
15-740/18-740

Computer Architecture

Lecture 23: Superscalar Processing (III)

Prof. Onur Mutlu

Carnegie Mellon University

Announcements

 Homework 4

 Out today

 Due November 15

 Midterm II

 November 22

 Project Poster Session

 December 9 or 10

2

Readings

 Required (New):
 Patel et al., “Evaluation of design options for the trace cache fetch

mechanism,” IEEE TC 1999.

 Palacharla et al., “Complexity Effective Superscalar Processors,” ISCA 1997.

 Required (Old):
 Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc.

IEEE, Dec. 1995.

 Stark, Brown, Patt, “On pipelining dynamic instruction scheduling logic,” MICRO 2000.

 Boggs et al., “The microarchitecture of the Pentium 4 processor,” Intel Technology
Journal, 2001.

 Kessler, “The Alpha 21264 microprocessor,” IEEE Micro, March-April 1999.

 Recommended:

 Rotenberg et al., “Trace Cache: a Low Latency Approach to High Bandwidth
Instruction Fetching,” MICRO 1996.

3

Superscalar Processing

 Fetch (supply N instructions)

 Decode (generate control signals for N instructions)

 Rename (detect dependencies between N instructions)

 Dispatch (determine readiness and select N instructions to
execute in-order or out-of-order)

 Execute (have enough functional units to execute N
instructions + forwarding paths to forward results of N
instructions)

 Write into Register File (have enough ports to write results
of N instructions)

 Retire (N instructions)

4

Last Two Lectures

 Superscalar Fetch: Alignment and Fetch Breaks
 Compiler

 Code reordering (basic block reordering)

 Superblock

 Hardware

 Split-line fetch (for alignment)

 Trace cache

 Hardware/software cooperative

 Block structured ISA

 Superscalar Decode

 Pre-decoding

 Decode cache

 CISC to RISC translation

 Instruction buffering (fetch-decode decoupling)

5

Block Structured ISA

 Blocks (> instructions) are atomic (all-or-none) operations

 Either all of the block is committed or none of it

 Compiler enlarges blocks by combining basic blocks with
their control flow successors

 Branches within the enlarged block converted to “fault”
operations if the fault operation evaluates to true, the block

is discarded and the target of fault is fetched

6

Superscalar Processing

 Fetch (supply N instructions)

 Decode (generate control signals for N instructions)

 Rename (detect dependencies between N instructions)

 Dispatch (determine readiness and select N instructions to execute in-
order or out-of-order)

 Execute (have enough functional units to execute N instructions +
forwarding paths to forward results of N instructions)

 Write into Register File (have enough ports to write results of N
instructions)

 Retire (N instructions)

7

Renaming Multiple Instructions per Cycle

 Renaming independent instructions in parallel: easy

 Renaming dependent instructions in the same cycle: harder

 Two issues:

 Flow dependency: Dependent instruction should get its source
tag from a parent instruction renamed in the same cycle

 Need to compare each arch. source ID with the arch. destination
ID of all older instructions

 N*(N-1) comparators

 Output dependency: The youngest writer’s destination tag
should be written into the register alias table

8

ADD R1 R2, R3

ADD R5 R1, R1

ADD R1 R6, R7

Renaming 3 Instructions in Parallel

 Stark et al., “On pipelining dynamic instruction scheduling logic,” MICRO 2000.

9

Scalability of Register Renaming

 As rename width increases, critical path of dependency
check logic (rename logic) increases

 Need to pipeline rename logic

-- Increases branch misprediction penalty

-- Branch misprediction determined 1 cycle later

-- One more wasted pipe stage worth of work

 Idea 1: Compiler ensures all instructions renamed in one
cycle are register-independent

-- Tough to find 2, 3, 4, … independent instructions

 Idea 2: Rename instructions partially at compile time

 Ensure each instruction in a sequence of instructions writes to
a unique register

10

HW/SW Renaming with BS-ISA (I)

 Both ideas can be enhanced if the atomic unit of execution
is enlarged

 Remember the block-structured ISA

 Within a block, ensure each instruction writes to a unique
register identifier

 Tag <= [block ID] @ [unique register ID]
11

HW/SW Renaming with BS-ISA (II)

 Within-block register communication can be handled using a separate,
internal, register file: Tag <= [block ID] @ [unique register ID]

 Only external registers (registers live-out from a block) require
renaming and dependency checking

+ No need for dependency check logic

+ Reduced pressure on register file (fewer ports, entries, accesses)

-- ISA changes break backward compatibility

 Sprangle and Patt, “Facilitating superscalar processing via a combined
static/dynamic register renaming scheme,” MICRO 1994.

12

Instruction format:

Other Advantages of BS-ISA

 No ordering needed for instructions within a block

 Flow dependences explicitly identified

 No anti or output dependencies

+ Simplifies alignment of instructions within the processor

+ Compiler can order instructions such that

+ Long latency instructions (e.g. loads) executed first

+ Instructions are aligned with functional units they will
execute at

+ Compiler can perform aggressive code optimizations that
would otherwise be hindered by control flow

13

Superscalar Processing

 Fetch (supply N instructions)

 Decode (generate control signals for N instructions)

 Rename (detect dependencies between N instructions)

 Dispatch (determine readiness and select N instructions to execute in-
order or out-of-order)

 Execute (have enough functional units to execute N instructions +
forwarding paths to forward results of N instructions)

 Write into Register File (have enough ports to write results of N
instructions)

 Retire (N instructions)

14

Multiple Instruction Dispatch/Scheduling

 Dispatch consists of two operations

 Wakeup logic: Determining whether an instruction is ready to
execute (tracks readiness of all source operands)

 Selection logic: Choosing instructions for execution from the
pool of ready instructions

 Wakeup logic consists of tag matching

 Content associative matching of all broadcast tags across all
instructions in the reservation stations

 Number of tags broadcast in a cycle = Issue Width (IW)

 Need IW tag comparators for each source register tag

15

Wakeup Logic (I)

 Palacharla et al.,
“Complexity Effective
Superscalar Processors,”
ISCA 1997.

16

Wakeup Logic (II)

 Tag broadcast after selection

 Sets countdown delay to the latency of selected instruction

 When delay == 0, ready bit is set

 Enables back-to-back operations without bubbles

17

Selection Logic

 Palacharla et al., “Complexity Effective Superscalar Processors,”
ISCA 1997.

18

Superscalar Processing

 Fetch (supply N instructions)

 Decode (generate control signals for N instructions)

 Rename (detect dependencies between N instructions)

 Dispatch (determine readiness and select N instructions to
execute in-order or out-of-order)

 Execute (have enough functional units to execute N
instructions + forwarding paths to forward results of N
instructions)

 Write into Register File (have enough ports to write results
of N instructions)

 Retire (N instructions)

19

Data Forwarding/Bypassing Between Multiple Functional Units

 Broadcast results
bypassed to all
functional units

 Increasing issue
width increases the
length L of bypass
wires (due to more
functional units)

 Bypass delay scales
quadratically with
issue width

20

Empirical Delay Analysis

 Palacharla et al., “Complexity Effective Superscalar
Processors,” ISCA 1997.

21

Reducing Dispatch+Bypass Delays

 Idea 1: Clustering (e.g., Alpha 21264 integer units)

 Divide the scheduling window (and register file) into multiple clusters

 Instructions steered into clusters (e.g. based on dependence)

 Clusters schedule instructions out-of-order, within cluster scheduling
can be in-order

 Inter-cluster communication happens via register files (no full bypass)

+ Smaller scheduling windows, simpler wakeup algorithms

+ Smaller ports into register files

+ Faster within-cluster bypass

-- Extra delay when instructions require across-cluster communication

 Idea 2: Pipelining the Scheduling Logic (e.g., Pentium 4)

+ Breaks the wakeup + select loop

-- Implementation complexity

22

Clustering (I)

 Scheduling within each cluster can be out of order

23

Clustering (II)

24

 Palacharla et al., “Complexity
Effective Superscalar
Processors,” ISCA 1997.

Clustering (III)

25

Each scheduler is a FIFO

+ Simpler

+ Can have N FIFOs

(OoO w.r.t. each other)

+ Reduces scheduling

complexity

-- More dispatch stalls

Inter-cluster bypass: Results

produced by an FU in

Cluster 0 is not individually

forwarded to each FU in

another cluster.

Superscalar Processing

 Fetch (supply N instructions)

 Decode (generate control signals for N instructions)

 Rename (detect dependencies between N instructions)

 Dispatch (determine readiness and select N instructions to
execute in-order or out-of-order)

 Execute (have enough functional units to execute N
instructions + forwarding paths to forward results of N
instructions)

 Write into Register File (have enough ports to write results
of N instructions)

 Retire (N instructions)

26

Multiple Instruction RegFile Read/Write

 Number of register file read/write ports scales linearly with
the execution width

 Number of entries in the physical register file scales linearly
with the instruction window size

 Increasing either increases RF access time

 Longer RF access deeper pipeline

-- Increased branch misprediction penalty

-- Increased other misspeculation penalty (e.g. load store
dependence misprediction)

27

Reducing RegFile Latency (I)

 Clustering

 Register file can be partitioned or replicated across clusters

 What if an instruction in one cluster needs a register in
another?

 Replicated: the register value produced in another cluster arrives
N cycles later (Alpha 21264: 1 cycle inter-cluster delay)

 Fewer read ports than monolithic register file

 Partitioned: Special COPY instructions inserted to get the value
from another cluster (to be stored in a buffer)

 Fewer read and write ports than monolithic

 Write specialization based clustering:

 Instructions in a cluster can write to a subset of physical register file

 Instructions can read from all subsets

 M write ports per entry, N read ports (N > M)

28

Reducing RegFile Latency (II)

 Block Structured ISA

 Registers internal to a block do not need to be written to
the external register file

 Fewer write ports

 Fewer external register file entries

 Registers internal to a block mostly communicated via
forwarding paths or via an internal register file

 Fewer read ports to the external register file

29

Superscalar Processing

 Fetch (supply N instructions)

 Decode (generate control signals for N instructions)

 Rename (detect dependencies between N instructions)

 Dispatch (determine readiness and select N instructions to
execute in-order or out-of-order)

 Execute (have enough functional units to execute N
instructions + forwarding paths to forward results of N
instructions)

 Write into Register File (have enough ports to write results
of N instructions)

 Retire (N instructions)

30

Multiple Instruction Retirement

 Retirement is not on the critical path

 Increasing retirement pipeline depth does not affect
misspeculation penalty

 Retirement functions

 Check for exceptions

 Update architectural state with instruction results

 Deallocate pipeline resources allocated to instruction

 In many modern processors, architectural state update for
a register-writing instruction is simply updating the retired
register map (architectural register map) table to point to
the destination physical register

 Arch reg map points to arch state in the physical reg file

31

Deallocating Physical Registers (I)

 When is a physical register not needed any more? Two
conditions:

1. No instruction will source it

i) No instruction in the pipeline needs it

ii) Another instruction overwrote the same architectural
register in the rename map

2. Register value will not be needed to restore register file state
due to an exception or a misprediction

 When an instruction updates the architectural register map
for an architectural register:

 The previous physical register mapped to the same arch reg
can be deallocated

32

Deallocating Physical Registers (II)

 Can we deallocate a physical registers before their
corresponding architectural register is written by a retired
instruction?

 Idea: Early register recycling

 Detect the two conditions under which the register can be
deallocated if satisfied, deallocate the register

+ Effectively reduces the physical register file size

-- Complexity of detecting conditions for recycling

33

Research Issues in Superscalar Processing

(Not covered in lecture, just FYI)

Research Issues in Superscalar Processing
 Simplifying the superscalar pipeline w/o losing performance

 Clustering how to steer instructions to clusters such that

inter-cluster communication delay is avoided

 More efficient utilization of on-chip resources

 Register files, reservation stations

 Recycle when (likely) not needed, virtualize as much as possible

 Hardware/software co-designs

 Software reduces the burden of hardware, e.g. BS-ISA

 Wide fetch by code reordering

 Partial renaming

 Reducing register file size

 Fetch dispatch FU instruction alignment

 Atomic execution units can enable many simplifications

 And, code optimizations

 Sharing superscalar resources between cores
35

Virtual-Physical Registers

 Monreal et al., “Delaying Physical Register Allocation through Virtual-
Physical Registers,” MICRO 1999.
 Motivation: an instruction does not need the storage for its destination physical

register until execution

 Idea: When renaming, do not allocate a physical register, assign only a “virtual name”

Upon dispatch (or end of execution), bind the virtual name to a physical register

+ More efficient utilization of physical register file space

36

Icache Decode&Rename Commit

Physical register unused Register used

Register used

Conventional renaming

Virtual-physical registers

