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Announcements
Milestone meetings

Meet with Evangelos, Lavanya, Vivek
And, me… especially if you receive(d) my feedback and I 
asked to meet 
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Last Time
Markov Prefetching
Content Directed Prefetching
Execution Based Prefetchers
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Multi-Core Issues in Prefetching 
and Caching
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Prefetching in Multi-Core (I)
Prefetching shared data

Coherence misses

Prefetch efficiency a lot more important
Bus bandwidth more precious
Prefetchers on different cores can deny service to each other 
and to demand requests

DRAM contention
Bus contention
Cache conflicts

Need to coordinate the actions of independent prefetchers for 
best system performance

Each prefetcher has different accuracy, coverage, timeliness
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Shortcoming of Local Prefetcher Throttling
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…

Set 2

…
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Dem 2 Dem 2 Dem 2 Dem 2 Dem 3 Dem 3 Dem 3 Dem 3
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Local-only prefetcher control techniques
have no mechanism to detect inter-core interference

Shared Cache

Set 0

Set 1

FDP Throttle Up



Prefetching in Multi-Core (II)
Ideas for coordinating different prefetchers’ actions

Utility-based prioritization 
Prioritize prefetchers that provide the best marginal utility on
system performance

Cost-benefit analysis
Compute cost-benefit of each prefetcher to drive prioritization

Heuristic based methods
Global controller overrides local controller’s throttling decision 
based on interference and accuracy of prefetchers
Ebrahimi et al., “Coordinated Management of Multiple Prefetchers 
in Multi-Core Systems,” MICRO 2009.
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Hierarchical Prefetcher Throttling
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Memory Controller

Cache Pollution 
Feedback

Accuracy

Bandwidth Feedback

Local control’s goal: 
Maximize the 
prefetching performance of 
core i independently

Global control’s goal: Keep 
track of and control 
prefetcher-caused 
inter-core interference in 
shared memory system

Global
Control

Global Control: accepts or 
overrides decisions made by 
local control to improve 
overall system performance

Core i

Local
Control

Pref. i

Shared Cache

Throttling Decision

Local
Throttling Decision

Final
Throttling Decision



Hierarchical Prefetcher Throttling Example
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Memory Controller

Pol (i)

Acc (i)

BW (i)
BWNO (i)

Global
Control

Core i

Local
Control

Pref. i

Shared Cache

Local
Throttling Decision

Final
Throttling Decision

High Acc (i)

Local
Throttle Up High Pol (i)

High BW (i)
High BWNO (i)

Pol. Filter i

- High accuracy
- High pollution
- High bandwidth consumed
while other cores need bandwidth

Enforce
Throttle Down



Multi-Core Issues in Caching
Multi-core

More pressure on the memory/cache hierarchy cache efficiency a 
lot more important
Private versus shared caching
Providing fairness/QoS in shared multi-core caches
Migration of shared data in private caches
How to organize/connect caches:

Non-uniform cache access and cache interconnect design

Placement/insertion
Identifying what is most profitable to insert into cache
Minimizing dead/useless blocks

Replacement
Cost-aware: which block is most profitable to keep?
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Cache Coherence 
Basic question: If multiple processors cache the same 
block, how do they ensure they all see a consistent state?
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The Cache Coherence Problem
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The Cache Coherence Problem
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The Cache Coherence Problem
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add r1, r2, r4
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The Cache Coherence Problem
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load 1000



Cache Coherence: Whose Responsibility?
Software

Can the programmer ensure coherence if caches are invisible to 
software?
What if the ISA provided the following instruction?

FLUSH-LOCAL A: Flushes/invalidates the cache block containing address A from a 
processor’s local cache
When does the programmer need to FLUSH-LOCAL an address?

What if the ISA provided the following instruction?
FLUSH-GLOBAL A: Flushes/invalidates the cache block containing address A from all 
other processors’ caches
When does the programmer need to FLUSH-GLOBAL an address?

Hardware
Simplifies software’s job
One idea: Invalidate all other copies of block A when a processor writes 
to it
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Snoopy Cache Coherence
Caches “snoop” (observe) each other’s write/read 
operations
A simple protocol:
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Write-through, no-
write-allocate 
cache
Actions: PrRd, 
PrWr, BusRd, 
BusWr

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd/--



Multi-core Issues in Caching
How does the cache hierarchy change in a multi-core 
system?
Private cache: Cache belongs to one core
Shared cache: Cache is shared by multiple cores
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L2 
CACHE

L2 
CACHE
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DRAM MEMORY CONTROLLER
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Shared Caches Between Cores
Advantages:

Dynamic partitioning of available cache space
No fragmentation due to static partitioning

Easier to maintain coherence
Shared data and locks do not ping pong between caches

Disadvantages
Cores incur conflict misses due to other cores’ accesses

Misses due to inter-core interference
Some cores can destroy the hit rate of other cores

What kind of access patterns could cause this?

Guaranteeing a minimum level of service (or fairness) to each 
core is harder (how much space, how much bandwidth?)
High bandwidth harder to obtain (N cores N ports?)
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Shared Caches: How to Share?
Free-for-all sharing

Placement/replacement policies are the same as a single core 
system (usually LRU or pseudo-LRU)
Not thread/application aware
An incoming block evicts a block regardless of which threads 
the blocks belong to

Problems
A cache-unfriendly application can destroy the performance of 
a cache friendly application
Not all applications benefit equally from the same amount of 
cache: free-for-all might prioritize those that do not benefit
Reduced performance, reduced fairness
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Problem with Shared Caches
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Problem with Shared Caches
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Problem with Shared Caches
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L1 $

L2 $

……

Processor Core 1 Processor Core 2←t1

L1 $

t2→

t2’s throughput is significantly reduced due to unfair cache sharing.



Controlled Cache Sharing
Utility based cache partitioning

Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-Overhead, High-
Performance, Runtime Mechanism to Partition Shared Caches,” MICRO 
2006.
Suh et al., “A New Memory Monitoring Scheme for Memory-Aware 
Scheduling and Partitioning,” HPCA 2002.

Fair cache partitioning
Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor 
Architecture,” PACT 2004.

Shared/private mixed cache mechanisms
Qureshi, “Adaptive Spill-Receive for Robust High-Performance Caching in 
CMPs,” HPCA 2009.
Hardavellas et al., “Reactive NUCA: Near-Optimal Block Placement and 
Replication in Distributed Caches,” ISCA 2009.
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Utility Based Shared Cache Partitioning
Goal: Maximize system throughput
Observation: Not all threads/applications benefit equally from 
caching simple LRU replacement not good for system 
throughput
Idea: Allocate more cache space to applications that obtain the 
most benefit from more space

The high-level idea can be applied to other shared resources as 
well.

Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-
Overhead, High-Performance, Runtime Mechanism to Partition 
Shared Caches,” MICRO 2006.
Suh et al., “A New Memory Monitoring Scheme for Memory-
Aware Scheduling and Partitioning,” HPCA 2002.
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Utility Based Cache Partitioning (I)
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Utility Based Cache Partitioning (II)
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Utility Based Cache Partitioning (III)
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Three components:

Utility Monitors (UMON) per core

Partitioning Algorithm (PA)

Replacement support to enforce partitions

I$

D$
Core1

I$

D$
Core2Shared

L2 cache

Main Memory

UMON1 UMON2PA



Utility Monitors
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For each core, simulate LRU using auxiliary tag store (ATS)  

Hit counters in ATS to count hits per recency position

LRU is a stack algorithm: hit counts utility 
E.g. hits(2 ways) = H0+H1

MTS

Set B

Set E

Set G

Set A

Set C
Set D

Set F

Set H

ATS
Set B

Set E

Set G

Set A

Set C
Set D

Set F

Set H

++ + +
(MRU)H0 H1 H2…H15(LRU)



Utility Monitors
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Dynamic Set Sampling
Extra tags incur hardware and power overhead

DSS reduces overhead [Qureshi+ ISCA’06]   

32 sets sufficient (analytical bounds)

Storage < 2kB/UMON
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Partitioning Algorithm
Evaluate all possible partitions and select the best

With a ways to core1 and (16-a) ways to core2:  
Hitscore1 = (H0 + H1 + … + Ha-1)     ---- from UMON1          
Hitscore2 = (H0 + H1 + … + H16-a-1) ---- from UMON2           

Select a that maximizes (Hitscore1 + Hitscore2) 

Partitioning done once every 5 million cycles  
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Way Partitioning
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Way partitioning support:
1. Each line has core-id bits

2. On a miss, count ways_occupied in set by miss-causing app

ways_occupied < ways_given

Yes No

Victim is the LRU line 
from other app 

Victim is the LRU line 
from miss-causing app



Performance Metrics
Three metrics for performance:

1. Weighted Speedup (default metric)
perf =  IPC1/SingleIPC1 + IPC2/SingleIPC2
correlates with reduction in execution time 

2. Throughput 
perf = IPC1 + IPC2
can be unfair to low-IPC application

3. Hmean-fairness
perf =  hmean(IPC1/SingleIPC1, IPC2/SingleIPC2)  
balances fairness and performance
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Utility Based Cache Partitioning Performance
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Four cores sharing a 2MB 32-way L2

Mix2
(swm-glg-mesa-prl)

Mix3
(mcf-applu-art-vrtx)

Mix4
(mcf-art-eqk-wupw) 

Mix1
(gap-applu-apsi-gzp)

LRU
UCP(Greedy)
UCP(Lookahead)
UCP(EvalAll)



Utility Based Cache Partitioning
Advantages over LRU
+ Better utilizes the shared cache

Disadvantages/Limitations
- Scalability: Partitioning limited to ways. What if you have 

numWays < numApps?
- Scalability: How is utility computed in a distributed cache?
- What if past behavior is not a good predictor of utility?
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