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Announcements 

  Midterm II 
  November 22 

  Project Poster Session 
  December 10 (tentative) 
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Last 3 Lectures: Superscalar Processing 
  Fetch (supply N instructions) 
  Decode (generate control signals for N instructions) 
  Rename (detect dependencies between N instructions) 
  Dispatch (determine readiness and select N instructions to 

execute in-order or out-of-order) 
  Execute (have enough functional units to execute N 

instructions + forwarding paths to forward results of N 
instructions) 

  Write into Register File (have enough ports to write results 
of N instructions) 

  Retire (N instructions) 
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Last Lecture 
  Dependency check logic 
  Renaming 
  Wakeup, selection, data forwarding (bypass) 
  Retirement and resource deallocation 

  Reducing complexity 
  Block structured ISA 
  Clustering 
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Readings 
  Required: 

  McFarling, “Combining Branch Predictors,” DEC WRL TR, 1993. 
  Carmean and Sprangle, “Increasing Processor Performance by 

Implementing Deeper Pipelines,” ISCA 2002. 

  Recommended: 
  Evers et al., “An Analysis of Correlation and Predictability: What Makes Two-

Level Branch Predictors Work,” ISCA 1998. 
  Yeh and Patt, “Alternative Implementations of Two-Level Adaptive Branch 

Prediction,” ISCA 1992. 
  Jouppi and Wall, “Available instruction-level parallelism for superscalar and 

superpipelined machines,” ASPLOS 1989. 
  Kim et al., “Diverge-Merge Processor (DMP): Dynamic Predicated Execution 

of Complex Control-Flow Graphs Based on Frequently Executed Paths,” 
MICRO 2006. 

  Jimenez and Lin, “Dynamic Branch Prediction with Perceptrons,” HPCA 2001. 
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The Branch Problem 
  Control flow instructions (branches) are frequent 

  15-25% of all instructions 

  Problem: Next fetch address after a control-flow instruction 
is not determined after N cycles in a pipelined processor 
  N cycles: (minimum) branch resolution latency 
  Stalling on a branch wastes instruction processing bandwidth 

(i.e. reduces IPC) 
  N x IW instruction slots are wasted 

  How do we keep the pipeline full after a branch? 
  Problem: Need to determine the next fetch address when 

the branch is fetched (to avoid a pipeline bubble) 

6 



The Branch Problem 
  Assume a 5-wide superscalar pipeline with 20-cycle branch resolution 

latency 

  How long does it take to fetch 500 instructions?  
  Assume no fetch breaks and 1 out of 5 instructions is a branch 
  100% accuracy  

  100 cycles (all instructions fetched on the correct path) 
  No wasted work 

  99% accuracy 
  100 (correct path) + 20 (wrong path) = 120 cycles 
  20% extra instructions fetched 

  98% accuracy 
  100 (correct path) + 20 * 2 (wrong path) = 140 cycles  
  40% extra instructions fetched  

  95% accuracy 
  100 (correct path) + 20 * 5 (wrong path) = 200 cycles 
  100% extra instructions fetched 
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Branch Types 
Type Direction at 

fetch time 
Number of 
possible next 
fetch addresses? 

When is next 
fetch address 
resolved? 

Conditional Unknown 2 Execution (register 
dependent) 

Unconditional Always taken 1 Decode (PC + 
offset) 

Call Always taken 1 Decode (PC + 
offset) 

Return Always taken Many Execution (register 
dependent) 

Indirect Always taken Many Execution (register 
dependent) 
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Different branch types can be handled differently 



Approaches to Conditional Branch Handling 
  Branch prediction 

  Static 
  Dynamic 

  Eliminating branches 
I. Predicated execution 

  Static 
  Dynamic 
  HW/SW Cooperative 

II. Predicate combining (and condition registers) 

  Multi-path execution 
  Delayed branching (branch delay slot) 
  Fine-grained multithreading 
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Predicate Combining 

  Complex predicates are converted into multiple branches 
  if ((a == b) && (c < d) && (a > 5000))  { … } 

  3 conditional branches 

  Problem: This increases the number of control 
dependencies 

  Idea: Combine predicate operations to feed a single branch 
instruction 
  Predicates stored and operated on using condition registers 
  A single branch checks the value of the combined predicate 

+ Fewer branches in code  fewer mipredictions/stalls 
-- Possibly unnecessary work 

 -- If the first predicate is false, no need to compute other predicates  
  Condition registers exist in IBM RS6000 and the POWER architecture 
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Delayed Branching (I) 
  Change the semantics of a branch instruction 

  Branch after N instructions 
  Branch after N cycles 

  Idea: Delay the execution of a branch. N instructions (delay 
slots) that come after the branch are always executed 
regardless of branch direction. 

  Problem: How do you find instructions to fill the delay 
slots? 
  Branch must be independent of delay slot instructions 

  Unconditional branch: Easier to find instructions to fill the delay slot 
  Conditional branch: Condition computation should not depend on 

instructions in delay slots  difficult to fill the delay slot 
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Delayed Branching (II) 
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Fancy Delayed Branching (III) 
  Delayed branch with squashing 

  In SPARC 
  If the branch falls through (not taken), the delay slot 

instruction is not executed 
  Why could this help? 

13 

A 
B 
C 
BC X 
D 
E 

X: 

Normal code: Delayed branch code: 

A 
B 
C 
BC X 

D 
E 

X: 

NOP 

Delayed branch w/ squashing: 

A 
B 
C 
BC X 

D 
E 

X: 

A 



Delayed Branching (IV) 
  Advantages: 

 + Keeps the pipeline full with useful instructions assuming  
       1. Number of delay slots == number of instructions to keep the 

pipeline full before the branch resolves 
       2. All delay slots can be filled with useful instructions 

  Disadvantages: 
-- Not easy to fill the delay slots (even with a 2-stage pipeline) 
   1. Number of delay slots increases with pipeline depth, issue width,     

instruction window size.  
   2. Number of delay slots should be variable with OoO 

 execution. Why? 
 -- Ties ISA semantics to implementation 
     -- SPARC, MIPS, HP-PA: 1 delay slot 
     -- What if pipeline implementation changes with the next design? 
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Fine-Grained Multithreading 
  Idea: Hardware has multiple thread contexts. Each cycle, 

fetch engine fetches from a different thread. 
  By the time the fetched branch resolves, there is no need to 

fetch another instruction from the same thread 
  Branch resolution latency overlapped with execution of other 

threads’ instructions 

+ No logic needed for  branch prediction,  
 (also for dependency checking) 

-- Single thread performance suffers  
-- Does not overlap latency if not enough  
    threads to cover the whole pipeline 
-- Extra logic for keeping thread contexts 
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Branch Prediction 
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Branch Prediction 
  Idea: Predict the next fetch address (to be used in the next 

cycle) when the branch is fetched 

  Requires three things to be predicted: 
  Whether the fetched instruction is a branch 
  Conditional branch direction 
  Branch target address (if taken) 

  Target addresses remain the same for conditional direct 
branches across dynamic instances 
  Idea: Cache the target address from previous instance 
  Called Branch Target Buffer (BTB) or Branch Target Address 

Cache 
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Branch Target Buffer 
  Cache of branch target addresses accessed in parallel with the I-cache in the fetch stage 
  Updated only by taken branches 
  If BTB hit and the instruction is a predicted-taken branch 

  target from the BTB (assuming hit) is used as fetch address in the next cycle 
  If BTB miss or the instruction is a predicted-not-taken branch 

  PC+N is used as the next fetch address in the next cycle 
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Branch Target Buffer in Fetch Stage 
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Direction Prediction 
  Compile time (static) 

  Always not taken 
  Always taken 
  BTFN (Backward taken, forward not taken) 
  Profile based (likely direction) 
  Program analysis based  (likely direction) 

  Run time (dynamic) 
  Last time (single-bit) 
  Two-bit counter based 
  Two-level (global vs. local) 
  Hybrid 
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Static Branch Prediction (I) 
  Always not-taken 

  Simple to implement: no need for BTB, no direction prediction 
  Low accuracy: ~40% 
  Compiler can layout code such that the likely path is the “not-

taken” path: Good for wide fetch as well! 

  Always taken 
  No direction prediction 
  Better accuracy: ~60%  

  Backward branches (i.e. loop branches) are usually taken 
  Backward branch: target address lower than branch PC 

  Backward taken, forward not taken (BTFN) 
  Predict backward (loop) branches as taken, others not-taken 
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Static Branch Prediction (II) 
  Profile-based 

  Idea: Compiler determines likely direction for each branch 
using profile run. Encodes that direction as a hint bit in the 
branch instruction format.  

+ Per branch prediction (more accurate than schemes in 
previous slide) 

-- Requires hint bits in the branch instruction format 
-- Accuracy depends on dynamic branch behavior: 
  TTTTTTTTTTNNNNNNNNNN  50% accuracy 

TNTNTNTNTNTNTNTNTNTN  50% accuracy 
-- Accuracy depends on the representativeness of profile input 

set 
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Static Branch Prediction (III) 
  Program-based 

  Idea: Use heuristics based on program analysis to determine 
statically-predicted direction 

  Opcode heuristic: Predict BLEZ as NT (negative integers used as 
error values in many programs) 

  Loop heuristic: Predict a branch guarding a loop execution as taken 
(i.e., execute the loop) 

  Pointer and FP comparisons: Predict not equal 

+ Does not require profiling 
-- Heuristics might be not representative or good 
-- Requires ISA support 

  Ball and Larus, ”Branch prediction for free,” PLDI 1993. 
  20% misprediction rate 
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Dynamic Branch Prediction 
  Idea: Predict branches based on dynamic information 

(collected at run-time) 

  Advantages 
+ No need for profiling: input set representativeness problem 

goes away 
+ Prediction based on history of the execution of branches 
   + It can adapt to dynamic changes in branch behavior 

  Disadvantages 
-- More complex (requires additional hardware) 
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Last Time Predictor 
  Last time predictor 

  Single bit per branch (stored in BTB) 
  Indicates which direction branch went last time it executed 
    TTTTTTTTTTNNNNNNNNNN  90% accuracy 

  Always mispredicts the last iteration and the first iteration 
of a loop branch 
  Accuracy for a loop with N iterations = (N-2)/N 

+ Loop branches for loops with large number of iterations 

-- Loop branches for loops will small number of iterations 
  TNTNTNTNTNTNTNTNTNTN    0% accuracy 
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Two-Bit Counter Based Prediction 

  Counter using saturating arithmetic 
  There is a symbol for maximum and minimum values 
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Two-Bit Counter Based Prediction 
  Each branch associated with a two-bit counter 
  One more bit provides hysteresis 
  A strong prediction does not change with one single 

different outcome 

  Accuracy for a loop with N iterations = (N-1)/N 
 TNTNTNTNTNTNTNTNTNTN    50% accuracy 

              (assuming init to weakly taken) 

+ Better prediction accuracy 
-- More hardware cost (but counter can be part of a BTB entry) 
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Can We Do Better? 

  McFarling, “Combining Branch Predictors,” DEC WRL TR 
1993. 

29 



Two Level Branch Predictors 
  First level: Branch history register (N bits) 

  The direction of last N branches 
  Second level: Table of saturating counters for each history entry 

  The direction the branch took the last time the same history was 
seen? 
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Prediction and Update Functions 
  Prediction 

  Pattern History Table accessed at fetch time to generate a 
prediction 

  Top bit of the 2-bit counter determines predicted direction 

  Update 
  Pattern History Table accessed when the branch is retired to 

update the counters that generated the prediction 
  If branch  

  actually taken: increment the counter 
  actually not-taken: decrement the counter 
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Two-Level Predictor Variations 
  BHR can be global (G), per set of branches (S), or per branch (P) 
  PHT counters can be adaptive (A) or static (S) 
  PHT can be global (g), per set of branches (s), or per branch (p) 

  Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” 
MICRO 1991. 

32 



Global Branch Correlation (I) 
  GAg: Global branch predictor (commonly called) 
  Exploits global correlation across branches 
  Recently executed branch outcomes in the execution path 

is correlated with the outcome of the next branch 

  If first branch not taken, second also not taken 

  If first branch taken, second definitely not taken 
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Global Branch Correlation (II) 

  If Y and Z both taken, then X also taken 
  If Y or Z not taken, then X also not taken 

  Only 3 past branches’ directions 
really matter (not necessarily the 
last 3 past branches) 

  Evers et al., “An Analysis of 
Correlation and Predictability: 
What Makes Two-Level Branch 
Predictors Work,” ISCA 1998. 
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