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Announcements 
  Project Milestone 2 

  Due November 10 

  Homework 4 
  Out today 
  Due November 15 
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Last Two Lectures 
  SRAM vs. DRAM 
  Interleaving/Banking 
  DRAM Microarchitecture 

  Memory controller 
  Memory buses 
  Banks, ranks, channels, DIMMs 
  Address mapping: software vs. hardware 
  DRAM refresh 

  Memory scheduling policies 
  Memory power/energy management 
  Multi-core issues 

  Fairness, interference 
  Large DRAM capacity 
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Today 
  Superscalar processing 
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Readings 
  Required (New): 

  Patel et al., “Evaluation of design options for the trace cache fetch 
mechanism,” IEEE TC 1999.  

  Palacharla et al., “Complexity Effective Superscalar Processors,” ISCA 1997. 

  Required (Old): 
  Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. 

IEEE, Dec. 1995. 
  Stark, Brown, Patt, “On pipelining dynamic instruction scheduling logic,” MICRO 2000. 
  Boggs et al., “The microarchitecture of the Pentium 4 processor,” Intel Technology 

Journal, 2001. 
  Kessler, “The Alpha 21264 microprocessor,” IEEE Micro, March-April 1999.  

  Recommended: 
  Rotenberg et al., “Trace Cache: a Low Latency Approach to High Bandwidth 

Instruction Fetching,” MICRO 1996. 
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Types of Parallelism 
  Task level parallelism 

  Multitasking, multiprogramming” multiple different tasks need to be completed 
  e.g., multiple simulations, audio and email 

  Multiple tasks executed concurrently to exploit this 

  Thread (instruction stream) level parallelism 
  Program divided into multiple threads that can execute in parallel. Each thread  

  can perform the same “task” on different data (e.g. zoom in on an image) 
  can perform different tasks on same/different data (e.g. database trans.) 

  Multiple threads executed concurrently to exploit this 

  Instruction level parallelism 
  Processing of different instructions can be carried out independently 
  Multiple instructions executed concurrently to exploit this 
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Exploiting ILP via Pipelining 
  Pipelining 

  Increases the number of instructions processed concurrently 
in the machine 

  Exploits parallelism within the “instruction processing cycle” 
  One instruction being fetched when another is executed 

  So far we have looked at only scalar pipelines 

  Scalar execution 
  One instruction fetched, issued, retired per cycle (at most) 
  The best case CPI of a scalar pipeline is 1. 
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Reducing CPI beyond 1 
  CPI vs. IPC 

  Inverse of each other 
  IPC more commonly used to denote retirement of multiple 

instructions 

  Flynn’s bottleneck 
  You cannot retire more than you fetch 
  If we want IPC > 1, we need to fetch > 1 instruction per 

cycle. 
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Superscalar Processing 
  Idea: Have multiple pipelines to fetch, decode, execute, 

and retire multiple instructions per cycle 
  Can be used with in-order or out-of-order execution 
  Superscalar width: number of pipelines 
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4-wide Superscalar Out-of-order Processor 
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A Superscalar Out-of-order Processor 
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Superscalar Processing 
  Fetch (supply N instructions) 
  Decode (generate control signals for N instructions) 
  Rename (detect dependencies between N instructions) 
  Dispatch (determine readiness and select N instructions to 

execute in-order or out-of-order) 
  Execute (have enough functional units to execute N 

instructions + forwarding paths to forward results of N 
instructions) 

  Write into Register File (have enough ports to write results 
of N instructions) 

  Retire (N instructions) 
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Fetching Multiple Instructions Per Cycle 

  Two problems 

1. Alignment of instructions in I-cache 
  What if there are not enough (N) instructions in the cache line 

to supply the fetch width? 

2. Fetch break: Branches present in the fetch block 
  Fetching sequential instructions in a single cycle is easy 
  What if there is a control flow instruction in the N instructions? 
  Problem: The direction of the branch is not known but we 

need to fetch more instructions 

  These can cause effective fetch width < peak fetch width 
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Wide Fetch Solutions: Alignment 
  Large cache blocks: Hope N instructions contained in the 

block 

  Split-line fetch: If address falls into second half of the cache 
block, fetch the first half of next cache block as well 
  Enabled by banking of the cache 
  Allows sequential fetch across cache blocks in one cycle 
  Pentium and AMD K5 
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Split Line Fetch 
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Need alignment logic: 



Short Distance Predicted-Taken Branches 
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Techniques to Reduce Fetch Breaks 
  Compiler 

  Code reordering (basic block reordering) 
  Superblock 

  Hardware 
  Trace cache 

  Hardware/software cooperative 
  Block structured ISA 
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Basic Block Reordering 
  Not-taken control flow instructions not a problem: no fetch 

break: make the likely path the not-taken path 
  Idea: Convert taken branches to not-taken ones 

  i.e., reorder basic blocks (after profiling) 
  Basic block: code with a single entry and single exit point 

  Code Layout 1 leads to the fewest fetch breaks 
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Basic Block Reordering 
  Pettis and Hansen, “Profile Guided Code Positioning,” PLDI 

1990. 

  Advantages: 
+ Reduced fetch breaks (assuming profile behavior matches 

runtime behavior of branches) 
+ Increased I-cache hit rate 
+ Reduced page faults 

  Disadvantages: 
-- Dependent on compile-time profiling 
-- Does not help if branches are not biased 
-- Requires recompilation 
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Superblock 
  Idea: Combine frequently executed basic blocks such that they form a 

single-entry multiple exit larger block, which is likely executed as 
straight-line code 

+ Helps wide fetch 
+ Enables aggressive 
    compiler optimizations 
    and code reordering 
    within the superblock 

-- Increased code size 
-- Profile dependent 
-- Requires recompilation 

  Hwu et al. “The Superblock: An effective technique for VLIW  
     and superscalar compilation,” Journal of Supercomputing, 1993. 
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Superblock Formation (I) 
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Superblock Formation (II) 
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Superblock Code Optimization Example 

23 

opA: mul r1<-r2,3 

opC: mul r3<-r2,3 

opB: add r2<-r2,1 99 

1 

1 

Original Code 

opA: mul r1<-r2,3 

opC: mul r3<-r2,3 

opB: add r2<-r2,1 99 

1 

Code After Superblock Formation 

opC’: mul r3<-r2,3 

opA: mul r1<-r2,3 

opC: mov r3<-r1 

opB: add r2<-r2,1 99 

1 

Code After Common  
Subexpression Elimination 

opC’: mul r3<-r2,3 



Reducing Fetch Breaks: Trace Cache 
  Dynamically determine the basic blocks that are executed consecutively 
  Trace: Consecutively executed basic blocks 
  Idea: Store consecutively-executed basic blocks in physically-contiguous 

internal storage (called trace cache) 

  Basic trace cache operation: 
  Fetch from consecutively-stored basic blocks (predict next trace or branches) 
  Verify the executed branch directions with the stored ones 
  If mismatch, flush the remaining portion of the trace 

  Rotenberg et al., “Trace Cache: a Low Latency Approach to High Bandwidth Instruction 
Fetching,” MICRO 1996. 

  Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR, 1997. 
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Trace Cache: Basic Idea 
  A trace is a sequence of instructions starting at any point in 

a dynamic instruction stream. 
  It is specified by a start address and the branch outcomes 

of control transfer instructions. 
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Trace Cache: Example 
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An Example Trace Cache Based Processor  

  From Patel’s PhD Thesis: “Trace Cache Design for Wide Issue Superscalar 
Processors,” University of Michigan, 1999.  
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What Does A Trace Cache Line Store? 

  Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR, 
1997. 
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Trace Cache: Advantages/Disadvantages 

+ Reduces fetch breaks (assuming branches are biased) 
+ No need for decoding (instructions can be stored in decoded form) 
+ Can enable dynamic optimizations within a trace 
-- Requires hardware to form traces (more complexity)  called fill unit 
-- Results in duplication of the same basic blocks in the cache 
-- Can require the prediction of multiple branches per cycle 

 -- If multiple cached traces have the same start address 
 -- What if XYZ and XYT are both likely traces? 
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Trace Cache Design Issues (I) 
  Granularity of prediction: Trace based versus branch based? 

+ Trace based eliminates the need for multiple predictions/cycle 
-- Trace based can be less accurate  
-- Trace based: How do you distinguish traces with the same start 

address? 

  When to form traces: Based on fetched or retired blocks? 
+ Retired: Likely to be more accurate 
-- Retired: Formation of trace is delayed until blocks are committed 
   -- Very tight loops with short trip count might not benefit 

  When to terminate the formation of a trace 
  After N instructions, after B branches, at an indirect jump or 

return  
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Trace Cache Design Issues (II)  
  Should entire “path” match for a trace cache hit? 
  Partial matching: A piece of a trace is supplied based on branch prediction 
+ Increases hit rate when there is not a full path match 
-- Lengthens critical path (next fetch address dependent on the match) 
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Trace Cache Design Issues (III) 
  Path associativity: Multiple traces starting at the same address can be present 

in the cache at the same time. 
+ Good for traces with unbiased branches (e.g., ping pong between C and D) 
-- Need to determine longest matching path 
-- Increased cache pressure 
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