLIW instruction 

simple hardware for multiple instruction issue + no renaming
+ No need for instruction alignment/distribution after fetch to 

different functional units simple hardware

Disadvantages
-- Compiler needs to find N independent operations

-- If it cannot, inserts NOPs in a VLIW instruction
-- Parallelism loss AND code size increase

-- Recompilation required when execution width (N), instruction 
latencies, functional units change (Unlike superscalar processing)

-- Lockstep execution causes independent operations to stall
-- No instruction can progress until the longest-latency instruction completes
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VLIW NOPs
Cause code bloat + reduce performance

Early VLIW machines suffered from this (Multiflow, Cydrome)

Modern EPIC machines use compaction encoding
Idea: Encode the existence or lack of NOPs rather than 
explicitly inserting NOPs

VLIW Instruction: Variable-length bundles of instructions
Instruction: Fixed length
Instruction format

Header bit (cycle starting with this operation)
Operation type (dispersement)
Pause specifier (cycles of NOPs inserted after current cycle) 
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VLIW NOP Encoding
Conte et al., “Instruction Fetch Mechanisms for VLIW 
Architectures with Compressed Encodings,” MICRO 1996.

+ No NOPs in the code or I-cache 
-- Variable length VLIW instructions, more work decoding
-- Does not eliminate the performance degradation of NOPs
Precursor to IA-64 instruction encodings
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header bit pauseoptype

1  0  1    A
0  2  x    B
0  4  x    C
0  5  x    D
1  0  0    E
0  1  x    F
1  0  0    G
0  7  x    H

063

1  0  2    A
0  2  x    B
0  4  x    C
0  5  x    D
1  0  0    E
1  1  0    F
1  0  0   G
0  7  x    H

063

Latency of A: 
2 cycles



Static Instruction Scheduling
What does the compiler need to know?

For VLIW scheduling and instruction formation
VLIW width
Functional unit types and organization
Functional unit latencies

For scheduling in superscalar, in-order processors
Superscalar width
Functional unit latencies
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VLIW: Finding Independent Operations
Within a basic block, there is limited instruction-level 
parallelism
To find multiple instructions to be executed in parallel, the 
compiler needs to consider multiple basic blocks

Problem: Moving instructions above a branch is unsafe 
because instruction is not guaranteed to be executed

Idea: Enlarge basic blocks at compile time by finding the 
frequently-executed paths

Trace scheduling
Superblock scheduling (we’ve already seen the basic idea)
Hyperblock scheduling
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Safety and Legality in Code Motion
Two characteristics of speculative code motion:

Safety: whether or not spurious exceptions may occur
Legality: whether or not result will be correct always

Four possible types of code motion:
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r1 = load A

r1 = ...

r1 = ... r1 = load A

r4 = r1 ... r1 = r2 & r3

r4 = r1 ...

(a) safe and legal (b) illegal

(c) unsafe (d) unsafe and illegal

r1 = r2 & r3



Code Movement Constraints
Downward

When moving an operation from a BB to one of its dest BB’s,
all the other dest basic blocks should still be able to use the result 
of the operation
the other source BB’s of the dest BB should not be disturbed

Upward
When moving an operation from a BB to its source BB’s

register values required by the other dest BB’s must not be 
destroyed
the movement must not cause new exceptions
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Trace Scheduling
Trace: A frequently executed path in the control-flow graph 
(has multiple side entrances and multiple side exits)

Idea: Find independent operations within a trace to pack 
into VLIW instructions. 

Traces determined via profiling
Compiler adds fix-up code for correctness (if a side entrance 
or side exit of a trace is exercised at runtime)
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Trace Scheduling (II)
There may be conditional branches from the middle of the 
trace (side exits) and transitions from other traces into the 
middle of the trace (side entrances).

These control-flow transitions are ignored during trace 
scheduling.

After scheduling, bookeeping code is inserted to ensure the 
correct execution of off-trace code.

Fisher, “Trace scheduling: A technique for global microcode 
compaction,” IEEE TC 1981. 

23



Trace Scheduling Idea
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Trace Scheduling (III)
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Instr 1
Instr 2
Instr 3
Instr 4
Instr 5

Instr 2
Instr 3
Instr 4
Instr 1
Instr 5

What bookeeping is required when Instr 1
is moved below the side entrance in the trace?



Trace Scheduling (IV)
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Instr 1
Instr 2
Instr 3
Instr 4
Instr 5

Instr 2
Instr 3
Instr 4
Instr 1
Instr 5

Instr 3
Instr 4



Trace Scheduling (V)
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Instr 1
Instr 2
Instr 3
Instr 4
Instr 5

Instr 1
Instr 5
Instr 2
Instr 3
Instr 4

What bookeeping is required when Instr 5
moves above the side entrance in the trace?



Trace Scheduling (VI)
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Instr 1
Instr 2
Instr 3
Instr 4
Instr 5

Instr 1
Instr 5
Instr 2
Instr 3
Instr 4

Instr 5



Trace Scheduling Fixup Code Issues
Sometimes need to copy instructions more than once to 
ensure correctness on all paths (see C below)
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A

B

C
D

E

X

Y

D

B

E
A

C

A’ B’ C’ Y

XB’’D’’E’’

Original
trace

Scheduled
trace

XB

C

D Y

Correctness

C’’’



Trace Scheduling Overview
Trace Selection

select seed block (the highest frequency basic block)
extend trace (along the highest frequency edges)
forward (successor of the last block of the trace)
backward (predecessor of the first block of the trace)
don’t cross loop back edge
bound max_trace_length heuristically

Trace Scheduling
build data precedence graph for a whole trace
perform list scheduling and allocate registers
add compensation code to maintain semantic correctness

Speculative Code Motion (upward)
move an instruction above a branch if safe
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Data Precedence Graph
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i1 i2

i3

i4

i5 i6 i7

i8

i9

i10 i11 i12
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i14

i15

i16

2 2
2

2 2
2

2 2

4 4

222
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List Scheduling
Assign priority to each instruction
Initialize ready list that holds all ready instructions

Ready = data ready and can be scheduled
Choose one ready instruction I from ready list with the 
highest priority

Possibly using tie-breaking heuristics 
Insert I into schedule 

Making sure resource constraints are satisfied
Add those instructions whose precedence constraints are 
now satisfied into the ready list 
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Instruction Prioritization Heuristics
Number of descendants in precedence graph
Maximum latency from root node of precedence graph
Length of operation latency
Ranking of paths based on importance
Combination of above
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VLIW List Scheduling
Assign Priorities
Compute Data Ready List - all operations whose predecessors have 
been scheduled.
Select from DRL in priority order while checking resource constraints
Add newly ready operations to DRL and repeat for next instruction
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1
5

4
3

2
2

5
3

7
2

3
3

8
2

12
2

9
3

13
1

10
1

11
1

6
4

4-wide VLIW Data Ready List

1 {1}

6 3 4 5 {2,3,4,5,6}

9 2 7 8 {2,7,8,9}

12 10 11 {10,11,12}

13 {13}



Trace Scheduling Example (I)
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beq  r1, $0

fdiv  f1, f2, f3
fadd  f4, f1, f5

ld  r2,  0(r3)

add r2, r2, 4

ld  r2,  4(r3)

add  r3, r3, 4

beq  r2, $0

fsub  f2, f2, f6 fsub  f2, f3, f7st.d  f2, 0(r8)

add  r8, r8, 4

990

990

800

800

10

10

200

200

fdiv  f1,  f2,  f3
fadd   f4,  f1,  f5
beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6
st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

B1

B2 B3

B4

B5 B6

B7

r2 and f2

f2 not

9 stalls

1 stall

1 stall

B3

B6

not live 

live out

out



Trace Scheduling Example (II)
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fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

0 stall
0 stall

B3

B6

1 stall

fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4 B3

B6

fadd f4, f1, f5

Split

fadd f4, f1, f5

comp. code



Trace Scheduling Example (III)
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fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4 B3 B6

fadd   f4,  f1,  f5

Split

add  r3, r3, 4
add  r8, r8, 4

Join comp. code

fadd   f4,  f1,  f5

comp. code



Trace Scheduling Example (IV)
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fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

B3
fadd   f4,  f1,  f5

fadd   f4,  f1,  f5

Split
add  r2, r2, 4
beq  r2, $0
fsub  f2,  f2,  f6
st.d  f2, 0(r8)
add  r3, r3, 4
add  r8, r8, 4

B6

add  r3, r3, 4
add  r8, r8, 4

Join comp. code

Copied  

comp. code

split
instructions



Trace Scheduling Example (V)
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fdiv  f1,  f2,  f3
beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

fadd  f4, f1, f5

add  r3, r3, 4
add  r8, r8, 4

fadd  f4, f1, f5
ld  r2,  4(r3)

fadd  f4, f1, f5

fsub  f2, f3, f7

add  r2, r2, 4
beq  r2, $0

fsub  f2, f2, f6
st.d  f2, 0(r8)
add  r3, r3, 4
add  r8, r8, 4

add  r3, r3, 4
add  r8, r8, 4

B3

B6



Trace Scheduling Tradeoffs
Advantages
+ Enables the finding of more independent instructions fewer 

NOPs in a VLIW instruction

Disadvantages
-- Profile dependent 

-- What if dynamic path deviates from trace lots of NOPs in   the 
VLIW instructions

-- Code bloat and additional fix-up code executed
-- Due to side entrances and side exits
-- Infrequent paths interfere with the frequent path

-- Effectiveness depends on the bias of branches
-- Unbiased branches smaller traces less opportunity for 
finding independent instructions
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Superblock Scheduling
Trace: multiple entry, multiple exit block
Superblock: single-entry, multiple exit

A trace with side entrances are eliminated
Infrequent paths do not interfere with the frequent path

+ More optimization/scheduling opportunity than traces
+ Eliminates “difficult” bookkeeping due to side entrances
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Can You Do This with a Trace?
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opA: mul r1,r2,3

opC: mul r3,r2,3

opB: add r2,r2,199

1

1

Original Code

opA: mul r1,r2,3

opC: mul r3,r2,3

opB: add r2,r2,199

1

Code After Superblock Formation

opC’: mul r3,r2,3

opA: mul r1,r2,3

opC: mov r3,r1

opB: add r2,r2,199

1

Code After Common 
Subexpression Elimination

opC’: mul r3,r2,3



Superblock Scheduling Shortcomings
-- Still profile-dependent

-- No single frequently executed path if there is an unbiased 
branch
-- Reduces the size of superblocks

-- Code bloat and additional fix-up code executed
-- Due to side exits
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Hyperblock Scheduling
Idea: Use predication support to eliminate unbiased 
branches and increase the size of superblocks
Hyperblock: A single-entry, multiple-exit block with internal 
control flow eliminated using predication (if-conversion)

Advantages
+ Reduces the effect of unbiased branches on scheduling block 
size

Disadvantages
-- Requires predicated execution support
-- All disadvantages of predicated execution 
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Hyperblock Formation (I)
Hyperblock formation
1. Block selection
2. Tail duplication
3. If-conversion

Block selection
Select subset of BBs for inclusion in HB
Difficult problem
Weighted cost/benefit function

Height overhead
Resource overhead
Dependency overhead
Branch elimination benefit
Weighted by frequency

Mahlke et al., “Effective Compiler Support for Predicated Execution Using the 
Hyperblock,” ISCA 1992.
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BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10



Hyperblock Formation (II)
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BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

81
9

80 20

10

BB6’

9
1

Tail duplication same as with Superblock formation



Hyperblock Formation (III)

47

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

81
9

80 20

10

BB6’

9
1

BB1
p1,p2 = CMPP

BB2 if p1

BB3 if p2

BB4

BB6 BB5

10

BB6’

81 9

1

10

If-convert (predicate) intra-hyperblock branches



Can We Do Better?
Hyperblock still

Profile dependent
Requires fix-up code
And, requires predication support

Single-entry, single-exit enlarged blocks
Block-structured ISA

Optimizes multiple paths (can use predication to enlarge blocks)
No need for fix-up code (duplication instead of fixup)
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VLIW Summary
VLIW simplifies hardware, but requires complex compiler 
techniques
VLIW architectures have not been commercially successful 
in the general-purpose computing market. Why?
-- Too many NOPs (not enough parallelism discovered)
-- Static schedule intimately tied to microarchitecture

-- Code optimized for one generation performs poorly for next
-- No tolerance for variable or long-latency operations (lock step)

Most compiler optimizations developed for VLIW employed 
in optimizing compilers (for superscalar compilation)

Enable code optimizations
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EPIC – Intel IA-64 Architecture
Gets rid of lock-step execution of instructions within a VLIW 
instruction
Idea: More ISA support for static scheduling and parallelization

Specify dependencies within and between VLIW instructions 
(explicitly parallel)

+ No lock-step execution
+ Static reordering of stores and loads + dynamic checking
-- Hardware needs to perform dependency checking (albeit aided by 

software)
-- Other disadvantages of VLIW still exist

Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro, Sep/Oct 
2000.

50



IA-64 Instructions
IA-64 “Bundle” (~EPIC Instruction)

Total of 128 bits
Contains three IA-64 instructions
Template bits in each bundle specify dependencies within a 
bundle

\

IA-64 Instruction
Fixed-length 41 bits long
Contains three 7-bit register specifiers
Contains a 6-bit field for specifying one of the 64 one-bit 
predicate registers
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IA-64 Instruction Bundles and Groups
Groups of instructions can be 
executed safely in parallel

Marked by template bits

Bundles are for packaging
Groups can span multiple bundles

Alleviates recompilation need 
somewhat 
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Template Bits 
Specify two things

Stop information: Boundary of independent instructions
Functional unit information: Where should each instruction be routed
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Non-Faulting Loads and Exception Propagation

ld.s fetches speculatively from memory
i.e. any exception due to ld.s is suppressed

If ld.s r did not cause an exception then chk.s r is an NOP, else a 
branch is taken (to some compensation code)

54

inst 1
inst 2
….

ld r1=[a]
use=r1

unsafe
code 
motion

….

ld.s r1=[a]
inst 1
inst 2
….
br

chk.s r1
use=r1

…. ld r1=[a]

br



Non-Faulting Loads and Exception Propagation in IA-64

Speculatively load data can be consumed prior to check
“speculation” status is propagated with speculated data
Any instruction that uses a speculative result also becomes speculative 
itself (i.e. suppressed exceptions)
chk.s checks the entire dataflow sequence for exceptions
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inst 1
inst 2
….
br

ld r1=[a]
use=r1

unsafe
code 
motion

….

ld.s r1=[a]
inst 1 
inst 2
use=r1
….
br

chk.s use…. ld r1=[a]
use=r1

br



Aggressive ST-LD Reordering in IA-64

ld.a starts the monitoring of any store to the same address as the 
advanced load
If no aliasing has occurred since ld.a, ld.c is a NOP
If aliasing has occurred, ld.c re-loads from memory
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inst 1
inst 2
….
st [?]
….
ld r1=[x]
use=r1

potential
aliasing

ld.a r1=[x]
inst 1
inst 2
….
st [?]
….
ld.c r1=[x]
use=r1

st[?]



Aggressive ST-LD Reordering in IA-64
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inst 1
inst 2
….
st [?]
….
ld r1=[x]
use=r1

potential
aliasing

ld.a r1=[x]
inst 1
inst 2
use=r1
….
st [?]
….
chk.a X
….

st[?]

ld r1=[a]
use=r1



Midterm II Grade Distribution
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