
15-740/18-740
Computer Architecture

Lecture 25: Control Flow II

Prof. Onur Mutlu
Carnegie Mellon University

Announcements

Midterm II
November 22

Project Poster Session
December 10
NSH Atrium

2:30-6:30pm

2

Readings
Required:

McFarling, “Combining Branch Predictors,” DEC WRL TR, 1993.
Carmean and Sprangle, “Increasing Processor Performance by
Implementing Deeper Pipelines,” ISCA 2002.

Recommended:
Evers et al., “An Analysis of Correlation and Predictability: What Makes Two-
Level Branch Predictors Work,” ISCA 1998.
Yeh and Patt, “Alternative Implementations of Two-Level Adaptive Branch
Prediction,” ISCA 1992.
Jouppi and Wall, “Available instruction-level parallelism for superscalar and
superpipelined machines,” ASPLOS 1989.
Kim et al., “Diverge-Merge Processor (DMP): Dynamic Predicated Execution
of Complex Control-Flow Graphs Based on Frequently Executed Paths,”
MICRO 2006.
Jimenez and Lin, “Dynamic Branch Prediction with Perceptrons,” HPCA 2001.

3

Approaches to Conditional Branch Handling
Branch prediction

Static
Dynamic

Eliminating branches
I. Predicated execution

Static
Dynamic
HW/SW Cooperative

II. Predicate combining (and condition registers)

Multi-path execution
Delayed branching (branch delay slot)
Fine-grained multithreading

4

Direction Prediction
Compile time (static)

Always not taken
Always taken
BTFN (Backward taken, forward not taken)
Profile based (likely direction)
Program analysis based (likely direction)

Run time (dynamic)
Last time (single-bit)
Two-bit counter based
Two-level (global vs. local)
Hybrid

5

Two-Bit Counter Based Prediction

Counter using saturating arithmetic
There is a symbol for maximum and minimum values

6

0 1

Finite State Machine for
Last-time Predictor

00 01

10 11

Finite State machine
for 2BC (2-Bit Counter)

Predict NT
Predict T

Transistion on T outcome

Transistion on NT outcome

Two-Bit Counter Based Prediction
Each branch associated with a two-bit counter
One more bit provides hysteresis
A strong prediction does not change with one single
different outcome

Accuracy for a loop with N iterations = (N-1)/N
TNTNTNTNTNTNTNTNTNTN 50% accuracy

(assuming init to weakly taken)

+ Better prediction accuracy
-- More hardware cost (but counter can be part of a BTB entry)

7

Can We Do Better?

McFarling, “Combining Branch Predictors,” DEC WRL TR
1993.

8

Two Level Branch Predictors
First level: Branch history register (N bits)

The direction of last N branches
Second level: Table of saturating counters for each history entry

The direction the branch took the last time the same history was
seen?

9

1 1 ….. 1 0

BHR
(branch
history
register)

00 …. 00

00 …. 01

00 …. 10

11 …. 11

0 1

2 3

index

Pattern History Table (PHT)

previous one

Two-Level Predictor Variations
BHR can be global (G), per set of branches (S), or per branch (P)
PHT counters can be adaptive (A) or static (S)
PHT can be global (g), per set of branches (s), or per branch (p)

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,”
MICRO 1991.

10

Global Branch Correlation (I)
GAg: Global branch predictor (commonly called)
Exploits global correlation across branches
Recently executed branch outcomes in the execution path
is correlated with the outcome of the next branch

If first branch not taken, second also not taken

If first branch taken, second definitely not taken

11

Global Branch Correlation (II)

If Y and Z both taken, then X also taken
If Y or Z not taken, then X also not taken

Only 3 past branches’ directions
really matter
Evers et al., “An Analysis of
Correlation and Predictability:
What Makes Two-Level Branch
Predictors Work,” ISCA 1998.

12

Global Two-Level Prediction
Idea: Have a single history register for all branches (called
global history register)

+ Exploits correlation between different branches (as well as the instances
of the same branch)

-- Different branches interfere with each other in the history register
cannot separate the local history of each branch

13

How Does the Global Predictor Work?

14

Pentium Pro Branch Predictor
GAs
4-bit global history register
Multiple pattern history tables (of 2 bit counters)

PHT determined by lower order bits of the branch address

15

Local Two-Level Prediction
PAg, Pas, PAp
Global history register produces interference

Different branches can go different ways for the same history
Idea: Have a per-branch history register

+ No interference in the history register between branches
-- Cannot exploit global branch correlation

16

Interference in the PHTs
Sharing the PHTs between histories/branches leads to interference

Different branches map to the same PHT entry and modify it
Can be positive, negative, or neutral

Interference can be eliminated by dedicating a PHT per branch
-- Too much hardware cost
How else can you eliminate interference?

17

Reducing Interference in PHTs (II)
Idea 1: Randomize the indexing function into the PHT such that
probability of two branches mapping to the same entry reduces

Gshare predictor: GHR hashed with the Branch PC
+ Better utilization of PHT
+ More context information
-- Increases access latency

McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.

18

Reducing Interference in PHTs (III)
Idea 2: Agree prediction

Each branch has a “bias” bit associated with it in BTB
Ideally, most likely outcome for the branch

High bit of the PHT counter indicates whether or not the prediction
agrees with the bias bit (not whether or not prediction is taken)

+ Reduces negative interference (Why???)
-- Requires determining bias bits (compiler vs. hardware)

19

Sprangle et al., “The Agree Predictor:
A Mechanism for Reducing Negative
Branch History Interference,” ISCA
1997.

Why Does Agree Prediction Make Sense?
Assume two branches (b1, b2) have taken rates of 85% and 15%.
Assume they conflict in the PHT

Probability they have opposite outcomes
Baseline predictor:

P (b1 T, b2 NT) + P (b1 NT, b2 T) = (85%*85%) + (15%*15%) =
74.5%

Agree predictor:
Assume bias bits are set to T (b1) and NT (b2)
P (b1 agree, b2 disagree) + P (b1 disagree, b2 agree)
= (85%*15%) + (15%*85%) = 25.5%

Agree prediction reduces the probability that two branches have
opposite predictions in the PHT entry

Works because most branches are biased (not 50% taken)

20

Hybrid Branch Predictors
Idea: Use more than one type of predictors (i.e.,
algorithms) and select the “best” prediction

E.g., hybrid of 2-bit counters and global predictor

Advantages:
+ Better accuracy: different predictors are better for different branches
+ Reduced warmup time (faster-warmup predictor used until the
slower-warmup predictor warms up)

Disadvantages:
-- Need “meta-predictor” or “selector”
-- Longer access latency

McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.

21

Alpha 21264 Tournament Predictor

Minimum branch penalty: 7 cycles
Typical branch penalty: 11+ cycles
48K bits of target addresses stored in I-cache
32-entry return address stack
Predictor tables are reset on a context switch

22

Effect on Prediction Accuracy
Bimodal: table of 2bc indexed by branch address

23

Improved Branch Prediction Algorithms
Perceptron predictor

Learns the correlations between branches in the global history register and
the current branch using a perceptron
Past branches that are highly correlated have larger weights and influence
the prediction outcome more
Jimenez and Lin, “Dynamic Branch Prediction with Perceptrons,” HPCA 2001.

Enhanced hybrid predictors
Multi-hybrid with different history lengths
Seznec, “Analysis of the O-GEometric History Length Branch Predictor,” ISCA
2005.

Pre-execution
Similar to pre-execution based prefetching
Chappell et al., “Difficult-Path Branch Prediction Using Subordinate
Microthreads,” ISCA 2002.

24

Call and Return Prediction
Direct calls are easy to predict

Always taken, single target
Call marked in BTB, target predicted by BTB

Returns are indirect branches
A function can be called from many points in code
A return instruction can have many target addresses

Next instruction after each call point for the same function

Observation: Usually a return matches a call
Idea: Use a stack to predict return addresses (Return Address Stack)

A fetched call: pushes the return (next instruction) address on the stack
A fetched return: pops the stack and uses the address as its predicted
target
Accurate most of the time: 8-entry stack > 95% accuracy

25

Call X
…
Call X

…
Call X
…
Return

Return
Return

Indirect Branch Prediction (I)
Register-indirect branches have multiple targets

Used to implement
Switch-case statements
Virtual function calls
Jump tables (of function pointers)
Interface calls

26

TARG A+1

A
T N

α β

A

δ

?

Conditional (Direct) Branch Indirect Jump

ρ

br.cond TARGET R1 = MEM[R2]
branch R1

Indirect Branch Prediction (II)
No direction prediction needed
Idea 1: Predict the last resolved target as the next fetch address
+ Simple: Use the BTB to store the target address
-- Inaccurate: 50% accuracy (empirical). Many indirect branches switch

between different targets

Idea 2: Use history based target prediction
E.g., Index the BTB with GHR XORed with Indirect Branch PC
Chang et al., “Target Prediction for Indirect Jumps,” ISCA 1997.

+ More accurate
-- An indirect branch maps to (too) many entries in BTB

-- Conflict misses with other branches (direct or indirect)
-- Inefficient use of space if branch has few target addresses

27

Indirect Branch Prediction (III)
Idea 3: Treat an indirect branch as “multiple virtual
conditional branches” in hardware

Only for prediction purposes
Predict each “virtual conditional branch” iteratively
Kim et al., “VPC prediction,” ISCA 2007.

28

0xabcd
0x018a
0x7a9c
0x…

iteration
counter value

PC

Virtual PC

Hash value table

VPC Prediction (I)

29

1111

L

PC

GHR

Direction Predictor

BTB

not taken

TARG1

cond. jump TARG1 // VPC: L
cond. jump TARG2 // VPC: VL2
cond. jump TARG3 // VPC: VL3
cond. jump TARG4 // VPC: VL4

call R1 // PC: L
Real Instruction

Virtual Instructions

Next iteration

VPC Prediction (II)

30

1110

VL2

VPC

VGHR

BTB

not taken

TARG2

cond. jump TARG1 // VPC: L
cond. jump TARG2 // VPC: VL2
cond. jump TARG3 // VPC: VL3
cond. jump TARG4 // VPC: VL4

call R1 // PC: L
Real Instruction

Virtual Instructions

Direction Predictor

Next iteration

VPC Prediction (III)

31

cond. jump TARG1 // VPC: L
cond. jump TARG2 // VPC: VL2
cond. jump TARG3 // VPC: VL3
cond. jump TARG4 // VPC: VL4

call R1 // PC: L
Real Instruction

Virtual Instructions

1100

VL3

VPC

VGHR

BTB

taken

TARG3

Direction Predictor

Predicted Target
= TARG3

VPC Prediction (IV)
Advantages:
+ High prediction accuracy (>90%)
+ No separate indirect branch predictor
+ Resource efficient (reuses existing components)
+ Improvement in conditional branch prediction algorithms also

improves indirect branch prediction
+ Number of locations in BTB consumed for a branch = number

of target addresses seen

Disadvantages:
-- Takes multiple cycles (sometimes) to predict the target

address
-- More interference in direction predictor and BTB

32

Issues in Branch Prediction (I)
Need to identify a branch before it is fetched

How do we do this?
BTB hit indicates that the fetched instruction is a branch
BTB entry contains the “type” of the branch

What if no BTB?
Bubble in the pipeline until target address is computed
E.g., IBM POWER4

33

Issues in Branch Prediction (II)
Latency: Prediction is latency critical

Need to generate next fetch address for the next cycle
Bigger, more complex predictors are more accurate but slower

34

PC + inst size

Next Fetch
Address

BTB target
Return Address Stack target

Indirect Branch Predictor target
Resolved target from Backend

???

Issues in Branch Prediction (III)
State recovery upon misprediction

Misprediction detected when branch executes
Need to flush all instructions younger than the branch

Easy to invalidate instructions not yet renamed
Need to invalidate instructions in reservation stations and reorder
buffer

Need to recover the Register Alias Table
Pentium 4: Retirement RAT copied to Frontend RAT
+ Simple
-- Increases recovery latency (Branch has to be the oldest instruction in

the machine!)

Alpha 21264: Checkpoint RAT when branch is renamed, recover
to checkpoint when misprediction detected
+ Immediate recovery of RAT
-- More expensive (multiple RATs)

35

Why is this not as bad???

Open Research Issues in Branch Prediction
Better algorithms

Machine learning techniques?
Needs to be low cost and *fast*

Progressive evaluation of earlier prediction for a branch
As branch moves through the pipeline, more information
becomes available can we use this to override earlier
prediction?
Falcon et al., “Prophet-critic hybrid branch prediction,” ISCA
2004.

36

Perceptron Branch Predictor (I)
Idea: Use a perceptron to learn the correlations between branch history
register bits and branch outcome
A perceptron learns a target Boolean function of N inputs

Jimenez and Lin, “Dynamic Branch Prediction with Perceptrons,” HPCA 2001.
Rosenblatt, “Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms,” 1962

37

Each branch associated with a perceptron

A perceptron contains a set of weights wi
Each weight corresponds to a bit in
the GHR
How much the bit is correlated with the
direction of the branch
Positive correlation: large + weight
Negative correlation: large - weight

Prediction:
Express GHR bits as 1 (T) and -1 (NT)
Take dot product of GHR and weights
If output > 0, predict taken

Perceptron Branch Predictor (II)

38

Bias weight
(bias of branch independent of
the history)

Dot product of GHR
and perceptron weights

Output
compared
to 0

Prediction function:

Training function:

Perceptron Branch Predictor (III)
Advantages
+ More sophisticated learning mechanism better accuracy

Disadvantages
-- Hard to implement (adder tree to compute perceptron output)
-- Can learn only linearly-separable functions

e.g., cannot learn XOR type of correlation between 2 history
bits and branch outcome

39

Approaches to Conditional Branch Handling
Branch prediction

Static
Dynamic

Eliminating branches
I. Predicated execution

Static
Dynamic
HW/SW Cooperative

II. Predicate combining (and condition registers)

Multi-path execution
Delayed branching (branch delay slot)
Fine-grained multithreading

40

D D

Predication (Predicated Execution)
Idea: Compiler converts control dependency into a data
dependency branch is eliminated

Each instruction has a predicate bit set based on the predicate computation
Only instructions with TRUE predicates are committed (others turned into NOPs)

41

(normal branch code)

C B

D

A
T N

p1 = (cond)
branch p1, TARGET

mov b, 1
jmp JOIN

TARGET:
mov b, 0

A

B

C

B
C
D

A

(predicated code)

A

B

C

if (cond) {
b = 0;

}
else {

b = 1;
} p1 = (cond)

(!p1) mov b, 1

(p1) mov b, 0
add x, b, 1add x, b, 1

Conditional Move Operations
Very limited form of predicated execution

CMOV R1 R2
R1 = (ConditionCode == true) ? R2 : R1
Employed in most modern ISAs (x86, Alpha)

42

Predicated Execution (II)
Predicated execution can be high performance and energy-
efficient

43

Fetch Decode Rename Schedule RegisterRead ExecuteA

BC

D

A
E

F

Predicated Execution

Branch Prediction

Pipeline flush!!

E D BF

nop

Fetch Decode Rename Schedule RegisterRead Execute

AB AC B AC BD AD C BE AE D CF B AF E D C B A AF BCDEF E D ABCF E ABCDF E D C B AF E D C ABE D C B AF AF BCDE

Predicated Execution (III)
Advantages:
+ Eliminates mispredictions for hard-to-predict branches

+ No need for branch prediction for some branches
+ Good if misprediction cost > useless work due to predication

+ Enables code optimizations hindered by the control dependency
+ Can move instructions more freely within predicated code
+ Vectorization with control flow

+ Reduces fetch breaks (straight-line code)

Disadvantages:
-- Causes useless work for branches that are easy to predict

-- Reduces performance if misprediction cost < useless work
-- Adaptivity: Static predication is not adaptive to run-time branch behavior. Branch

behavior changes based on input set, phase, control-flow path.

-- Additional hardware and ISA support (complicates renaming and OOO)
-- Cannot eliminate all hard to predict branches

-- Complex control flow graphs, function calls, and loop branches

-- Additional data dependencies delay execution (problem esp. for easy branches)
44

