
15-740/18-740
Computer Architecture

Lecture 26: Predication and DAE

Prof. Onur Mutlu
Carnegie Mellon University

Announcements

Project Poster Session
December 10
NSH Atrium

2:30-6:30pm

Project Report Due
December 12
The report should be like a good conference paper

Focus on Projects
All group members should contribute
Use the milestone feedback from the TAs

2

Final Project Report and Logistics

Follow the guidelines in project handout
We will provide the Latex format

Good papers should be similar to the best conference
papers you have been reading throughout the semester

Submit all code, documentation, supporting
documents and data

Provide instructions as to how to compile and use your code
This will determine part of your grade

This is the single most important part of the project

3

Today
Finish up Control Flow

Wish Branches
Dynamic Predicated Execution

Diverge Merge Processor
Multipath Execution

Dual-path Execution
Branch Confidence Estimation
Open Research Issues

Alternative approaches to concurrency
SIMD/MIMD
Decoupled Access/Execute
VLIW
Vector Processors and Array Processors
Data Flow

4

Readings
Recommended:

Kim et al., “Wish Branches: Enabling Adaptive and Aggressive
Predicated Execution,” IEEE Micro Top Picks, Jan/Feb 2006.
Kim et al., “Diverge-Merge Processor: Generalized and Energy-
Efficient Dynamic Predication,” IEEE Micro Top Picks, Jan/Feb
2007.

5

Approaches to Conditional Branch Handling
Branch prediction

Static
Dynamic

Eliminating branches
I. Predicated execution

Static
Dynamic
HW/SW Cooperative

II. Predicate combining (and condition registers)

Multi-path execution
Delayed branching (branch delay slot)
Fine-grained multithreading

6

Approaches to Conditional Branch Handling
Branch prediction

Static
Dynamic

Eliminating branches
I. Predicated execution

Static
Dynamic
HW/SW Cooperative

II. Predicate combining (and condition registers)

Multi-path execution
Delayed branching (branch delay slot)
Fine-grained multithreading

7

D D

Predication (Predicated Execution)
Idea: Compiler converts control dependency into a data
dependency branch is eliminated

Each instruction has a predicate bit set based on the predicate computation
Only instructions with TRUE predicates are committed (others turned into NOPs)

8

(normal branch code)

C B

D

A
T N

p1 = (cond)
branch p1, TARGET

mov b, 1
jmp JOIN

TARGET:
mov b, 0

A

B

C

B
C
D

A

(predicated code)

A

B

C

if (cond) {
b = 0;

}
else {

b = 1;
} p1 = (cond)

(!p1) mov b, 1

(p1) mov b, 0
add x, b, 1add x, b, 1

Conditional Move Operations
Very limited form of predicated execution

CMOV R1 R2
R1 = (ConditionCode == true) ? R2 : R1
Employed in most modern ISAs (x86, Alpha)

9

Predicated Execution (II)
Predicated execution can be high performance and energy-
efficient

10

Fetch Decode Rename Schedule RegisterRead ExecuteA

BC

D

A
E

F

Predicated Execution

Branch Prediction

Pipeline flush!!

E D BF

nop

Fetch Decode Rename Schedule RegisterRead Execute

AB AC B AC BD AD C BE AE D CF B AF E D C B A AF BCDEF E D ABCF E ABCDF E D C B AF E D C ABE D C B AF AF BCDE

Predicated Execution (III)
Advantages:
+ Eliminates mispredictions for hard-to-predict branches

+ No need for branch prediction for some branches
+ Good if misprediction cost > useless work due to predication

+ Enables code optimizations hindered by the control dependency
+ Can move instructions more freely within predicated code
+ Vectorization with control flow

+ Reduces fetch breaks (straight-line code)

Disadvantages:
-- Causes useless work for branches that are easy to predict

-- Reduces performance if misprediction cost < useless work
-- Adaptivity: Static predication is not adaptive to run-time branch behavior. Branch

behavior changes based on input set, phase, control-flow path.

-- Additional hardware and ISA support (complicates renaming and OOO)
-- Cannot eliminate all hard to predict branches

-- Complex control flow graphs, function calls, and loop branches

-- Additional data dependencies delay execution (problem esp. for easy branches)
11

Idealism
Wouldn’t it be nice

If the branch is eliminated (predicated) when it will actually be
mispredicted
If the branch were predicted when it will actually be correctly
predicted

Wouldn’t it be nice
If predication did not require ISA support

12

Improving Predicated Execution
Three major limitations of predication
1. Adaptivity: non-adaptive to branch behavior
2. Complex CFG: inapplicable to loops/complex control flow graphs
3. ISA: Requires large ISA changes

Wish Branches
Solve 1 and partially 2 (for loops)

Dynamic Predicated Execution
Dynamic simple hammock predication

Solves 1 and 3

Diverge-Merge Processor
Solves 1, 2, 3

13

A

Wish Branches
The compiler generates code (with wish branches) that
can be executed either as predicated code or non-
predicated code (normal branch code)

The hardware decides to execute predicated code or
normal branch code at run-time based on the confidence of
branch prediction

Easy to predict: normal branch code

Hard to predict: predicated code

Kim et al., “Wish Branches: Enabling Adaptive and
Aggressive Predicated Execution,” IEEE Micro Top Picks,
Jan/Feb 2006.

14

Wish Jump/Join

15

TARGET:
(p1) mov b,0

TARGET:
(1) mov b,0

(!p1) mov b,1
wish.join !p1 JOIN

(1) mov b,1
wish.join (1) JOIN

Low Confidence

p1 = (cond)
branch p1, TARGET

C B

D

A
T N

mov b, 1
jmp JOIN

TARGET:
mov b,0

normal branch code

A

B

C

B

C

D

A

p1 = (cond)

(!p1) mov b,1

(p1) mov b,0

predicated code

A

B

C

wish jump/join code

B

A

C

D

wish jump

p1=(cond)
wish.jump p1 TARGET

A

B

C

wish join

D JOIN:

High Confidence

nop

nop

Taken

Not-Taken

Wish Loop

16

Low Confidence

X

Y

N
T

LOOP:
add a, a, 1
add i, i, 1
p1 = (i<N)
branch p1, LOOP

EXIT:

X

Y

N
T

H

mov p1, 1

LOOP:
(p1) add a, a, 1
(p1) add i, i, 1
(p1) p1 = (cond)
wish. loop p1, LOOP

EXIT:
normal backward branch code

do {
a++;
i++;

} while (i<N);

X
H
X

wish loop code

Y Y

High Confidence

(1)
(1)
(1)

Wish Branches vs. Predicated Execution
Advantages compared to predicated execution

Reduces the overhead of predication

Increases the benefits of predicated code by allowing the compiler to
generate more aggressively-predicated code
Provides a mechanism to exploit predication to reduce the branch
misprediction penalty for backward branches (Wish loops)

Makes predicated code less dependent on machine configuration (e.g.
branch predictor)

Disadvantages compared to predicated execution
Extra branch instructions use machine resources
Extra branch instructions increase the contention for branch predictor table
entries
Constrains the compiler’s scope for code optimizations

17

Wish Branches vs. Branch Prediction
Advantages

Can eliminate hard-to-predict branches (determined dynamically)

Disadvantages
What if the confidence estimation is wrong?
Requires predication support in the ISA
Requires extra instructions in the ISA
Inapplicable to complex control flow graphs

Remember the three major limitations of predication
1. Adaptivity: non-adaptive to branch behavior
2. Complex CFG: inapplicable to loops/complex control flow graphs
3. ISA: Requires large ISA changes

18

Dynamic Predicated Execution (I)
The compiler identifies

Diverge branches

Control-flow merge (CFM) points

The microarchitecture decides when and what to predicate

dynamically.

Klauser et al., “Dynamic hammock predication,” PACT 1998.
Kim et al., “Diverge-Merge Processor: Generalized and
Energy-Efficient Dynamic Predication,” IEEE Micro Top
Picks, Jan/Feb 2007.

19

Dynamic Hammock Predication (II)

20

select-µops (φ-nodes in SSA)

A

B

C

H

C B

H

A
T N

mov R1, 1
jmp JOIN

TARGET:
mov R1, 0

A

B

C

p1 = (cond)
branch p1, TARGET

(mov R1, 1)
PR10 = 1

(mov R1, 0)
PR11 = 0

PR12 = (cond) ? PR11 : PR10

Low-confidence

H JOIN:
add R5, R1, 1

Diverge-Merge Processor (III)

2121

C B

E

D

F G

Frequently executed path
Not frequently executed path

A

C
E

B

H

Insert select-µops

Diverge Branch

CFM point

A

H

Diverge-Merge Processor (IV)

22

diverge-branch executed block CFM point

C B

E

D

F G

Frequently executed path
Not frequently executed path

A A A

A A A

A

H

Dynamic Predicated Execution (V)
Advantages:
+ Adapts to branch behavior based on accurate runtime information

+ Easy to predict: Predict
+ Hard to predict: Predicate
++ Hardware can more accurately determine easy vs. hard

+ Enables predication of complex control flow graphs, loops, …
+ No need for predicated instructions & pred. registers in the ISA

Disadvantages:
-- Hardware complexity increases (see Kim et al., MICRO 2006)
-- Still requires some ISA support

-- Determining CFM points is costly in hardware
-- No code optimization benefits of conventional predication

23

Multi-Path Execution
Idea: Execute both paths after a conditional branch

For all branches: Riseman and Foster, “The inhibition of potential parallelism
by conditional jumps,” IEEE Transactions on Computers, 1972.
For a hard-to-predict branch: Use dynamic confidence estimation

Advantages:
+ Improves performance if misprediction cost > useless work
+ No ISA change needed

Disadvantages:
-- What happens when the machine encounters another hard-to-predict

branch? Execute both paths again?
-- Paths followed quickly become exponential

-- Each followed path requires its own register alias table, PC, GHR
-- Wasted work (and reduced performance) if paths merge

24

Dual-Path Execution versus Dynamic Predication

25

Low-confidence

C

D

E

F

B

D

E

F

A

BC

D

E

F

path 1 path 2

C

D

E

F

B

path 1 path 2

Dual-path Predicated Execution

CFMCFM

Summary of Alternative Branch Handling Techniques

26

A

simple hammock

A

nested hammock

A

frequently-hammock

A

loop

A

.

non-merging

Diverge-
Merge

Dynamic-
hammock

Software
predication

Wish br.

Dual-path

sometimes

sometimes

Distribution of Mispredicted Branches

Kim et al., “Diverge-Merge Processor (DMP): Dynamic Predicated Execution of
Complex Control-Flow Graphs Based on Frequently Executed Paths,” MICRO 2006.

Slides 24-27

27

0

2

4

6

8

10

12

gz
ip vp

r
gc

c
mcf
cra

fty
pa

rse
r

eo
n

pe
rlb

mk
ga

p
vo

rte
x

bz
ip2 tw
olf

co
mp go ijp

eg li
m88

ks
im

am
ea

n

M
is

pr
ed

ic
tio

ns
 p

er
 k

ilo
 in

st
ru

ct
io

ns
 (M

PK
I)

non-merging
loop
frequently
nested
simple

Performance of Alternative Techniques

28

0

5

10

15

20

25

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t (

%
) DMP

dynamic-hammock
dual-path
multipath
limited software predication
wish branches

Energy Savings of Alternative Techniques

29

-5

0

5

10

R
ed

uc
tio

n
(%

)

DMP
dynamic-hammock
dual-path
multipath
limited software predication
wish branches

Branch Confidence Estimation
How do we dynamically decide whether or not a branch is
hard to predict?

Idea: Use a table of counters to keep track of the
mispredictions for a branch (organized like a branch predictor)
If (misprediction saturating counter > threshold)

Estimate branch is difficult to predict
Jacobsen et al., “Assigning Confidence to Conditional Branch Predictions,”
MICRO 1996.

Many things can be done for a difficult to predict branch
Stall fetch (save energy)
Fetch from a thread with easier-to-predict branches
Wish branches, dynamic predicated execution, selective dual-path
Reverse branch prediction?

30

Research Issues in Control Flow Handling
More hardware/software cooperation

Software has scope and powerful analysis techniques
Hardware has dynamic information
Can we combine the strengths of both?

Reducing waste
Exploiting control flow independence
Identifying difficult-to-predict branches
Gating fetch, context switching
Recycling useful work done on wrong path

Is wrong-path execution always useless?

Indirect jump handling
Common in object oriented languages/programs and virtual
machines

31

Alternative Approaches to
Concurrency

32

Outline
We have seen out-of-order, superscalar execution
(restricted data flow) to exploit instruction level parallelism

Burton Smith calls this the HPS cannon
B. J. Smith, “Reinventing Computing,” talk at various venues.

There are many other approaches to concurrency
SIMD/MIMD classification
DAE: Decoupled Access/Execute
VLIW: Very Long Instruction Word
SIMD: Vector Processors and Array Processors
Data Flow Mainly in ECE 742 (Spring 2011)
Multithreading Mainly in ECE 742 (Spring 2011)
Multiprocessing Mainly in ECE 742 (Spring 2011)
Systolic Arrays ECE 742 (Spring 2011)

33

Readings
Required:

Fisher, “Very Long Instruction Word architectures and the ELI-
512,” ISCA 1983.
Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro
2000.

Recommended:
Russell, “The CRAY-1 computer system,” CACM 1978.
Rau and Fisher, “Instruction-level parallel processing: history,
overview, and perspective,” Journal of Supercomputing, 1993.
Faraboschi et al., “Instruction Scheduling for Instruction Level
Parallel Processors,” Proc. IEEE, Nov. 2001.

34

SIMD/MIMD Classification of Computers
Mike Flynn, “Very High Speed Computing Systems,” Proc. of
the IEEE, 1966

SISD: Single instruction operates on single data element
SIMD: Single instruction operates on multiple data elements

Array processor
Vector processor

MISD? Multiple instructions operate on single data element
Closest form: systolic array processor?

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

Multiprocessor
Multithreaded processor

35

SPMD
Single procedure/program, multiple data

This is a programming model rather than computer organization

Each processing element executes the same procedure, except on
different data elements

Procedures can synchronize at certain points in program, e.g. barriers

Essentially, multiple instruction streams execute the same
program

Each program/procedure can 1) execute a different control-flow path,
2) work on different data, at run-time
Many scientific applications programmed this way and run on MIMD
computers (multiprocessors)
Modern GPUs programmed in a similar way on a SIMD computer

36

SISD Parallelism Extraction Techniques
We have already seen

Superscalar execution
Out-of-order execution

Are there simpler ways of extracting SISD parallelism?
Decoupled Access/Execute
VLIW (Very Long Instruction Word)

37

Decoupled Access/Execute
Motivation: Tomasulo’s algorithm too complex to implement

1980s before HPS, Pentium Pro

Idea: Decouple operand
access and execution via
two separate instruction
streams that communicate
via ISA-visible queues.

Smith, “Decoupled Access/Execute
Computer Architectures,” ISCA 1982,
ACM TOCS 1984.

38

Decoupled Access/Execute (II)
Compiler generates two instruction streams (A and E)

Synchronizes the two upon control flow instructions (using branch queues)

39

Decoupled Access/Execute (III)
Advantages:
+ Execute stream can run ahead of the access stream and vice

versa
+ If A takes a cache miss, E can perform useful work
+ If A hits in cache, it supplies data to lagging E
+ Queues reduce the number of required registers

+ Limited out-of-order execution without wakeup/select complexity

Disadvantages:
-- Compiler support to partition the program and manage queues

-- Determines the amount of decoupling
-- Branch instructions require synchronization between A and E
-- Multiple instruction streams (can be done with a single one,
though)

40

Astronautics ZS-1
Single stream
steered into A and
X pipelines
Each pipeline in-
order

Smith et al., “The
ZS-1 central
processor,”
ASPLOS 1987.

Smith, “Dynamic
Instruction
Scheduling and
the Astronautics
ZS-1,” IEEE
Computer 1989.

41

Astronautics ZS-1 Instruction Scheduling
Dynamic scheduling

A and X streams are issued/executed independently
Loads can bypass stores in the memory unit (if no conflict)
Branches executed early in the pipeline

To reduce synchronization penalty of A/X streams
Works only if the register a branch sources is available

Static scheduling
Move compare instructions as early as possible before a branch

So that branch source register is available when branch is decoded

Reorder code to expose parallelism in each stream
Loop unrolling:

Reduces branch count + exposes code reordering opportunities

42

Loop Unrolling

Idea: Replicate loop body multiple times within an iteration
+ Reduces loop maintenance overhead

Induction variable increment or loop condition test

+ Enlarges basic block (and analysis scope)
Enables code optimization and scheduling opportunities

-- What if iteration count not a multiple of unroll factor? (need extra code to detect
this)

-- Increases code size
43

