
15-740/18-740
Computer Architecture

Lecture 22: Superscalar Processing (II)

Prof. Onur Mutlu
Carnegie Mellon University

Announcements
  Project Milestone 2

  Due Today

  Homework 4
  Out today
  Due November 15

  Midterm II
  November 22

  Project Poster Session
  December 9 or 10

2

Readings
  Required (New):

  Patel et al., “Evaluation of design options for the trace cache fetch
mechanism,” IEEE TC 1999.

  Palacharla et al., “Complexity Effective Superscalar Processors,” ISCA 1997.

  Required (Old):
  Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc.

IEEE, Dec. 1995.
  Stark, Brown, Patt, “On pipelining dynamic instruction scheduling logic,” MICRO 2000.
  Boggs et al., “The microarchitecture of the Pentium 4 processor,” Intel Technology

Journal, 2001.
  Kessler, “The Alpha 21264 microprocessor,” IEEE Micro, March-April 1999.

  Recommended:
  Rotenberg et al., “Trace Cache: a Low Latency Approach to High Bandwidth

Instruction Fetching,” MICRO 1996.

3

Superscalar Processing
  Fetch (supply N instructions)
  Decode (generate control signals for N instructions)
  Rename (detect dependencies between N instructions)
  Dispatch (determine readiness and select N instructions to

execute in-order or out-of-order)
  Execute (have enough functional units to execute N

instructions + forwarding paths to forward results of N
instructions)

  Write into Register File (have enough ports to write results
of N instructions)

  Retire (N instructions)

4

Last Lecture
  Superscalar processing

  Fetch issues: alignment and fetch breaks
  Solutions to fetching N instructions at a time

  Split line fetch
  Basic block reordering
  Superblock
  Trace cache

5

Techniques to Reduce Fetch Breaks
  Compiler

  Code reordering (basic block reordering)
  Superblock

  Hardware
  Trace cache

  Hardware/software cooperative
  Block structured ISA

6

Reducing Fetch Breaks: Trace Cache
  Dynamically determine the basic blocks that are executed consecutively
  Trace: Consecutively executed basic blocks
  Idea: Store consecutively-executed basic blocks in physically-contiguous

internal storage (called trace cache)

  Basic trace cache operation:
  Fetch from consecutively-stored basic blocks (predict next trace or branches)
  Verify the executed branch directions with the stored ones
  If mismatch, flush the remaining portion of the trace

  Rotenberg et al., “Trace Cache: a Low Latency Approach to High Bandwidth Instruction
Fetching,” MICRO 1996.

  Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR, 1997.

7

An Example Trace Cache Based Processor

  From Patel’s PhD Thesis: “Trace Cache Design for Wide Issue Superscalar
Processors,” University of Michigan, 1999.

8

Multiple Branch Predictor
  S. Patel, “Trace Cache Design for Wide Issue Superscalar Processors,” PhD

Thesis, University of Michigan, 1999.

9

Trace Cache Design Issues (II)
  Should entire “path” match for a trace cache hit?
  Partial matching: A piece of a trace is supplied based on branch prediction
+ Increases hit rate when there is not a full path match
-- Lengthens critical path (next fetch address dependent on the match)

10

Trace Cache Design Issues (III)
  Path associativity: Multiple traces starting at the same address can be present

in the cache at the same time.
+ Good for traces with unbiased branches (e.g., ping pong between C and D)
-- Need to determine longest matching path
-- Increased cache pressure

11

  Inactive issue: All blocks within a trace
cache line are issued even if they do not
match the predicted path

 + Reduces impact of branch mispredictions
 + Reduces basic block duplication in trace cache
 -- Slightly more complex scheduling/branch
resolution

 -- Some instructions not dispatched/flushed

Trace Cache Design Issues (IV)

12

Z

Z

Z

Trace Cache Design Issues (V)
  Branch promotion: promote highly-biased branches to branches

with static prediction
 + Larger traces
 + No need for consuming
 branch predictor BW
 + Can enable optimizations
 within trace
 -- Requires hardware to
 determine highly-biased
 branches

13

How to Determine Biased Branches

14

Effect on Fetch Rate

15

Effect on IPC (16-wide superscalar)

  ~15% IPC increase over “sequential I-cache” that breaks fetch on a
predicted-taken branch

16

Fill Unit Optimizations
  Fill unit constructs traces out of decoded instructions
  Can perform optimizations across basic blocks

  Branch promotion: promote highly-biased branches to
branches with static prediction

  Can treat the whole trace as an atomic execution unit
  All or none of the trace is retired (based on branch directions in trace)
  Enables many optimizations across blocks

  Dead code elimination
  Instruction reordering
  Reassociation

  Friendly et al., “Putting the Fill Unit to Work: Dynamic Optimizations for
Trace Cache Microprocessors,” MICRO 1998.

17

Remember This Optimization?

18

opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,1 99

1

1

Original Code

opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,1 99

1

Part of Trace in Fill Unit

opC’: mul r3<-r2,3

opA: mul r1<-r2,3

opC: mov r3<-r1

opB: add r2<-r2,1 99

1

Optimized Trace

opC’: mul r3<-r2,3

Redundancy in the Trace Cache
  ABC, BCA, CAB can all be in
 the trace cache
  Leads to contention and reduced
 hit rate

  One possible solution: Block based trace cache
  Idea: Decouple storage of basic blocks from their “names”

  Store traces of pointers to basic blocks rather than traces of basic
blocks themselves

  Basic blocks stored in a separate “block table”
+ Reduces redundancy of basic blocks
-- Lengthens fetch cycle (indirection needed to access blocks)
-- Block table needs to be multiported to obtain multiple blocks per cycle

19

Enhanced I-Cache vs. Trace Cache (I)

20

1. Next trace prediction
2. Trace cache fetch

Trace Cache
Enhanced

Instruction Cache

Fetch

Completion

1. Multiple-branch prediction
2. Instruction cache fetch from
 multiple blocks (N ports)
3. Instruction alignment &
 collapsing

1. Multiple-branch predictor
 update

1. Trace construction and fill
2. Trace predictor update

Enhanced I-Cache vs. Trace Cache (II)

21

Frontend vs. Backend Complexity
  Backend is not on the critical path of instruction execution

  Easier to increase its latency without affecting performance

  Frontend is on the critical path
  Increased latency fetch directly increases

  Branch misprediction penalty

  Increased complexity can affect cycle time

22

Pentium 4 Trace Cache
  A 12K-uop trace cache replaces the L1 I-cache
  Trace cache stores decoded and cracked instructions

  Micro-operations (uops): returns 6 uops every other cycle

  x86 decoder can be simpler and slower
  A. Peleg, U. Weiser; "Dynamic Flow Instruction Cache Memory Organized

Around Trace Segments Independent of Virtual Address Line", United States
Patent No. 5,381,533, Jan 10, 1995

23

Front End BTB
4K Entries

ITLB &
Prefetcher L2 Interface

x86 Decoder

Trace Cache
12K uop’s

Trace Cache BTB
512 Entries

Techniques to Reduce Fetch Breaks
  Compiler

  Code reordering (basic block reordering)
  Superblock

  Hardware
  Trace cache

  Hardware/software cooperative
  Block structured ISA

24

Block Structured ISA
  Blocks (> instructions) are atomic (all-or-none) operations

  Either all of the block is committed or none of it

  Compiler enlarges blocks by combining basic blocks with
their control flow successors
  Branches within the enlarged block converted to “fault”

operations if the fault operation evaluates to true, the block
is discarded and the target of fault is fetched

25

Block Structured ISA (II)
  Advantages:

+ Larger blocks larger units can be fetched from I-cache
+ Aggressive compiler optimizations (e.g. reordering) can be enabled

within atomic blocks
+ Can explicitly represent dependencies among operations within an

enlarged block

  Disadvantages:
-- “Fault operations” can lead to work to be wasted (atomicity)
-- Code bloat (multiple copies of the same basic block exists in the binary

and possibly in I-cache)
 -- Need to predict which enlarged block comes next

  Optimizations
  Within an enlarged block, the compiler can perform optimizations that

cannot normally be performed across basic blocks
26

Block Structured ISA (III)
  Hao et al., “Increasing the instruction fetch rate via block-

structured instruction set architectures,” MICRO 1996.

27

Superblock vs. BS-ISA
  Superblock

  Single-entry, multiple exit code block
  Not atomic
  Compiler inserts fix-up code on superblock side exit

  BS-ISA blocks
  Single-entry, single exit
  Atomic

28

Superblock vs. BS-ISA
  Superblock

 + No ISA support needed
 -- Optimizes for only 1 frequently executed path
 -- Not good if dynamic path deviates from profiled path missed

 opportunity to optimize another path

  Block Structured ISA
+ Enables optimization of multiple paths and their dynamic selection.
+ Dynamic prediction to choose the next enlarged block. Can

dynamically adapt to changes in frequently executed paths at run-
time

+ Atomicity can enable more aggressive code optimization
-- Code bloat becomes severe as more blocks are combined
-- Requires “next enlarged block” prediction, ISA+HW support
-- More wasted work on “fault” due to atomicity requirement

29

Superscalar Processing
  Fetch (supply N instructions)
  Decode (generate control signals for N instructions)
  Rename (detect dependencies between N instructions)
  Dispatch (determine readiness and select N instructions to

execute in-order or out-of-order)
  Execute (have enough functional units to execute N

instructions + forwarding paths to forward results of N
instructions)

  Write into Register File (have enough ports to write results
of N instructions)

  Retire (N instructions)

30

Decoding Multiple Instructions Per Cycle
  Fixed length instructions

  Relatively easy: each instruction can be decoded
independently

  Variable length instructions
  Instruction boundaries not known before decode

  Later instructions’ decode dependent on earlier ones in the same
cycle

-- Increases decoder latency

  Two techniques ease decoding (especially variable-length
instructions)
  Pre-decoding
  Decoded I-cache (or trace cache)

31

Pre-decoding

  Instruction pre-decoding:
  Store information on instruction boundaries in the I-cache

  Before inserting instruction into I-cache, pre-decode

  Mark start/end bytes of instructions
  This information used to convey the correct instruction bytes to

the parallel decoders
  Implemented in AMD K5

  What other pre-decode information can be useful?
  Branch or not
  Type of branch
  Usually anything that 1) can ease decode 2) can reduce the

latency of predicting the next fetch address (for the next cycle)

32

AMD K5 Pre-decode

33

Pre-decoded I-Cache
  Advantages:

+ Simplifies variable length decode
+ Could reduce decode pipeline depth
 + Partial decoding done on cache fill
+ Could reduce next fetch address calculation latency

 (can be the critical path in many designs)

  Disadvantages:
-- Increases I-cache fill latency
-- Reduces I-cache storage efficiency

34

Decode Cache
  Decode cache

  Idea: Store decoded instructions in a separate cache
  Access decode cache and I-cache in parallel or series
  If decode cache miss, decode instructions (perhaps serially) and

insert into decode cache
  Next time, decode cache hit: no need to decode multiple instructions

  Pentium 4 works similarly with its trace cache
  Trace cache miss: Decode only 1 x86 instruction per cycle
  Trace cache hit: Supplies 3 micro-instructions per cycle

+ Eases parallel decode of variable length instructions
+ Eliminates decoding from critical path (decode cache hit)
+ Can reduce energy consumption (less decoding)
-- Increases front-end complexity

35

CISC to RISC Translation (I)
  Complex instructions harder to implement in hardware

  More costly to implement, require multiple resources (e.g.,
memory and functional units), dependency checks in OoO
execution become more complex

  Simple instructions easier to pipeline, implement, and
optimize for

  Can we get the “simplicity” benefits of a simple ISA while
executing a complex one?

  Idea: Decoder dynamically translates complex instructions
into simple ones
  Called instruction cracking into micro-operations (uops)

  Uops not visible to software

36

Complex to Simple Translation (II)
  Two methods for cracking

  Hardware combinational logic
  Decoder translates a complex instruction into multiple simple ones

  Microsequencer and microcode ROM
  Microsequencer sequences through simple instructions stored in

Microcode ROM

  Pentium 4 employs both
  A complex instruction that requires >4 uops is translated by the

Microcode ROM (e.g., REP MOVS)
  A complex instruction <= 4 uops ins inserted into the trace

cache (cracked and decoded) after the x86 decoder handles it

37

Microsequencing

38

Pentium 4 Decoders

39

Pentium Pro Decoders (I)
  No trace or decode

cache
  3 parallel decoders

  1 complex (max 4
uops)

  2 simple (max 1 uop)
  Up to 6 uops

  Microsequencer
  > 4 uop instructions
  4 uops/cycle

  Decoding consumes 3
cycles

40

Pentium Pro Decoders (II)

41

AMD K6 Decoders
  2 full x86

decoders

  Up to 4 uops

42

Instruction Buffering
  Decouples one pipeline stage from another

  E.g., buffering between fetch and decode
  Sometimes decode can take too long or stalls

  Microsequenced instructions
  Insufficient decoder strength (simple decoder and complex

instruction)
  Backend stalls (e.g. full window stall)

+ Fetch can continue filling the buffer when decode stalls
+ When fetch stalls, the decoder will be supplied instructions

from the buffer
-- Extra complexity and buffer

43

