
15-740/18-740
Computer Architecture

Lecture 20: Main Memory II

Prof. Onur Mutlu
Carnegie Mellon University

Today
SRAM vs. DRAM
Interleaving/Banking
DRAM Microarchitecture

Memory controller
Memory buses
Banks, ranks, channels, DIMMs
Address mapping: software vs. hardware
DRAM refresh

Memory scheduling policies
Memory power/energy management
Multi-core issues

Fairness, interference
Large DRAM capacity

2

Readings
Required:

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling:
Enabling High-Performance and Fair Memory Controllers,”
IEEE Micro Top Picks 2009.
Mutlu and Moscibroda, “Stall-Time Fair Memory Access
Scheduling for Chip Multiprocessors,” MICRO 2007.

Recommended:
Zhang et al., “A Permutation-based Page Interleaving Scheme
to Reduce Row-buffer Conflicts and Exploit Data Locality,”
MICRO 2000.
Lee et al., “Prefetch-Aware DRAM Controllers,” MICRO 2008.
Rixner et al., “Memory Access Scheduling,” ISCA 2000.

3

Review: Generalized Memory Structure

4

Review: DRAM Controller
Purpose and functions

Ensure correct operation of DRAM (refresh)

Service DRAM requests while obeying timing constraints of
DRAM chips

Constraints: resource conflicts (bank, bus, channel), minimum
write-to-read delays
Translate requests to DRAM command sequences

Buffer and schedule requests to improve performance
Reordering and row-buffer management

Manage power consumption and thermals in DRAM
Turn on/off DRAM chips, manage power modes

5

DRAM Controller (II)

6

7

A Modern DRAM Controller

DRAM Scheduling Policies (I)
FCFS (first come first served)

Oldest request first

FR-FCFS (first ready, first come first served)
1. Row-hit first
2. Oldest first
Goal: Maximize row buffer hit rate maximize DRAM throughput

Actually, scheduling is done at the command level
Column commands (read/write) prioritized over row commands
(activate/precharge)
Within each group, older commands prioritized over younger ones

8

DRAM Scheduling Policies (II)
A scheduling policy is essentially a prioritization order

Prioritization can be based on
Request age
Row buffer hit/miss status
Request type (prefetch, read, write)
Requestor type (load miss or store miss)
Request criticality

Oldest miss in the core?
How many instructions in core are dependent on it?

9

Row Buffer Management Policies
Open row

Keep the row open after an access
+ Next access might need the same row row hit
-- Next access might need a different row row conflict, wasted energy

Closed row
Close the row after an access (if no other requests already in the request
buffer need the same row)

+ Next access might need a different row avoid a row conflict
-- Next access might need the same row extra activate latency

Adaptive policies
Predict whether or not the next access to the bank will be to
the same row

10

Open vs. Closed Row Policies

Policy First access Next access Commands
needed for next
access

Open row Row 0 Row 0 (row hit) Read

Open row Row 0 Row 1 (row
conflict)

Precharge +
Activate Row 1 +
Read

Closed row Row 0 Row 0 – access in
request buffer
(row hit)

Read

Closed row Row 0 Row 0 – access not
in request buffer
(row closed)

Activate Row 0 +
Read + Precharge

Closed row Row 0 Row 1 (row closed) Activate Row 1 +
Read + Precharge

11

Why are DRAM Controllers Difficult to Design?

Need to obey DRAM timing constraints for correctness
There are many (50+) timing constraints in DRAM
tWTR: Minimum number of cycles to wait before issuing a
read command after a write command is issued
tRC: Minimum number of cycles between the issuing of two
consecutive activate commands to the same bank
…

Need to keep track of many resources to prevent conflicts
Channels, banks, ranks, data bus, address bus, row buffers

Need to handle DRAM refresh
Need to optimize for performance (in the presence of constraints)

Reordering is not simple
Predicting the future?

12

Why are DRAM Controllers Difficult to Design?

From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing
Write-Caused Interference in Memory Systems,” HPS Technical Report,
April 2010.

13

DRAM Power Management
DRAM chips have power modes
Idea: When not accessing a chip power it down

Power states
Active (highest power)
All banks idle
Power-down
Self-refresh (lowest power)

State transitions incur latency during which the chip cannot
be accessed

14

Multi-Core Issues (I)
Memory controllers, pins, and memory banks are shared

Pin bandwidth is not increasing as fast as number of cores
Bandwidth per core reducing

Different threads executing on different cores interfere with
each other in the main memory system

Threads delay each other by causing resource contention:
Bank, bus, row-buffer conflicts reduced DRAM throughput

Threads can also destroy each other’s DRAM bank
parallelism

Otherwise parallel requests can become serialized
15

Effects of Inter-Thread Interference in DRAM
Queueing/contention delays

Bank conflict, bus conflict, channel conflict, …

Additional delays due to DRAM constraints
Called “protocol overhead”
Examples

Row conflicts
Read-to-write and write-to-read delays

Loss of intra-thread parallelism

16

17

DRAM Controllers

A row-conflict memory access takes significantly longer
than a row-hit access

Current controllers take advantage of the row buffer

Commonly used scheduling policy (FR-FCFS) [Rixner, ISCA’00]

(1) Row-hit (column) first: Service row-hit memory accesses first
(2) Oldest-first: Then service older accesses first

This scheduling policy aims to maximize DRAM throughput
But, it is unfair when multiple threads share the DRAM system

18

Inter-Thread Interference in DRAM
Multiple threads share the DRAM controller
DRAM controllers are designed to maximize DRAM
throughput
Existing DRAM controllers are unaware of inter-thread
interference in DRAM system

DRAM scheduling policies are thread-unaware and unfair
Row-hit first: unfairly prioritizes threads with high row buffer
locality

Streaming threads
Threads that keep on accessing the same row

Oldest-first: unfairly prioritizes memory-intensive threads

Consequences of Inter-Thread Interference in DRAM

19

Unfair slowdown of different threads
System performance loss
Vulnerability to denial of service
Inability to enforce system-level thread priorities

Cores make
very slow
progress

Memory performance hogLow priority

High priorityDRAM is the only shared resource

20

Why the Disparity in Slowdowns?

CORE 1 CORE 2

L2
CACHE

L2
CACHE

DRAM MEMORY CONTROLLER

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

Shared DRAM
Memory System

Multi-Core
Chip

unfairness
INTERCONNECT

matlab gcc

DRAM
Bank 3

21

An Example Memory Performance Hog

STREAM

- Sequential memory access
- Very high row buffer locality (96% hit rate)
- Memory intensive

22

A Co-Scheduled Application

RDARRAY

- Random memory access
- Very low row buffer locality (3% hit rate)
- Similarly memory intensive

23

What does the MPH do?

Row Buffer
R

ow
 d

ec
od

er

Column mux

Data

Row 0

T0: Row 0

Row 0

T1: Row 16
T0: Row 0T1: Row 111

T0: Row 0T0: Row 0T1: Row 5

T0: Row 0T0: Row 0T0: Row 0T0: Row 0T0: Row 0

Request Buffer

T0: STREAM
T1: RANDOM

Row size: 8KB, cache block size: 64B
128 (8KB/64B) requests of T0 serviced before T1

A Multi-Core DRAM Controller
Should control inter-thread interference in DRAM

Properties of a good multi-core DRAM controller:

provides high system performance
preserves each thread’s DRAM bank parallelism
efficiently utilizes the scarce memory bandwidth

provides fairness to threads sharing the DRAM system
Substrate for providing performance guarantees to different cores

is controllable and configurable by system software
enables different service levels for threads with different priorities

24

Stall-Time Fair
Memory Access Scheduling

Mutlu and Moscibroda, “Stall-Time Fair Memory Access
Scheduling for Chip Multiprocessors,” MICRO 2007.

26

Stall-Time Fairness in Shared DRAM Systems

A DRAM system is fair if it equalizes the slowdown of equal-priority threads
relative to when each thread is run alone on the same system

DRAM-related stall-time: The time a thread spends waiting for DRAM memory

STshared: DRAM-related stall-time when the thread runs with other threads
STalone: DRAM-related stall-time when the thread runs alone

Memory-slowdown = STshared/STalone
Relative increase in stall-time

Stall-Time Fair Memory scheduler (STFM) aims to equalize
Memory-slowdown for interfering threads, without sacrificing performance

Considers inherent DRAM performance of each thread
Aims to allow proportional progress of threads

27

STFM Scheduling Algorithm [MICRO’07]

For each thread, the DRAM controller
Tracks STshared
Estimates STalone

Each cycle, the DRAM controller
Computes Slowdown = STshared/STalone for threads with legal requests
Computes unfairness = MAX Slowdown / MIN Slowdown

If unfairness < α
Use DRAM throughput oriented scheduling policy

If unfairness ≥ α
Use fairness-oriented scheduling policy

(1) requests from thread with MAX Slowdown first
(2) row-hit first , (3) oldest-first

28

How Does STFM Prevent Unfairness?

Row Buffer

Data

Row 0

T0: Row 0

Row 0

T1: Row 16
T0: Row 0

T1: Row 111

T0: Row 0T0: Row 0

T1: Row 5

T0: Row 0T0: Row 0

T0: Row 0

T0 Slowdown

T1 Slowdown 1.00
1.00

1.00Unfairness

1.03

1.03

1.06

1.06

α 1.05

1.03

1.06
1.031.04
1.08

1.04

1.04
1.11

1.06

1.07

1.04

1.10
1.14

1.03

Row 16Row 111

29

STFM Implementation

Tracking STshared
Increase STshared if the thread cannot commit instructions due to an
outstanding DRAM access

Estimating STalone
Difficult to estimate directly because thread not running alone

Observation: STalone = STshared - STinterference

Estimate STinterference: Extra stall-time due to interference

Update STinterference when a thread incurs delay due to other threads
When a row buffer hit turns into a row-buffer conflict
(keep track of the row that would have been in the row buffer)
When a request is delayed due to bank or bus conflict

30

Support for System Software
System-level thread weights (priorities)

OS can choose thread weights to satisfy QoS requirements
Larger-weight threads should be slowed down less

OS communicates thread weights to the memory controller
Controller scales each thread’s slowdown by its weight
Controller uses weighted slowdown used for scheduling

Favors threads with larger weights

α: Maximum tolerable unfairness set by system software
Don’t need fairness? Set α large.
Need strict fairness? Set α close to 1.
Other values of α: trade off fairness and throughput

Parallelism-Aware Batch Scheduling

Mutlu and Moscibroda, “Parallelism-Aware Batch
Scheduling: …,” ISCA 2008, IEEE Micro Top Picks 2009.

Another Problem due to Interference

Processors try to tolerate the latency of DRAM requests by
generating multiple outstanding requests

Memory-Level Parallelism (MLP)
Out-of-order execution, non-blocking caches, runahead execution

Effective only if the DRAM controller actually services the
multiple requests in parallel in DRAM banks

Multiple threads share the DRAM controller
DRAM controllers are not aware of a thread’s MLP

Can service each thread’s outstanding requests serially, not in parallel

32

Bank Parallelism of a Thread

33

Thread A: Bank 0, Row 1

Thread A: Bank 1, Row 1

Bank access latencies of the two requests overlapped
Thread stalls for ~ONE bank access latency

Thread A :

Bank 0 Bank 1

Compute

2 DRAM Requests

Bank 0
Stall Compute

Bank 1

Single Thread:

Compute

Compute

2 DRAM Requests

Bank Parallelism Interference in DRAM

34

Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A : Compute

2 DRAM Requests

Bank 0
Stall

Bank 1

Baseline Scheduler:

B: Compute

Bank 0

Stall
Bank 1

Stall

Stall

Bank access latencies of each thread serialized
Each thread stalls for ~TWO bank access latencies

2 DRAM Requests

Parallelism-Aware Scheduler

35

Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A :

2 DRAM Requests
Parallelism-aware Scheduler:

B: Compute
Bank 0

Stall Compute

Bank 1

Stall

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute
Bank 1

Stall

Stall

Baseline Scheduler:

Compute
Bank 0

Stall Compute

Bank 1

Saved Cycles Average stall-time:
~1.5 bank access

latencies

Parallelism-Aware Batch Scheduling (PAR-BS)

Principle 1: Parallelism-awareness
Schedule requests from a thread (to
different banks) back to back
Preserves each thread’s bank parallelism
But, this can cause starvation…

Principle 2: Request Batching
Group a fixed number of oldest requests
from each thread into a “batch”
Service the batch before all other requests
Form a new batch when the current one is done
Eliminates starvation, provides fairness
Allows parallelism-awareness within a batch

36

Bank 0 Bank 1

T1

T1

T0

T0

T2

T2

T3

T3

T2 T2

T2

Batch

T0

T1 T1

PAR-BS Components

Request batching

Within-batch scheduling
Parallelism aware

37

Request Batching

Each memory request has a bit (marked) associated with it

Batch formation:
Mark up to Marking-Cap oldest requests per bank for each thread
Marked requests constitute the batch
Form a new batch when no marked requests are left

Marked requests are prioritized over unmarked ones
No reordering of requests across batches: no starvation, high fairness

How to prioritize requests within a batch?

38

Within-Batch Scheduling
Can use any existing DRAM scheduling policy

FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality

But, we also want to preserve intra-thread bank parallelism
Service each thread’s requests back to back

Scheduler computes a ranking of threads when the batch is
formed

Higher-ranked threads are prioritized over lower-ranked ones
Improves the likelihood that requests from a thread are serviced in
parallel by different banks

Different threads prioritized in the same order across ALL banks

39

HOW?

How to Rank Threads within a Batch
Ranking scheme affects system throughput and fairness

Maximize system throughput
Minimize average stall-time of threads within the batch

Minimize unfairness (Equalize the slowdown of threads)
Service threads with inherently low stall-time early in the batch
Insight: delaying memory non-intensive threads results in high
slowdown

Shortest stall-time first (shortest job first) ranking
Provides optimal system throughput [Smith, 1956]*

Controller estimates each thread’s stall-time within the batch
Ranks threads with shorter stall-time higher

40
* W.E. Smith, “Various optimizers for single stage production,” Naval Research Logistics Quarterly, 1956.

Maximum number of marked requests to any bank (max-bank-load)
Rank thread with lower max-bank-load higher (~ low stall-time)

Total number of marked requests (total-load)
Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First Ranking

41

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3
max-bank-load total-load

T0 1 3

T1 2 4

T2 2 6

T3 5 9

Ranking:
T0 > T1 > T2 > T3

7

5

3

Example Within-Batch Scheduling Order

42

T2T3T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3Baseline Scheduling
Order (Arrival order)

PAR-BS Scheduling
Order

T2

T3

T1 T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3

T1

T3T2 T2

T1 T2T1

T0

T2

T0

T3 T2

T3

T3

T3

T3

T0 T1 T2 T3

4 4 5 7

AVG: 5 bank access latencies AVG: 3.5 bank access latencies

Stall times

T0 T1 T2 T3

1 2 4 7Stall times

Ti
m

e

1
2

4

6

Ranking: T0 > T1 > T2 > T3

1
2
3
4
5
6
7

Ti
m

e

Putting It Together: PAR-BS Scheduling Policy
PAR-BS Scheduling Policy
(1) Marked requests first
(2) Row-hit requests first
(3) Higher-rank thread first (shortest stall-time first)
(4) Oldest first

Three properties:
Exploits row-buffer locality and intra-thread bank parallelism
Work-conserving

Services unmarked requests to banks without marked requests

Marking-Cap is important
Too small cap: destroys row-buffer locality
Too large cap: penalizes memory non-intensive threads

Trade-offs analyzed in [ISCA 2008]

43

Batching

Parallelism-aware
within-batch
scheduling

44

Unfairness on 4-, 8-, 16-core Systems

1

1.5

2

2.5

3

3.5

4

4.5

5

4-core 8-core 16-core

Un
fa

irn
es

s
(lo

w
er

 is
 b

et
te

r)

FR-FCFS
FCFS
NFQ
STFM
PAR-BS

Unfairness = MAX Memory Slowdown / MIN Memory Slowdown [MICRO 2007]

45

System Performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

4-core 8-core 16-core

N
or

m
al

iz
ed

 H
m

ea
n

Sp
ee

du
p

FR-FCFS
FCFS
NFQ
STFM
PAR-BS

