
15-740/18-740
Computer Architecture

Lecture 24: Control Flow

Prof. Onur Mutlu
Carnegie Mellon University

Announcements

  Midterm II
  November 22

  Project Poster Session
  December 10 (tentative)

2

Last 3 Lectures: Superscalar Processing
  Fetch (supply N instructions)
  Decode (generate control signals for N instructions)
  Rename (detect dependencies between N instructions)
  Dispatch (determine readiness and select N instructions to

execute in-order or out-of-order)
  Execute (have enough functional units to execute N

instructions + forwarding paths to forward results of N
instructions)

  Write into Register File (have enough ports to write results
of N instructions)

  Retire (N instructions)

3

Last Lecture
  Dependency check logic
  Renaming
  Wakeup, selection, data forwarding (bypass)
  Retirement and resource deallocation

  Reducing complexity
  Block structured ISA
  Clustering

4

Readings
  Required:

  McFarling, “Combining Branch Predictors,” DEC WRL TR, 1993.
  Carmean and Sprangle, “Increasing Processor Performance by

Implementing Deeper Pipelines,” ISCA 2002.

  Recommended:
  Evers et al., “An Analysis of Correlation and Predictability: What Makes Two-

Level Branch Predictors Work,” ISCA 1998.
  Yeh and Patt, “Alternative Implementations of Two-Level Adaptive Branch

Prediction,” ISCA 1992.
  Jouppi and Wall, “Available instruction-level parallelism for superscalar and

superpipelined machines,” ASPLOS 1989.
  Kim et al., “Diverge-Merge Processor (DMP): Dynamic Predicated Execution

of Complex Control-Flow Graphs Based on Frequently Executed Paths,”
MICRO 2006.

  Jimenez and Lin, “Dynamic Branch Prediction with Perceptrons,” HPCA 2001.
5

The Branch Problem
  Control flow instructions (branches) are frequent

  15-25% of all instructions

  Problem: Next fetch address after a control-flow instruction
is not determined after N cycles in a pipelined processor
  N cycles: (minimum) branch resolution latency
  Stalling on a branch wastes instruction processing bandwidth

(i.e. reduces IPC)
  N x IW instruction slots are wasted

  How do we keep the pipeline full after a branch?
  Problem: Need to determine the next fetch address when

the branch is fetched (to avoid a pipeline bubble)

6

The Branch Problem
  Assume a 5-wide superscalar pipeline with 20-cycle branch resolution

latency

  How long does it take to fetch 500 instructions?
  Assume no fetch breaks and 1 out of 5 instructions is a branch
  100% accuracy

  100 cycles (all instructions fetched on the correct path)
  No wasted work

  99% accuracy
  100 (correct path) + 20 (wrong path) = 120 cycles
  20% extra instructions fetched

  98% accuracy
  100 (correct path) + 20 * 2 (wrong path) = 140 cycles
  40% extra instructions fetched

  95% accuracy
  100 (correct path) + 20 * 5 (wrong path) = 200 cycles
  100% extra instructions fetched

7

Branch Types
Type Direction at

fetch time
Number of
possible next
fetch addresses?

When is next
fetch address
resolved?

Conditional Unknown 2 Execution (register
dependent)

Unconditional Always taken 1 Decode (PC +
offset)

Call Always taken 1 Decode (PC +
offset)

Return Always taken Many Execution (register
dependent)

Indirect Always taken Many Execution (register
dependent)

8

Different branch types can be handled differently

Approaches to Conditional Branch Handling
  Branch prediction

  Static
  Dynamic

  Eliminating branches
I. Predicated execution

  Static
  Dynamic
  HW/SW Cooperative

II. Predicate combining (and condition registers)

  Multi-path execution
  Delayed branching (branch delay slot)
  Fine-grained multithreading

9

Predicate Combining

  Complex predicates are converted into multiple branches
  if ((a == b) && (c < d) && (a > 5000)) { … }

  3 conditional branches

  Problem: This increases the number of control
dependencies

  Idea: Combine predicate operations to feed a single branch
instruction
  Predicates stored and operated on using condition registers
  A single branch checks the value of the combined predicate

+ Fewer branches in code fewer mipredictions/stalls
-- Possibly unnecessary work

 -- If the first predicate is false, no need to compute other predicates
  Condition registers exist in IBM RS6000 and the POWER architecture

10

Delayed Branching (I)
  Change the semantics of a branch instruction

  Branch after N instructions
  Branch after N cycles

  Idea: Delay the execution of a branch. N instructions (delay
slots) that come after the branch are always executed
regardless of branch direction.

  Problem: How do you find instructions to fill the delay
slots?
  Branch must be independent of delay slot instructions

  Unconditional branch: Easier to find instructions to fill the delay slot
  Conditional branch: Condition computation should not depend on

instructions in delay slots difficult to fill the delay slot
11

Delayed Branching (II)

12

A
B
C
BC X
D
E
F

F E

A
A B
B C

C BC
BC

G X:
--

A

B

C
BC X

D
E
F
G X:

F E

A
A C
C BC

BC B
B G

-- G

Normal code: Timeline: Delayed branch code: Timeline:

6 cycles 5 cycles

Fancy Delayed Branching (III)
  Delayed branch with squashing

  In SPARC
  If the branch falls through (not taken), the delay slot

instruction is not executed
  Why could this help?

13

A
B
C
BC X
D
E

X:

Normal code: Delayed branch code:

A
B
C
BC X

D
E

X:

NOP

Delayed branch w/ squashing:

A
B
C
BC X

D
E

X:

A

Delayed Branching (IV)
  Advantages:

 + Keeps the pipeline full with useful instructions assuming
 1. Number of delay slots == number of instructions to keep the

pipeline full before the branch resolves
 2. All delay slots can be filled with useful instructions

  Disadvantages:
-- Not easy to fill the delay slots (even with a 2-stage pipeline)
 1. Number of delay slots increases with pipeline depth, issue width,

instruction window size.
 2. Number of delay slots should be variable with OoO

 execution. Why?
 -- Ties ISA semantics to implementation
 -- SPARC, MIPS, HP-PA: 1 delay slot
 -- What if pipeline implementation changes with the next design?

14

Fine-Grained Multithreading
  Idea: Hardware has multiple thread contexts. Each cycle,

fetch engine fetches from a different thread.
  By the time the fetched branch resolves, there is no need to

fetch another instruction from the same thread
  Branch resolution latency overlapped with execution of other

threads’ instructions

+ No logic needed for branch prediction,
 (also for dependency checking)

-- Single thread performance suffers
-- Does not overlap latency if not enough
 threads to cover the whole pipeline
-- Extra logic for keeping thread contexts

15

16

Branch Prediction

Fetch Decode Rename Schedule RegisterRead Execute

Target Misprediction Detected! Flush the pipeline

Pipeline

A

B3 B1

D

E

F

A B1 A B1 A D B1 A D E B1 A D E F B1 A D E F B1 A D E F B1 A D E F B1 A D E F B1 A D E F B1 A D E F B1 A D E F B1 A D E F B3

What to fetch next? Fetch from the correct target

  Processors are pipelined to increase concurrency
  How do we keep the pipeline full in the presence of branches?

  Guess the next instruction when a branch is fetched
  Requires guessing the direction and target of a branch

Branch condition, TARGET

Verify the Prediction

Branch Prediction
  Idea: Predict the next fetch address (to be used in the next

cycle) when the branch is fetched

  Requires three things to be predicted:
  Whether the fetched instruction is a branch
  Conditional branch direction
  Branch target address (if taken)

  Target addresses remain the same for conditional direct
branches across dynamic instances
  Idea: Cache the target address from previous instance
  Called Branch Target Buffer (BTB) or Branch Target Address

Cache

17

Branch Target Buffer
  Cache of branch target addresses accessed in parallel with the I-cache in the fetch stage
  Updated only by taken branches
  If BTB hit and the instruction is a predicted-taken branch

  target from the BTB (assuming hit) is used as fetch address in the next cycle
  If BTB miss or the instruction is a predicted-not-taken branch

  PC+N is used as the next fetch address in the next cycle

18

ICACHE

PC
k

entry PC predicted
 target

=

hit? target

BTB

Branch Target Buffer in Fetch Stage

19

20

target address

A Frontend with BTB and Direction Prediction

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history

XOR

PC + inst size

taken?

Next Fetch
Address

hit?

Which direction earlier
branches went

Address of the
current branch

Direction Prediction
  Compile time (static)

  Always not taken
  Always taken
  BTFN (Backward taken, forward not taken)
  Profile based (likely direction)
  Program analysis based (likely direction)

  Run time (dynamic)
  Last time (single-bit)
  Two-bit counter based
  Two-level (global vs. local)
  Hybrid

21

Static Branch Prediction (I)
  Always not-taken

  Simple to implement: no need for BTB, no direction prediction
  Low accuracy: ~40%
  Compiler can layout code such that the likely path is the “not-

taken” path: Good for wide fetch as well!

  Always taken
  No direction prediction
  Better accuracy: ~60%

  Backward branches (i.e. loop branches) are usually taken
  Backward branch: target address lower than branch PC

  Backward taken, forward not taken (BTFN)
  Predict backward (loop) branches as taken, others not-taken

22

Static Branch Prediction (II)
  Profile-based

  Idea: Compiler determines likely direction for each branch
using profile run. Encodes that direction as a hint bit in the
branch instruction format.

+ Per branch prediction (more accurate than schemes in
previous slide)

-- Requires hint bits in the branch instruction format
-- Accuracy depends on dynamic branch behavior:
 TTTTTTTTTTNNNNNNNNNN 50% accuracy

TNTNTNTNTNTNTNTNTNTN 50% accuracy
-- Accuracy depends on the representativeness of profile input

set

23

Static Branch Prediction (III)
  Program-based

  Idea: Use heuristics based on program analysis to determine
statically-predicted direction

  Opcode heuristic: Predict BLEZ as NT (negative integers used as
error values in many programs)

  Loop heuristic: Predict a branch guarding a loop execution as taken
(i.e., execute the loop)

  Pointer and FP comparisons: Predict not equal

+ Does not require profiling
-- Heuristics might be not representative or good
-- Requires ISA support

  Ball and Larus, ”Branch prediction for free,” PLDI 1993.
  20% misprediction rate

24

Dynamic Branch Prediction
  Idea: Predict branches based on dynamic information

(collected at run-time)

  Advantages
+ No need for profiling: input set representativeness problem

goes away
+ Prediction based on history of the execution of branches
 + It can adapt to dynamic changes in branch behavior

  Disadvantages
-- More complex (requires additional hardware)

25

Last Time Predictor
  Last time predictor

  Single bit per branch (stored in BTB)
  Indicates which direction branch went last time it executed
 TTTTTTTTTTNNNNNNNNNN 90% accuracy

  Always mispredicts the last iteration and the first iteration
of a loop branch
  Accuracy for a loop with N iterations = (N-2)/N

+ Loop branches for loops with large number of iterations

-- Loop branches for loops will small number of iterations
 TNTNTNTNTNTNTNTNTNTN 0% accuracy

26

Two-Bit Counter Based Prediction

  Counter using saturating arithmetic
  There is a symbol for maximum and minimum values

27

0 1

Finite State Machine for
Last-time Predictor

00 01

10 11

Finite State machine for
2BC (2-Bit Counter)

Predict NT
Predict T

Transistion on T outcome

Transistion on NT outcome

Two-Bit Counter Based Prediction
  Each branch associated with a two-bit counter
  One more bit provides hysteresis
  A strong prediction does not change with one single

different outcome

  Accuracy for a loop with N iterations = (N-1)/N
 TNTNTNTNTNTNTNTNTNTN 50% accuracy

 (assuming init to weakly taken)

+ Better prediction accuracy
-- More hardware cost (but counter can be part of a BTB entry)

28

Can We Do Better?

  McFarling, “Combining Branch Predictors,” DEC WRL TR
1993.

29

Two Level Branch Predictors
  First level: Branch history register (N bits)

  The direction of last N branches
  Second level: Table of saturating counters for each history entry

  The direction the branch took the last time the same history was
seen?

30

1 1 ….. 1 0

BHR
(branch
history
register)

00 …. 00

00 …. 01

00 …. 10

11 …. 11

0 1

2 3

index

Pattern History Table (PHT)

previous one

Prediction and Update Functions
  Prediction

  Pattern History Table accessed at fetch time to generate a
prediction

  Top bit of the 2-bit counter determines predicted direction

  Update
  Pattern History Table accessed when the branch is retired to

update the counters that generated the prediction
  If branch

  actually taken: increment the counter
  actually not-taken: decrement the counter

31

Two-Level Predictor Variations
  BHR can be global (G), per set of branches (S), or per branch (P)
  PHT counters can be adaptive (A) or static (S)
  PHT can be global (g), per set of branches (s), or per branch (p)

  Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,”
MICRO 1991.

32

Global Branch Correlation (I)
  GAg: Global branch predictor (commonly called)
  Exploits global correlation across branches
  Recently executed branch outcomes in the execution path

is correlated with the outcome of the next branch

  If first branch not taken, second also not taken

  If first branch taken, second definitely not taken

33

Global Branch Correlation (II)

  If Y and Z both taken, then X also taken
  If Y or Z not taken, then X also not taken

  Only 3 past branches’ directions
really matter (not necessarily the
last 3 past branches)

  Evers et al., “An Analysis of
Correlation and Predictability:
What Makes Two-Level Branch
Predictors Work,” ISCA 1998.

34

