
15-740/18-740
Computer Architecture

Lecture 21: Superscalar Processing

Prof. Onur Mutlu
Carnegie Mellon University

Announcements
  Project Milestone 2

  Due November 10

  Homework 4
  Out today
  Due November 15

2

Last Two Lectures
  SRAM vs. DRAM
  Interleaving/Banking
  DRAM Microarchitecture

  Memory controller
  Memory buses
  Banks, ranks, channels, DIMMs
  Address mapping: software vs. hardware
  DRAM refresh

  Memory scheduling policies
  Memory power/energy management
  Multi-core issues

  Fairness, interference
  Large DRAM capacity

3

Today
  Superscalar processing

4

Readings
  Required (New):

  Patel et al., “Evaluation of design options for the trace cache fetch
mechanism,” IEEE TC 1999.

  Palacharla et al., “Complexity Effective Superscalar Processors,” ISCA 1997.

  Required (Old):
  Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc.

IEEE, Dec. 1995.
  Stark, Brown, Patt, “On pipelining dynamic instruction scheduling logic,” MICRO 2000.
  Boggs et al., “The microarchitecture of the Pentium 4 processor,” Intel Technology

Journal, 2001.
  Kessler, “The Alpha 21264 microprocessor,” IEEE Micro, March-April 1999.

  Recommended:
  Rotenberg et al., “Trace Cache: a Low Latency Approach to High Bandwidth

Instruction Fetching,” MICRO 1996.

5

Types of Parallelism
  Task level parallelism

  Multitasking, multiprogramming” multiple different tasks need to be completed
  e.g., multiple simulations, audio and email

  Multiple tasks executed concurrently to exploit this

  Thread (instruction stream) level parallelism
  Program divided into multiple threads that can execute in parallel. Each thread

  can perform the same “task” on different data (e.g. zoom in on an image)
  can perform different tasks on same/different data (e.g. database trans.)

  Multiple threads executed concurrently to exploit this

  Instruction level parallelism
  Processing of different instructions can be carried out independently
  Multiple instructions executed concurrently to exploit this

6

Exploiting ILP via Pipelining
  Pipelining

  Increases the number of instructions processed concurrently
in the machine

  Exploits parallelism within the “instruction processing cycle”
  One instruction being fetched when another is executed

  So far we have looked at only scalar pipelines

  Scalar execution
  One instruction fetched, issued, retired per cycle (at most)
  The best case CPI of a scalar pipeline is 1.

7

Reducing CPI beyond 1
  CPI vs. IPC

  Inverse of each other
  IPC more commonly used to denote retirement of multiple

instructions

  Flynn’s bottleneck
  You cannot retire more than you fetch
  If we want IPC > 1, we need to fetch > 1 instruction per

cycle.

8

Superscalar Processing
  Idea: Have multiple pipelines to fetch, decode, execute,

and retire multiple instructions per cycle
  Can be used with in-order or out-of-order execution
  Superscalar width: number of pipelines

9

F D

E

W
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer mul

FP mul

Load/store

R

F D

F D
F D

E
E
E

E E E E E E E E . . .

R

R
R

W

W
W

4-wide in-order superscalar processor
Integer add

4-wide Superscalar Out-of-order Processor

10

F D

E

W
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer mul

FP mul

Load/store

R
F D

F D
F D

E
E
E

E E E E E E E E . . .

R

R
R

W

W
W

S
C
H
E
D
U
L
E

Integer add

A Superscalar Out-of-order Processor

11

Superscalar Processing
  Fetch (supply N instructions)
  Decode (generate control signals for N instructions)
  Rename (detect dependencies between N instructions)
  Dispatch (determine readiness and select N instructions to

execute in-order or out-of-order)
  Execute (have enough functional units to execute N

instructions + forwarding paths to forward results of N
instructions)

  Write into Register File (have enough ports to write results
of N instructions)

  Retire (N instructions)

12

Fetching Multiple Instructions Per Cycle

  Two problems

1. Alignment of instructions in I-cache
  What if there are not enough (N) instructions in the cache line

to supply the fetch width?

2. Fetch break: Branches present in the fetch block
  Fetching sequential instructions in a single cycle is easy
  What if there is a control flow instruction in the N instructions?
  Problem: The direction of the branch is not known but we

need to fetch more instructions

  These can cause effective fetch width < peak fetch width

13

Wide Fetch Solutions: Alignment
  Large cache blocks: Hope N instructions contained in the

block

  Split-line fetch: If address falls into second half of the cache
block, fetch the first half of next cache block as well
  Enabled by banking of the cache
  Allows sequential fetch across cache blocks in one cycle
  Pentium and AMD K5

14

Split Line Fetch

15

Need alignment logic:

Short Distance Predicted-Taken Branches

16

Techniques to Reduce Fetch Breaks
  Compiler

  Code reordering (basic block reordering)
  Superblock

  Hardware
  Trace cache

  Hardware/software cooperative
  Block structured ISA

17

Basic Block Reordering
  Not-taken control flow instructions not a problem: no fetch

break: make the likely path the not-taken path
  Idea: Convert taken branches to not-taken ones

  i.e., reorder basic blocks (after profiling)
  Basic block: code with a single entry and single exit point

  Code Layout 1 leads to the fewest fetch breaks

18

A

B C

D

T NT
A

99% 1%
B
D

Control Flow Graph Code Layout 1 Code Layout 2

A
C
D

Code Layout 3

A
B
C
D

C B

Basic Block Reordering
  Pettis and Hansen, “Profile Guided Code Positioning,” PLDI

1990.

  Advantages:
+ Reduced fetch breaks (assuming profile behavior matches

runtime behavior of branches)
+ Increased I-cache hit rate
+ Reduced page faults

  Disadvantages:
-- Dependent on compile-time profiling
-- Does not help if branches are not biased
-- Requires recompilation

19

Superblock
  Idea: Combine frequently executed basic blocks such that they form a

single-entry multiple exit larger block, which is likely executed as
straight-line code

+ Helps wide fetch
+ Enables aggressive
 compiler optimizations
 and code reordering
 within the superblock

-- Increased code size
-- Profile dependent
-- Requires recompilation

  Hwu et al. “The Superblock: An effective technique for VLIW
 and superscalar compilation,” Journal of Supercomputing, 1993.

20

Superblock Formation (I)

21

Y

A
100

C
10

B
90

E
90

D
0

F
100

Z

1

90 10

90 0

0
90

10 99

1

Y

A
100

C
10

B
90

E
90

D
0

F
100

Z

1

90 10

90 0

0
90

10

99

1

Is this a superblock?

Superblock Formation (II)

22

Y

A
100

C
10

B
90

E
90

D
0

F
90

Z

1

90 10

90 0

0

90

10

89.1

0.9

Tail duplication:
duplication of basic blocks
after a side entrance to
eliminate side entrances
 transforms
a trace into a superblock.

F’
10

10

9.9

0.1

Superblock Code Optimization Example

23

opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,1 99

1

1

Original Code

opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,1 99

1

Code After Superblock Formation

opC’: mul r3<-r2,3

opA: mul r1<-r2,3

opC: mov r3<-r1

opB: add r2<-r2,1 99

1

Code After Common
Subexpression Elimination

opC’: mul r3<-r2,3

Reducing Fetch Breaks: Trace Cache
  Dynamically determine the basic blocks that are executed consecutively
  Trace: Consecutively executed basic blocks
  Idea: Store consecutively-executed basic blocks in physically-contiguous

internal storage (called trace cache)

  Basic trace cache operation:
  Fetch from consecutively-stored basic blocks (predict next trace or branches)
  Verify the executed branch directions with the stored ones
  If mismatch, flush the remaining portion of the trace

  Rotenberg et al., “Trace Cache: a Low Latency Approach to High Bandwidth Instruction
Fetching,” MICRO 1996.

  Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR, 1997.

24

Trace Cache: Basic Idea
  A trace is a sequence of instructions starting at any point in

a dynamic instruction stream.
  It is specified by a start address and the branch outcomes

of control transfer instructions.

25

Trace Cache: Example

26

An Example Trace Cache Based Processor

  From Patel’s PhD Thesis: “Trace Cache Design for Wide Issue Superscalar
Processors,” University of Michigan, 1999.

27

What Does A Trace Cache Line Store?

  Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR,
1997.

28

Trace Cache: Advantages/Disadvantages

+ Reduces fetch breaks (assuming branches are biased)
+ No need for decoding (instructions can be stored in decoded form)
+ Can enable dynamic optimizations within a trace
-- Requires hardware to form traces (more complexity) called fill unit
-- Results in duplication of the same basic blocks in the cache
-- Can require the prediction of multiple branches per cycle

 -- If multiple cached traces have the same start address
 -- What if XYZ and XYT are both likely traces?

29

Trace Cache Design Issues (I)
  Granularity of prediction: Trace based versus branch based?

+ Trace based eliminates the need for multiple predictions/cycle
-- Trace based can be less accurate
-- Trace based: How do you distinguish traces with the same start

address?

  When to form traces: Based on fetched or retired blocks?
+ Retired: Likely to be more accurate
-- Retired: Formation of trace is delayed until blocks are committed
 -- Very tight loops with short trip count might not benefit

  When to terminate the formation of a trace
  After N instructions, after B branches, at an indirect jump or

return
30

Trace Cache Design Issues (II)
  Should entire “path” match for a trace cache hit?
  Partial matching: A piece of a trace is supplied based on branch prediction
+ Increases hit rate when there is not a full path match
-- Lengthens critical path (next fetch address dependent on the match)

31

Trace Cache Design Issues (III)
  Path associativity: Multiple traces starting at the same address can be present

in the cache at the same time.
+ Good for traces with unbiased branches (e.g., ping pong between C and D)
-- Need to determine longest matching path
-- Increased cache pressure

32

