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Announcements 
  Project Milestone 2 

  Due Today 

  Homework 4 
  Out today 
  Due November 15 

  Midterm II 
  November 22 

  Project Poster Session 
  December 9 or 10 
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Readings 
  Required (New): 

  Patel et al., “Evaluation of design options for the trace cache fetch 
mechanism,” IEEE TC 1999.  

  Palacharla et al., “Complexity Effective Superscalar Processors,” ISCA 1997. 

  Required (Old): 
  Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. 

IEEE, Dec. 1995. 
  Stark, Brown, Patt, “On pipelining dynamic instruction scheduling logic,” MICRO 2000. 
  Boggs et al., “The microarchitecture of the Pentium 4 processor,” Intel Technology 

Journal, 2001. 
  Kessler, “The Alpha 21264 microprocessor,” IEEE Micro, March-April 1999.  

  Recommended: 
  Rotenberg et al., “Trace Cache: a Low Latency Approach to High Bandwidth 

Instruction Fetching,” MICRO 1996. 
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Superscalar Processing 
  Fetch (supply N instructions) 
  Decode (generate control signals for N instructions) 
  Rename (detect dependencies between N instructions) 
  Dispatch (determine readiness and select N instructions to 

execute in-order or out-of-order) 
  Execute (have enough functional units to execute N 

instructions + forwarding paths to forward results of N 
instructions) 

  Write into Register File (have enough ports to write results 
of N instructions) 

  Retire (N instructions) 
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Last Lecture 
  Superscalar processing 

  Fetch issues: alignment and fetch breaks 
  Solutions to fetching N instructions at a time 

  Split line fetch 
  Basic block reordering 
  Superblock 
  Trace cache 
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Techniques to Reduce Fetch Breaks 
  Compiler 

  Code reordering (basic block reordering) 
  Superblock 

  Hardware 
  Trace cache 

  Hardware/software cooperative 
  Block structured ISA 
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Reducing Fetch Breaks: Trace Cache 
  Dynamically determine the basic blocks that are executed consecutively 
  Trace: Consecutively executed basic blocks 
  Idea: Store consecutively-executed basic blocks in physically-contiguous 

internal storage (called trace cache) 

  Basic trace cache operation: 
  Fetch from consecutively-stored basic blocks (predict next trace or branches) 
  Verify the executed branch directions with the stored ones 
  If mismatch, flush the remaining portion of the trace 

  Rotenberg et al., “Trace Cache: a Low Latency Approach to High Bandwidth Instruction 
Fetching,” MICRO 1996. 

  Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR, 1997. 
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An Example Trace Cache Based Processor  

  From Patel’s PhD Thesis: “Trace Cache Design for Wide Issue Superscalar 
Processors,” University of Michigan, 1999.  
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Multiple Branch Predictor 
  S. Patel, “Trace Cache Design for Wide Issue Superscalar Processors,” PhD 

Thesis, University of Michigan, 1999.  
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Trace Cache Design Issues (II)  
  Should entire “path” match for a trace cache hit? 
  Partial matching: A piece of a trace is supplied based on branch prediction 
+ Increases hit rate when there is not a full path match 
-- Lengthens critical path (next fetch address dependent on the match) 
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Trace Cache Design Issues (III) 
  Path associativity: Multiple traces starting at the same address can be present 

in the cache at the same time. 
+ Good for traces with unbiased branches (e.g., ping pong between C and D) 
-- Need to determine longest matching path 
-- Increased cache pressure 
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  Inactive issue: All blocks within a trace 
cache line are issued even if they do not 
match the predicted path 

 + Reduces impact of branch mispredictions 
 + Reduces basic block duplication in trace cache 
 -- Slightly more complex scheduling/branch 
resolution 

     -- Some instructions not dispatched/flushed 

Trace Cache Design Issues (IV) 
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Trace Cache Design Issues (V) 
  Branch promotion: promote highly-biased branches to branches 

with static prediction 
    + Larger traces 
    + No need for consuming 
       branch predictor BW 
    + Can enable optimizations 
       within trace 
    -- Requires hardware to 
       determine highly-biased 
       branches 
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How to Determine Biased Branches  
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Effect on Fetch Rate 
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Effect on IPC (16-wide superscalar) 

  ~15% IPC increase over “sequential I-cache” that breaks fetch on a 
predicted-taken branch 
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Fill Unit Optimizations 
  Fill unit constructs traces out of decoded instructions 
  Can perform optimizations across basic blocks 

  Branch promotion: promote highly-biased branches to 
branches with static prediction 

  Can treat the whole trace as an atomic execution unit 
  All or none of the trace is retired (based on branch directions in trace) 
  Enables many optimizations across blocks 

  Dead code elimination 
  Instruction reordering 
  Reassociation 

  Friendly et al., “Putting the Fill Unit to Work: Dynamic Optimizations for 
Trace Cache Microprocessors,”  MICRO 1998. 
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Remember This Optimization? 
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opA: mul r1<-r2,3 

opC: mul r3<-r2,3 

opB: add r2<-r2,1 99 

1 

1 

Original Code 

opA: mul r1<-r2,3 

opC: mul r3<-r2,3 

opB: add r2<-r2,1 99 

1 

Part of Trace in Fill Unit 

opC’: mul r3<-r2,3 

opA: mul r1<-r2,3 

opC: mov r3<-r1 

opB: add r2<-r2,1 99 

1 

Optimized Trace 

opC’: mul r3<-r2,3 



Redundancy in the Trace Cache 
  ABC, BCA, CAB can all be in 
    the trace cache 
  Leads to contention and reduced  
    hit rate 

  One possible solution: Block based trace cache 
  Idea: Decouple storage of basic blocks from their “names” 

  Store traces of pointers to basic blocks rather than traces of basic 
blocks themselves 

  Basic blocks stored in a separate “block table” 
+ Reduces redundancy of basic blocks 
-- Lengthens fetch cycle (indirection needed to access blocks) 
-- Block table needs to be multiported to obtain multiple blocks per cycle 
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Enhanced I-Cache vs. Trace Cache (I) 
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1. Next trace prediction 
2. Trace cache fetch 

Trace Cache 
Enhanced 

Instruction Cache 

Fetch 

Completion 

1. Multiple-branch prediction 
2. Instruction cache fetch from 
    multiple blocks (N ports) 
3. Instruction alignment &  
    collapsing 

1. Multiple-branch predictor  
    update 

1. Trace construction and fill 
2. Trace predictor update 



Enhanced I-Cache vs. Trace Cache (II) 
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Frontend vs. Backend Complexity 
  Backend is not on the critical path of instruction execution 

  Easier to increase its latency without affecting performance 

  Frontend is on the critical path 
  Increased latency fetch directly increases 

  Branch misprediction penalty 

  Increased complexity can affect cycle time 
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Pentium 4 Trace Cache 
  A 12K-uop trace cache replaces the L1 I-cache 
  Trace cache stores decoded and cracked instructions 

  Micro-operations (uops): returns 6 uops every other cycle 

  x86 decoder can be simpler and slower 
  A. Peleg, U. Weiser; "Dynamic Flow Instruction Cache Memory Organized 

Around Trace Segments Independent of Virtual Address Line", United States 
Patent No. 5,381,533, Jan 10, 1995  

23 

Front End BTB 
4K Entries 

ITLB & 
Prefetcher L2 Interface 

x86 Decoder 

Trace Cache 
12K uop’s 

Trace Cache BTB 
512 Entries 



Techniques to Reduce Fetch Breaks 
  Compiler 

  Code reordering (basic block reordering) 
  Superblock 

  Hardware 
  Trace cache 

  Hardware/software cooperative 
  Block structured ISA 
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Block Structured ISA 
  Blocks (> instructions) are atomic (all-or-none) operations 

  Either all of the block is committed or none of it 

  Compiler enlarges blocks by combining basic blocks with 
their control flow successors 
  Branches within the enlarged block converted to “fault” 

operations  if the fault operation evaluates to true, the block 
is discarded and the target of fault is fetched   
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Block Structured ISA (II) 
  Advantages: 

+ Larger blocks  larger units can be fetched from I-cache 
+ Aggressive compiler optimizations (e.g. reordering) can be enabled 

within atomic blocks 
+ Can explicitly represent dependencies among operations within an 

enlarged block 

  Disadvantages: 
-- “Fault operations” can lead to work to be wasted (atomicity) 
-- Code bloat (multiple copies of the same basic block exists in the binary 

and possibly in I-cache) 
   -- Need to predict which enlarged block comes next 

  Optimizations 
  Within an enlarged block, the compiler can perform optimizations that 

cannot normally be performed across basic blocks 
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Block Structured ISA (III) 
  Hao et al., “Increasing the instruction fetch rate via block-

structured instruction set architectures,” MICRO 1996. 
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Superblock vs. BS-ISA 
  Superblock 

  Single-entry, multiple exit code block  
  Not atomic 
  Compiler inserts fix-up code on superblock side exit 

  BS-ISA blocks 
  Single-entry, single exit 
  Atomic 
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Superblock vs. BS-ISA 
  Superblock  

 + No ISA support needed 
 -- Optimizes for only 1 frequently executed path 
     -- Not good if dynamic path deviates from profiled path  missed     

 opportunity to optimize another path 

  Block Structured ISA 
+ Enables optimization of multiple paths and their dynamic selection.  
+ Dynamic prediction to choose the next enlarged block. Can 

dynamically adapt to changes in frequently executed paths at run-
time 

+ Atomicity can enable more aggressive code optimization 
-- Code bloat becomes severe as more blocks are combined 
-- Requires “next enlarged block” prediction, ISA+HW support 
-- More wasted work on “fault” due to atomicity requirement 
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Superscalar Processing 
  Fetch (supply N instructions) 
  Decode (generate control signals for N instructions) 
  Rename (detect dependencies between N instructions) 
  Dispatch (determine readiness and select N instructions to 

execute in-order or out-of-order) 
  Execute (have enough functional units to execute N 

instructions + forwarding paths to forward results of N 
instructions) 

  Write into Register File (have enough ports to write results 
of N instructions) 

  Retire (N instructions) 
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Decoding Multiple Instructions Per Cycle 
  Fixed length instructions 

  Relatively easy: each instruction can be decoded 
independently 

  Variable length instructions 
  Instruction boundaries not known before decode 

  Later instructions’ decode dependent on earlier ones in the same 
cycle 

-- Increases decoder latency 

  Two techniques ease decoding (especially variable-length 
instructions) 
  Pre-decoding 
  Decoded I-cache (or trace cache) 
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Pre-decoding 

  Instruction pre-decoding: 
  Store information on instruction boundaries in the I-cache 

  Before inserting instruction into I-cache, pre-decode 

  Mark start/end bytes of instructions 
  This information used to convey the correct instruction bytes to 

the parallel decoders 
  Implemented in AMD K5 

  What other pre-decode information can be useful? 
  Branch or not 
  Type of branch 
  Usually anything that 1) can ease decode 2) can reduce the 

latency of predicting the next fetch address (for the next cycle) 
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AMD K5 Pre-decode 
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Pre-decoded I-Cache 
  Advantages: 

+ Simplifies variable length decode 
+ Could reduce decode pipeline depth 
    + Partial decoding done on cache fill 
+ Could reduce next fetch address calculation latency 

 (can be the critical path in many designs) 

  Disadvantages: 
-- Increases I-cache fill latency 
-- Reduces I-cache storage efficiency 
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Decode Cache 
  Decode cache 

  Idea: Store decoded instructions in a separate cache 
  Access decode cache and I-cache in parallel or series 
  If decode cache miss, decode instructions (perhaps serially) and 

insert into decode cache 
  Next time, decode cache hit: no need to decode multiple instructions 

  Pentium 4 works similarly with its trace cache 
  Trace cache miss: Decode only 1 x86 instruction per cycle 
  Trace cache hit: Supplies 3 micro-instructions per cycle 

+ Eases parallel decode of variable length instructions 
+ Eliminates decoding from critical path (decode cache hit) 
+ Can reduce energy consumption (less decoding) 
-- Increases front-end complexity  
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CISC to RISC Translation (I) 
  Complex instructions harder to implement in hardware 

  More costly to implement, require multiple resources (e.g., 
memory and functional units), dependency checks in OoO 
execution become more complex 

  Simple instructions easier to pipeline, implement, and 
optimize for 

  Can we get the “simplicity” benefits of a simple ISA while 
executing a complex one? 

  Idea: Decoder dynamically translates complex instructions 
into simple ones 
  Called instruction cracking into micro-operations (uops) 

  Uops not visible to software 
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Complex to Simple Translation (II) 
  Two methods for cracking 

  Hardware combinational logic 
  Decoder translates a complex instruction into multiple simple ones 

  Microsequencer and microcode ROM 
  Microsequencer sequences through simple instructions stored in 

Microcode ROM 

  Pentium 4 employs both 
  A complex instruction that requires >4 uops is translated by the 

Microcode ROM (e.g., REP MOVS) 
  A complex instruction <= 4 uops ins inserted into the trace 

cache (cracked and decoded) after the x86 decoder handles it 
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Microsequencing 
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Pentium 4 Decoders 
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Pentium Pro Decoders (I) 
  No trace or decode 

cache 
  3 parallel decoders 

  1 complex (max 4 
uops) 

  2 simple (max 1 uop) 
  Up to 6 uops 

  Microsequencer 
  > 4 uop instructions 
  4 uops/cycle 

  Decoding consumes 3 
cycles 
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Pentium Pro Decoders (II) 
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AMD K6 Decoders 
  2 full x86 

decoders 

  Up to 4 uops 
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Instruction Buffering 
  Decouples one pipeline stage from another 

  E.g., buffering between fetch and decode 
  Sometimes decode can take too long or stalls 

  Microsequenced instructions 
  Insufficient decoder strength (simple decoder and complex 

instruction) 
  Backend stalls (e.g. full window stall) 

+ Fetch can continue filling the buffer when decode stalls 
+ When fetch stalls, the decoder will be supplied instructions 

from the buffer 
-- Extra complexity and buffer 
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