
15-740/18-740
Computer Architecture

Lecture 2: ISA, Tradeoffs, Performance

Prof. Onur Mutlu
Carnegie Mellon University

Last Time …
Brief intro to

On-chip networks
Memory controllers, DRAM bank organization
Static vs. dynamic scheduling
Cache coherence

Moore’s Law
Levels of Transformation
ISA vs. microarchitecture distinction

2

Required Readings
Colwell et al., “Instruction Sets and Beyond: Computers,
Complexity, and Controversy,” IEEE Computer 1985.

Wulf, “Compilers and Computer Architecture,” IEEE
Computer 1981.

3

Papers for Review
Colwell et al., “Instruction Sets and Beyond: Computers,
Complexity, and Controversy,” IEEE Computer 1985.

Due September 17

4

Levels of Transformation

ISA
Agreed upon interface between software
and hardware

SW/compiler assumes, HW promises

What the software writer needs to know
to write system/user programs

Microarchitecture
Specific implementation of an ISA
Not visible to the software

Microprocessor
ISA, uarch, circuits
“Architecture” = ISA + microarchitecture

5

Microarchitecture

ISA

Program

Algorithm

Problem

Circuits

Electrons

ISA vs. Microarchitecture
What is part of ISA vs. Uarch?

Gas pedal: interface for “acceleration”
Internals of the engine: implements “acceleration”
Add instruction vs. Adder implementation

Implementation (uarch) can be various as long as it
satisfies the specification (ISA)

Bit serial, ripple carry, carry lookahead adders
x86 ISA has many implementations: 286, 386, 486, Pentium,
Pentium Pro, …

Uarch usually changes faster than ISA
Few ISAs (x86, SPARC, MIPS, Alpha) but many uarchs
Why?

6

ISA
Instructions

Opcodes, Addressing Modes, Data Types
Instruction Types and Formats
Registers, Condition Codes

Memory
Address space, Addressability, Alignment
Virtual memory management

Call, Interrupt/Exception Handling
Access Control, Priority/Privilege
I/O
Task Management
Power and Thermal Management
Multi-threading support, Multiprocessor support

7

Microarchitecture
Implementation of the ISA under specific design constraints
and goals
Anything done in hardware without exposure to software

Pipelining
In-order versus out-of-order instruction execution
Memory access scheduling policy
Speculative execution
Superscalar processing (multiple instruction issue?)
Clock gating
Caching? Levels, size, associativity, replacement policy
Prefetching?
Voltage/frequency scaling?
Error correction?

8

Design Point
A set of design considerations and their importance

leads to tradeoffs in both ISA and uarch
Considerations

Cost
Performance
Maximum power consumption
Energy consumption (battery life)
Availability
Reliability and Correctness (or is it?)
Time to Market

Design point determined by the “Problem” space
(application space)

9

Microarchitecture

ISA

Program

Algorithm

Problem

Circuits

Electrons

Tradeoffs: Soul of Computer Architecture

ISA-level tradeoffs

Uarch-level tradeoffs

System and Task-level tradeoffs
How to divide the labor between hardware and software

10

ISA-level Tradeoffs: Semantic Gap
Where to place the ISA? Semantic gap

Closer to high-level language (HLL) or closer to hardware
control signals? Complex vs. simple instructions
RISC vs. CISC vs. HLL machines

FFT, QUICKSORT, POLY, FP instructions?
VAX INDEX instruction (array access with bounds checking)

Tradeoffs:
Simple compiler, complex hardware vs.
complex compiler, simple hardware

Caveat: Translation (indirection) can change the tradeoff!

Burden of backward compatibility
Performance?

Optimization opportunity: Example of VAX INDEX instruction: who
(compiler vs. hardware) puts more effort into optimization?
Instruction size, code size

11

X86: Small Semantic Gap: String Operations

12

REP MOVS DEST SRC

How many instructions does this take in Alpha?

Small Semantic Gap Examples in VAX
FIND FIRST

Find the first set bit in a bit field
Helps OS resource allocation operations

SAVE CONTEXT, LOAD CONTEXT
Special context switching instructions

INSQUEUE, REMQUEUE
Operations on doubly linked list

INDEX
Array access with bounds checking

STRING Operations
Compare strings, find substrings, …

Cyclic Redundancy Check Instruction
EDITPC

Implements editing functions to display fixed format output

Digital Equipment Corp., “VAX11 780 Architecture Handbook,” 1977-78.
13

Small versus Large Semantic Gap
CISC vs. RISC

Complex instruction set computer complex instructions
Initially motivated by “not good enough” code generation

Reduced instruction set computer simple instructions
John Cocke, mid 1970s, IBM 801

Goal: enable better compiler control and optimization

RISC motivated by
Memory stalls (no work done in a complex instruction when
there is a memory stall?)

When is this correct?

Simplifying the hardware lower cost, higher frequency
Enabling the compiler to optimize the code better

Find fine-grained parallelism to reduce stalls
14

Small versus Large Semantic Gap
John Cocke’s RISC (large semantic gap) concept:

Compiler generates control signals: open microcode

Advantages of Small Semantic Gap (Complex instructions)
+ Denser encoding smaller code size saves off-chip bandwidth,

better cache hit rate (better packing of instructions)
+ Simpler compiler

Disadvantages
- Larger chunks of work compiler has less opportunity to optimize
- More complex hardware translation to control signals and

optimization needs to be done by hardware

Read Colwell et al., “Instruction Sets and Beyond: Computers,
Complexity, and Controversy,” IEEE Computer 1985.

15

ISA-level Tradeoffs: Instruction Length
Fixed length: Length of all instructions the same

+ Easier to decode single instruction in hardware
+ Easier to decode multiple instructions concurrently
-- Wasted bits in instructions (Why is this bad?)
-- Harder-to-extend ISA (how to add new instructions?)

Variable length: Length of instructions different
(determined by opcode and sub-opcode)

+ Compact encoding (Why is this good?)
Intel 432: Huffman encoding (sort of). 6 to 321 bit instructions. How?

-- More logic to decode a single instruction
-- Harder to decode multiple instructions concurrently

Tradeoffs
Code size (memory space, bandwidth, latency) vs. hardware complexity
ISA extensibility and expressiveness
Performance? Smaller code vs. imperfect decode

16

ISA-level Tradeoffs: Uniform Decode
Uniform decode: Same bits in each instruction correspond
to the same meaning

Opcode is always in the same location
Ditto operand specifiers, immediate values, …
Many “RISC” ISAs: Alpha, MIPS, SPARC

+ Easier decode, simpler hardware
+ Enables parallelism: generate target address before knowing the

instruction is a branch
-- Restricts instruction format (fewer instructions?) or wastes space

Non-uniform decode
E.g., opcode can be the 1st-7th byte in x86

+ More compact and powerful instruction format
-- More complex decode logic (e.g., more adders to speculatively

generate branch target)
17

x86 vs. Alpha Instruction Formats
x86:

Alpha:

18

ISA-level Tradeoffs: Number of Registers
Affects:

Number of bits used for encoding register address
Number of values kept in fast storage (register file)
(uarch) Size, access time, power consumption of register file

Large number of registers:
+ Enables better register allocation (and optimizations) by

compiler fewer saves/restores
-- Larger instruction size
-- Larger register file size
-- (Superscalar processors) More complex dependency check

logic

19

