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Announcements 
  Project Milestone 2 

  Due November 10 

  Homework 4 
  Out today 
  Due November 15 
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Last Two Lectures 
  SRAM vs. DRAM 
  Interleaving/Banking 
  DRAM Microarchitecture 

  Memory controller 
  Memory buses 
  Banks, ranks, channels, DIMMs 
  Address mapping: software vs. hardware 
  DRAM refresh 

  Memory scheduling policies 
  Memory power/energy management 
  Multi-core issues 

  Fairness, interference 
  Large DRAM capacity 
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Today 
  Superscalar processing 
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Readings 
  Required (New): 

  Patel et al., “Evaluation of design options for the trace cache fetch 
mechanism,” IEEE TC 1999.  

  Palacharla et al., “Complexity Effective Superscalar Processors,” ISCA 1997. 

  Required (Old): 
  Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. 

IEEE, Dec. 1995. 
  Stark, Brown, Patt, “On pipelining dynamic instruction scheduling logic,” MICRO 2000. 
  Boggs et al., “The microarchitecture of the Pentium 4 processor,” Intel Technology 

Journal, 2001. 
  Kessler, “The Alpha 21264 microprocessor,” IEEE Micro, March-April 1999.  

  Recommended: 
  Rotenberg et al., “Trace Cache: a Low Latency Approach to High Bandwidth 

Instruction Fetching,” MICRO 1996. 
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Types of Parallelism 
  Task level parallelism 

  Multitasking, multiprogramming” multiple different tasks need to be completed 
  e.g., multiple simulations, audio and email 

  Multiple tasks executed concurrently to exploit this 

  Thread (instruction stream) level parallelism 
  Program divided into multiple threads that can execute in parallel. Each thread  

  can perform the same “task” on different data (e.g. zoom in on an image) 
  can perform different tasks on same/different data (e.g. database trans.) 

  Multiple threads executed concurrently to exploit this 

  Instruction level parallelism 
  Processing of different instructions can be carried out independently 
  Multiple instructions executed concurrently to exploit this 
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Exploiting ILP via Pipelining 
  Pipelining 

  Increases the number of instructions processed concurrently 
in the machine 

  Exploits parallelism within the “instruction processing cycle” 
  One instruction being fetched when another is executed 

  So far we have looked at only scalar pipelines 

  Scalar execution 
  One instruction fetched, issued, retired per cycle (at most) 
  The best case CPI of a scalar pipeline is 1. 
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Reducing CPI beyond 1 
  CPI vs. IPC 

  Inverse of each other 
  IPC more commonly used to denote retirement of multiple 

instructions 

  Flynn’s bottleneck 
  You cannot retire more than you fetch 
  If we want IPC > 1, we need to fetch > 1 instruction per 

cycle. 
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Superscalar Processing 
  Idea: Have multiple pipelines to fetch, decode, execute, 

and retire multiple instructions per cycle 
  Can be used with in-order or out-of-order execution 
  Superscalar width: number of pipelines 
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4-wide Superscalar Out-of-order Processor 
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A Superscalar Out-of-order Processor 
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Superscalar Processing 
  Fetch (supply N instructions) 
  Decode (generate control signals for N instructions) 
  Rename (detect dependencies between N instructions) 
  Dispatch (determine readiness and select N instructions to 

execute in-order or out-of-order) 
  Execute (have enough functional units to execute N 

instructions + forwarding paths to forward results of N 
instructions) 

  Write into Register File (have enough ports to write results 
of N instructions) 

  Retire (N instructions) 
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Fetching Multiple Instructions Per Cycle 

  Two problems 

1. Alignment of instructions in I-cache 
  What if there are not enough (N) instructions in the cache line 

to supply the fetch width? 

2. Fetch break: Branches present in the fetch block 
  Fetching sequential instructions in a single cycle is easy 
  What if there is a control flow instruction in the N instructions? 
  Problem: The direction of the branch is not known but we 

need to fetch more instructions 

  These can cause effective fetch width < peak fetch width 
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Wide Fetch Solutions: Alignment 
  Large cache blocks: Hope N instructions contained in the 

block 

  Split-line fetch: If address falls into second half of the cache 
block, fetch the first half of next cache block as well 
  Enabled by banking of the cache 
  Allows sequential fetch across cache blocks in one cycle 
  Pentium and AMD K5 
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Split Line Fetch 
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Need alignment logic: 



Short Distance Predicted-Taken Branches 
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Techniques to Reduce Fetch Breaks 
  Compiler 

  Code reordering (basic block reordering) 
  Superblock 

  Hardware 
  Trace cache 

  Hardware/software cooperative 
  Block structured ISA 
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Basic Block Reordering 
  Not-taken control flow instructions not a problem: no fetch 

break: make the likely path the not-taken path 
  Idea: Convert taken branches to not-taken ones 

  i.e., reorder basic blocks (after profiling) 
  Basic block: code with a single entry and single exit point 

  Code Layout 1 leads to the fewest fetch breaks 
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Basic Block Reordering 
  Pettis and Hansen, “Profile Guided Code Positioning,” PLDI 

1990. 

  Advantages: 
+ Reduced fetch breaks (assuming profile behavior matches 

runtime behavior of branches) 
+ Increased I-cache hit rate 
+ Reduced page faults 

  Disadvantages: 
-- Dependent on compile-time profiling 
-- Does not help if branches are not biased 
-- Requires recompilation 
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Superblock 
  Idea: Combine frequently executed basic blocks such that they form a 

single-entry multiple exit larger block, which is likely executed as 
straight-line code 

+ Helps wide fetch 
+ Enables aggressive 
    compiler optimizations 
    and code reordering 
    within the superblock 

-- Increased code size 
-- Profile dependent 
-- Requires recompilation 

  Hwu et al. “The Superblock: An effective technique for VLIW  
     and superscalar compilation,” Journal of Supercomputing, 1993. 
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Superblock Formation (I) 
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Superblock Formation (II) 
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Superblock Code Optimization Example 
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Reducing Fetch Breaks: Trace Cache 
  Dynamically determine the basic blocks that are executed consecutively 
  Trace: Consecutively executed basic blocks 
  Idea: Store consecutively-executed basic blocks in physically-contiguous 

internal storage (called trace cache) 

  Basic trace cache operation: 
  Fetch from consecutively-stored basic blocks (predict next trace or branches) 
  Verify the executed branch directions with the stored ones 
  If mismatch, flush the remaining portion of the trace 

  Rotenberg et al., “Trace Cache: a Low Latency Approach to High Bandwidth Instruction 
Fetching,” MICRO 1996. 

  Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR, 1997. 
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Trace Cache: Basic Idea 
  A trace is a sequence of instructions starting at any point in 

a dynamic instruction stream. 
  It is specified by a start address and the branch outcomes 

of control transfer instructions. 

25 



Trace Cache: Example 
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An Example Trace Cache Based Processor  

  From Patel’s PhD Thesis: “Trace Cache Design for Wide Issue Superscalar 
Processors,” University of Michigan, 1999.  
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What Does A Trace Cache Line Store? 

  Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR, 
1997. 

28 



Trace Cache: Advantages/Disadvantages 

+ Reduces fetch breaks (assuming branches are biased) 
+ No need for decoding (instructions can be stored in decoded form) 
+ Can enable dynamic optimizations within a trace 
-- Requires hardware to form traces (more complexity)  called fill unit 
-- Results in duplication of the same basic blocks in the cache 
-- Can require the prediction of multiple branches per cycle 

 -- If multiple cached traces have the same start address 
 -- What if XYZ and XYT are both likely traces? 
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Trace Cache Design Issues (I) 
  Granularity of prediction: Trace based versus branch based? 

+ Trace based eliminates the need for multiple predictions/cycle 
-- Trace based can be less accurate  
-- Trace based: How do you distinguish traces with the same start 

address? 

  When to form traces: Based on fetched or retired blocks? 
+ Retired: Likely to be more accurate 
-- Retired: Formation of trace is delayed until blocks are committed 
   -- Very tight loops with short trip count might not benefit 

  When to terminate the formation of a trace 
  After N instructions, after B branches, at an indirect jump or 

return  
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Trace Cache Design Issues (II)  
  Should entire “path” match for a trace cache hit? 
  Partial matching: A piece of a trace is supplied based on branch prediction 
+ Increases hit rate when there is not a full path match 
-- Lengthens critical path (next fetch address dependent on the match) 
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Trace Cache Design Issues (III) 
  Path associativity: Multiple traces starting at the same address can be present 

in the cache at the same time. 
+ Good for traces with unbiased branches (e.g., ping pong between C and D) 
-- Need to determine longest matching path 
-- Increased cache pressure 
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