15-740/18-740
Computer Architecture
Lecture 21: Superscalar Processing

Prof. Onur Mutlu
Carnegie Mellon University

Announcements

Project Milestone 2
o Due November 10

Homework 4

o Out today
o Due November 15

I.ast Two Lectures

SRAM vs. DRAM

Interleaving/Banking

DRAM Microarchitecture

o Memory controller

o Memory buses

a Banks, ranks, channels, DIMMs

o Address mapping: software vs. hardware
o DRAM refresh

Memory scheduling policies

Memory power/energy management
Multi-core issues

a Fairness, interference

o Large DRAM capacity

Today

Superscalar processing

Readings

Required (New):

o Patel et al., “Evaluation of design options for the trace cache fetch
mechanism,” IEEE TC 1999.

o Palacharla et al., "Complexity Effective Superscalar Processors,” ISCA 1997.

Required (OId):

o Smith and Sohi, “"The Microarchitecture of Superscalar Processors,” Proc.
IEEE, Dec. 1995.

o Stark, Brown, Patt, “On pipelining dynamic instruction scheduling logic,” MICRO 2000.

o Boggs et al., “The microarchitecture of the Pentium 4 processor,” Intel Technology
Journal, 2001.

o Kessler, “The Alpha 21264 microprocessor,” IEEE Micro, March-April 1999.

Recommended:

o Rotenberg et al., “Trace Cache: a Low Latency Approach to High Bandwidth
Instruction Fetching,” MICRO 1996.

Types ot Parallelism

Task level parallelism

o Multitasking, multiprogramming” multiple different tasks need to be completed
e.g., multiple simulations, audio and email

o Multiple tasks executed concurrently to exploit this

Thread (instruction stream) level parallelism

o Program divided into multiple threads that can execute in parallel. Each thread
can perform the same “task” on different data (e.g. zoom in on an image)
can perform different tasks on same/different data (e.g. database trans.)

o Multiple threads executed concurrently to exploit this

Instruction level parallelism
o Processing of different instructions can be carried out independently
o Multiple instructions executed concurrently to exploit this

Exploiting IL.P via Pipelining

Pipelining
o Increases the number of instructions processed concurrently
in the machine

o Exploits parallelism within the “instruction processing cycle”
One instruction being fetched when another is executed
o So far we have looked at only scalar pipelines

Scalar execution
o One instruction fetched, issued, retired per cycle (at most)
o The best case CPI of a scalar pipeline is 1.

Reducing CPI beyond 1

CPI vs. IPC

o Inverse of each other

o IPC more commonly used to denote retirement of multiple
instructions

Flynn’s bottleneck

o You cannot retire more than you fetch
o If we want IPC > 1, we need to fetch > 1 instruction per

cycle.
‘[uEngine }—

Can’t get out more than you put in.

Superscalar Processing

Idea: Have multiple pipelines to fetch, decode, execute,
and retire multiple instructions per cycle

Can be used with in-order or out-of-order execution
Superscalar width: number of pipelines

4-wide in-order superscalar processor
Integer add

N
,

Integer mul

FP mul

/
XX || 2
= 2|22

M| m|m |
OO0 0|0

Load/store

4-wide Superscalar Out-of-order Processor

m | m|m| T

0| 0|0

mrrCcCcoOoOmITOw’m

Integer add

m (m|m|m

m

Integer mul

T

FP mul

T

A0 0|40

==

. >

Load/store

10

A Superscalar Out-ot-order Processor

v

|-cache

L

Branch |g—— FETCH

Pred+ctor EEEIII:}II:IIEI Instruction,

DECODE

Instruction
Flow

Floating-point '

coxfn

Register
Data
Flow Store v

11

Superscalar Processing

Fetch (supply N instructions)
Decode (generate control signals for N instructions)
Rename (detect dependencies between N instructions)

Dispatch (determine readiness and select N instructions to
execute in-order or out-of-order)

Execute (have enough functional units to execute N
instructions + forwarding paths to forward results of N
instructions)

Write into Register File (have enough ports to write results
of N instructions)

Retire (N instructions)

12

Fetching Multiple Instructions Per Cycle

Two problems

1. Alignment of instructions in I-cache

o What if there are not enough (N) instructions in the cache line
to supply the fetch width?

2. Fetch break: Branches present in the fetch block
0 Fetching sequential instructions in a single cycle is easy
o What if there is a control flow instruction in the N instructions?

o Problem: The direction of the branch is not known but we
need to fetch more instructions

These can cause effective fetch width < peak fetch width

13

Wide Fetch Solutions: Alignment

Large cache blocks: Hope N instructions contained in the
block

Split-line fetch: If address falls into second half of the cache
block, fetch the first half of next cache block as well

o Enabled by banking of the cache
o Allows sequential fetch across cache blocks in one cycle

o Pentium and AMD K5

14

Split Line Fetch

Cache Banking 0100 1100 T
0100 1100 Cache
0100 1101 Block
0100 1110 A
0100 1111 B v
Memory Map 0101 0000 C !
0101 0001 D
0101 0010 £ Cache
0101 0011 F Block
0101 0111 l

Bank O Bank1

Cache Block 0100 AlB

Block 0101 [CID |E[F | 1

Need alignment logic:

Short Distance Predicted-Taken Branches

"'f\A Bank 0 Bank1

| | Block 0100 AlB[c|D

,t' Block 0101 [E|F

| B

| ¢ \\ First Iteration (Branch B taken to E)

- C | EF ABCD

| ' ,f" \f;; <

/P ABEF

|‘|, l E Second lteration (Branch B fall through to C)

\\ ¢ EF AB CD
F e

Techniques to Reduce Fetch Breaks

Compiler

o Code reordering (basic block reordering)
o Superblock

Hardware
o Trace cache

Hardware/software cooperative
o Block structured ISA

17

Basic Block Reordering

Not-taken control flow instructions not a problem: no fetch
break: make the likely path the not-taken path

Idea: Convert taken branches to not-taken ones
o i.e., reorder basic blocks (after profiling)
o Basic block: code with a single entry and single exit point

Control Flow Graph Code Layout 1 Code Layout2 Code Layout 3

99% A 1% A A A
o T NT 1% B c

B
B D D C
D

D C B

Code Layout 1 leads to the fewest fetch breaks

18

Basic Block Reordering

Pettis and Hansen, “Profile Guided Code Positioning,” PLDI
1990.

Advantages:

+ Reduced fetch breaks (assuming profile behavior matches
runtime behavior of branches)

+ Increased I-cache hit rate
+ Reduced page faults

Disadvantages:

-- Dependent on compile-time profiling

-- Does not help if branches are not biased
-- Requires recompilation

19

Superblock

Idea: Combine frequently executed basic blocks such that they form a
single-entry multiple exit larger block, which is likely executed as
straight-line code

) © O

+ Helps wide fetch N .

+ Enables aggressive
compiler optimizations
and code reordering
within the superblock

-- Increased code size L
-- Profile dependent 1
-- Requires recompilation ©

Hwu et al. “The Superblock: An effective technique for VLIW
and superscalar compilation,” Journal of Supercomputing, 1993.

20

Superblock Formation (I)

Is this a superblock?

A
100
90 10
B C
90 10
‘y\gq 0
D E D
0 90 | /10 Jgg 0
N’
0)
0 F
100

21

Superblock Formation (II)

*

10

L 189.1

10

0.1

Tail duplication:
duplication of basic blocks
after a side entrance to
eliminate side entrances
- transforms

a trace into a superblock.

22

Superblock Code Optimization Example

opA: mul r1<-r2,3 opA: mul r1<-r2,3
99 opB: add r2<-r2,1 i 99 :ppB: add r2<-r2,1
Yo 1 : y EopC’: mul r3<-r2,3
opC: mul r3<-r2,3 opC: mul r3<-r2,3 :
Original Code CodeAfterSuperbIock Formation

opA: mul r1<-r2,3
99 :ppB: add r2<-r2,1

: EopC’: mul r3<-r2,3
opC: mov r3<-r1| :

Code After Common
Subexpression Elimination

Reducing Fetch Breaks: Trace Cache

Dynamically determine the basic blocks that are executed consecutively
Trace: Consecutively executed basic blocks

Idea: Store consecutively-executed basic blocks in physically-contiguous
internal storage (called trace cache)

fime —»

Dynamic Instruction Stream

Basic trace cache operation:

o Fetch from consecutively-stored basic blocks (predict next trace or branches)
o Verify the executed branch directions with the stored ones

o If mismatch, flush the remaining portion of the trace

Rotenberg et al., "Trace Cache: a Low Latency Approach to High Bandwidth Instruction
Fetching,” MICRO 1996.

Patel et al., "Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR, 1997.
24

Trace Cache: Basic Idea

A trace is a sequence of instructions starting at any point in

a dynamic instruction stream.

It is specified by a start address and the branch outcomes
of control transfer instructions.

l)a

B

w

Al B~ C

(a) Instruction cache.

(b) Trace cache.

25

Trace Cache: Example

Fetch Address A

Instruction
Cache
n
o /
2 BB > 7
3“BB A
—1 0
— 1
Trace Cache
n
‘ _ Vi
hit?

T

Line-Fill Buffer

T

Take outpur from trace
cache if trace cache hir;
otherwise, take output from
instruction cache.

Instruction Latch

To Instruction

Buffers

>

26

An Example Trace Cache Based Processor

e

1 (Fetch Address ‘f
Fill
Unit ~ Trace Cache
Multiple
Branch
J L) Predictor
A
(Selection Logic j«L

1

l Next Fetch Address

Instruction
Cache

Align/Merge

'

Register Rename

Y

_[

Execution Core

Level 2

Instruction
Cache

P

Level 2
Data
Cache

™

From Patel’s PhD Thesis: “Trace Cache Design for Wide Issue Superscalar

Processors,” University of Michigan, 1999.

27

What Does A Trace Cache Line Store?

e 16 slots for instructions. Instructions are stored in decoded form and occupy approxi-
mately five bytes for a typical ISA. Up to three branches can be stored per line. Each

instruction is marked with a two-bit tag indicating to which block it belongs.

e Four target addresses. With three basic blocks per segment and the ability to fetch
partial segments. there are four possible targets to a segment. The four addresses are
explicitly stored allowing immediate generation of the next fetch address, even for cases

where only a partial segment matches.

e Path information. This field encodes the number and directions of branches in the
segment and includes bits to identify whether a segment ends in a branch and whether
that branch is a return from subroutine instruction. In the case of a return instruction.

the return address stack provides the next fetch address.

= Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR,
1997.

28

Trace Cache: Advantages/Disadvantages

D
C 8 - A|lB| C |D E

—D

(a) Instruction cache. (b) Trace cache.

Al B C

+ Reduces fetch breaks (assuming branches are biased)
+ No need for decoding (instructions can be stored in decoded form)
+ Can enable dynamic optimizations within a trace
-- Requires hardware to form traces (more complexity) - called fill unit
-- Results in duplication of the same basic blocks in the cache
-- Can require the prediction of multiple branches per cycle
-- If multiple cached traces have the same start address
-- What if XYZ and XYT are both likely traces?

29

Trace Cache Design Issues (I)

Granularity of prediction: Trace based versus branch based?
+ Trace based eliminates the need for multiple predictions/cycle
-- Trace based can be less accurate

-- Trace based: How do you distinguish traces with the same start
address?

When to form traces: Based on fetched or retired blocks?

+ Retired: Likely to be more accurate

-- Retired: Formation of trace is delayed until blocks are committed
-- Very tight loops with short trip count might not benefit

When to terminate the formation of a trace

o After N instructions, after B branches, at an indirect jump or
return
30

Trace Cache Design Issues (1I)

Should entire “path” match for a trace cache hit?

Partial matching: A piece of a trace is supplied based on branch prediction
+ Increases hit rate when there is not a full path match
-- Lengthens critical path (next fetch address dependent on the match)

’ Address of A | /;\
\{;
(8)
Trace Cache - -
t/ D | C\I
' NN AN
A [&8 | ¢ | (
Multiple Predicted path: ABC
Branch Fetched segment: ABD
Predictor
No partial matching: miss
Partial Matching: AB
Predictions
'
{ Selection Logic]A TINTIT
A | &8 |

Figure 6.1: The trace cache and branch predictor are indexed with the ad-
dress of block A. The inset figure shows the control flow from
block A. The predictor selects the sequence ABD. The trace
cache only contains ABC. AB is supplied.

31

Trace Cache Design Issues (I11)

Path associativity: Multiple traces starting at the same address can be present
in the cache at the same time.

+ Good for traces with unbiased branches (e.g., ping pong between C and D)
-- Need to determine longest matching path
-- Increased cache pressure

{ A\I

p
\ﬂ/i
= ~
\

\2/ \C

Trace Cache set Trace Cache

{ Multiple
B > Branch
{ Predictor

) . | nmamT
path selection logic |‘

LA |l 8] o |

32

