
15-740/18-740
Computer Architecture

Lecture 21: Superscalar Processing

Prof. Onur Mutlu
Carnegie Mellon University

Announcements
  Project Milestone 2

  Due November 10

  Homework 4
  Out today
  Due November 15

2

Last Two Lectures
  SRAM vs. DRAM
  Interleaving/Banking
  DRAM Microarchitecture

  Memory controller
  Memory buses
  Banks, ranks, channels, DIMMs
  Address mapping: software vs. hardware
  DRAM refresh

  Memory scheduling policies
  Memory power/energy management
  Multi-core issues

  Fairness, interference
  Large DRAM capacity

3

Today
  Superscalar processing

4

Readings
  Required (New):

  Patel et al., “Evaluation of design options for the trace cache fetch
mechanism,” IEEE TC 1999.

  Palacharla et al., “Complexity Effective Superscalar Processors,” ISCA 1997.

  Required (Old):
  Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc.

IEEE, Dec. 1995.
  Stark, Brown, Patt, “On pipelining dynamic instruction scheduling logic,” MICRO 2000.
  Boggs et al., “The microarchitecture of the Pentium 4 processor,” Intel Technology

Journal, 2001.
  Kessler, “The Alpha 21264 microprocessor,” IEEE Micro, March-April 1999.

  Recommended:
  Rotenberg et al., “Trace Cache: a Low Latency Approach to High Bandwidth

Instruction Fetching,” MICRO 1996.

5

Types of Parallelism
  Task level parallelism

  Multitasking, multiprogramming” multiple different tasks need to be completed
  e.g., multiple simulations, audio and email

  Multiple tasks executed concurrently to exploit this

  Thread (instruction stream) level parallelism
  Program divided into multiple threads that can execute in parallel. Each thread

  can perform the same “task” on different data (e.g. zoom in on an image)
  can perform different tasks on same/different data (e.g. database trans.)

  Multiple threads executed concurrently to exploit this

  Instruction level parallelism
  Processing of different instructions can be carried out independently
  Multiple instructions executed concurrently to exploit this

6

Exploiting ILP via Pipelining
  Pipelining

  Increases the number of instructions processed concurrently
in the machine

  Exploits parallelism within the “instruction processing cycle”
  One instruction being fetched when another is executed

  So far we have looked at only scalar pipelines

  Scalar execution
  One instruction fetched, issued, retired per cycle (at most)
  The best case CPI of a scalar pipeline is 1.

7

Reducing CPI beyond 1
  CPI vs. IPC

  Inverse of each other
  IPC more commonly used to denote retirement of multiple

instructions

  Flynn’s bottleneck
  You cannot retire more than you fetch
  If we want IPC > 1, we need to fetch > 1 instruction per

cycle.

8

Superscalar Processing
  Idea: Have multiple pipelines to fetch, decode, execute,

and retire multiple instructions per cycle
  Can be used with in-order or out-of-order execution
  Superscalar width: number of pipelines

9

F D

E

W
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer mul

FP mul

Load/store

R

F D

F D
F D

E
E
E

E E E E E E E E . . .

R

R
R

W

W
W

4-wide in-order superscalar processor
Integer add

4-wide Superscalar Out-of-order Processor

10

F D

E

W
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer mul

FP mul

Load/store

R
F D

F D
F D

E
E
E

E E E E E E E E . . .

R

R
R

W

W
W

S
C
H
E
D
U
L
E

Integer add

A Superscalar Out-of-order Processor

11

Superscalar Processing
  Fetch (supply N instructions)
  Decode (generate control signals for N instructions)
  Rename (detect dependencies between N instructions)
  Dispatch (determine readiness and select N instructions to

execute in-order or out-of-order)
  Execute (have enough functional units to execute N

instructions + forwarding paths to forward results of N
instructions)

  Write into Register File (have enough ports to write results
of N instructions)

  Retire (N instructions)

12

Fetching Multiple Instructions Per Cycle

  Two problems

1. Alignment of instructions in I-cache
  What if there are not enough (N) instructions in the cache line

to supply the fetch width?

2. Fetch break: Branches present in the fetch block
  Fetching sequential instructions in a single cycle is easy
  What if there is a control flow instruction in the N instructions?
  Problem: The direction of the branch is not known but we

need to fetch more instructions

  These can cause effective fetch width < peak fetch width

13

Wide Fetch Solutions: Alignment
  Large cache blocks: Hope N instructions contained in the

block

  Split-line fetch: If address falls into second half of the cache
block, fetch the first half of next cache block as well
  Enabled by banking of the cache
  Allows sequential fetch across cache blocks in one cycle
  Pentium and AMD K5

14

Split Line Fetch

15

Need alignment logic:

Short Distance Predicted-Taken Branches

16

Techniques to Reduce Fetch Breaks
  Compiler

  Code reordering (basic block reordering)
  Superblock

  Hardware
  Trace cache

  Hardware/software cooperative
  Block structured ISA

17

Basic Block Reordering
  Not-taken control flow instructions not a problem: no fetch

break: make the likely path the not-taken path
  Idea: Convert taken branches to not-taken ones

  i.e., reorder basic blocks (after profiling)
  Basic block: code with a single entry and single exit point

  Code Layout 1 leads to the fewest fetch breaks

18

A

B C

D

T NT
A

99% 1%
B
D

Control Flow Graph Code Layout 1 Code Layout 2

A
C
D

Code Layout 3

A
B
C
D

C B

Basic Block Reordering
  Pettis and Hansen, “Profile Guided Code Positioning,” PLDI

1990.

  Advantages:
+ Reduced fetch breaks (assuming profile behavior matches

runtime behavior of branches)
+ Increased I-cache hit rate
+ Reduced page faults

  Disadvantages:
-- Dependent on compile-time profiling
-- Does not help if branches are not biased
-- Requires recompilation

19

Superblock
  Idea: Combine frequently executed basic blocks such that they form a

single-entry multiple exit larger block, which is likely executed as
straight-line code

+ Helps wide fetch
+ Enables aggressive
 compiler optimizations
 and code reordering
 within the superblock

-- Increased code size
-- Profile dependent
-- Requires recompilation

  Hwu et al. “The Superblock: An effective technique for VLIW
 and superscalar compilation,” Journal of Supercomputing, 1993.

20

Superblock Formation (I)

21

Y

A
100

C
10

B
90

E
90

D
0

F
100

Z

1

90 10

90 0

0
90

10 99

1

Y

A
100

C
10

B
90

E
90

D
0

F
100

Z

1

90 10

90 0

0
90

10

99

1

Is this a superblock?

Superblock Formation (II)

22

Y

A
100

C
10

B
90

E
90

D
0

F
90

Z

1

90 10

90 0

0

90

10

89.1

0.9

Tail duplication:
duplication of basic blocks
after a side entrance to
eliminate side entrances
 transforms
a trace into a superblock.

F’
10

10

9.9

0.1

Superblock Code Optimization Example

23

opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,1 99

1

1

Original Code

opA: mul r1<-r2,3

opC: mul r3<-r2,3

opB: add r2<-r2,1 99

1

Code After Superblock Formation

opC’: mul r3<-r2,3

opA: mul r1<-r2,3

opC: mov r3<-r1

opB: add r2<-r2,1 99

1

Code After Common
Subexpression Elimination

opC’: mul r3<-r2,3

Reducing Fetch Breaks: Trace Cache
  Dynamically determine the basic blocks that are executed consecutively
  Trace: Consecutively executed basic blocks
  Idea: Store consecutively-executed basic blocks in physically-contiguous

internal storage (called trace cache)

  Basic trace cache operation:
  Fetch from consecutively-stored basic blocks (predict next trace or branches)
  Verify the executed branch directions with the stored ones
  If mismatch, flush the remaining portion of the trace

  Rotenberg et al., “Trace Cache: a Low Latency Approach to High Bandwidth Instruction
Fetching,” MICRO 1996.

  Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR, 1997.

24

Trace Cache: Basic Idea
  A trace is a sequence of instructions starting at any point in

a dynamic instruction stream.
  It is specified by a start address and the branch outcomes

of control transfer instructions.

25

Trace Cache: Example

26

An Example Trace Cache Based Processor

  From Patel’s PhD Thesis: “Trace Cache Design for Wide Issue Superscalar
Processors,” University of Michigan, 1999.

27

What Does A Trace Cache Line Store?

  Patel et al., “Critical Issues Regarding the Trace Cache Fetch Mechanism,” Umich TR,
1997.

28

Trace Cache: Advantages/Disadvantages

+ Reduces fetch breaks (assuming branches are biased)
+ No need for decoding (instructions can be stored in decoded form)
+ Can enable dynamic optimizations within a trace
-- Requires hardware to form traces (more complexity)  called fill unit
-- Results in duplication of the same basic blocks in the cache
-- Can require the prediction of multiple branches per cycle

 -- If multiple cached traces have the same start address
 -- What if XYZ and XYT are both likely traces?

29

Trace Cache Design Issues (I)
  Granularity of prediction: Trace based versus branch based?

+ Trace based eliminates the need for multiple predictions/cycle
-- Trace based can be less accurate
-- Trace based: How do you distinguish traces with the same start

address?

  When to form traces: Based on fetched or retired blocks?
+ Retired: Likely to be more accurate
-- Retired: Formation of trace is delayed until blocks are committed
 -- Very tight loops with short trip count might not benefit

  When to terminate the formation of a trace
  After N instructions, after B branches, at an indirect jump or

return
30

Trace Cache Design Issues (II)
  Should entire “path” match for a trace cache hit?
  Partial matching: A piece of a trace is supplied based on branch prediction
+ Increases hit rate when there is not a full path match
-- Lengthens critical path (next fetch address dependent on the match)

31

Trace Cache Design Issues (III)
  Path associativity: Multiple traces starting at the same address can be present

in the cache at the same time.
+ Good for traces with unbiased branches (e.g., ping pong between C and D)
-- Need to determine longest matching path
-- Increased cache pressure

32

