
15-740/18-740
Computer Architecture

Lecture 17: Prefetching, Caching, Multi-core

Prof. Onur Mutlu
Carnegie Mellon University

Announcements
Milestone meetings

Meet with Evangelos, Lavanya, Vivek
And, me… especially if you receive(d) my feedback and I
asked to meet

2

Last Time
Markov Prefetching
Content Directed Prefetching
Execution Based Prefetchers

3

Multi-Core Issues in Prefetching
and Caching

4

Prefetching in Multi-Core (I)
Prefetching shared data

Coherence misses

Prefetch efficiency a lot more important
Bus bandwidth more precious
Prefetchers on different cores can deny service to each other
and to demand requests

DRAM contention
Bus contention
Cache conflicts

Need to coordinate the actions of independent prefetchers for
best system performance

Each prefetcher has different accuracy, coverage, timeliness

5

Shortcoming of Local Prefetcher Throttling

6

…

Set 2

…

Core 0 Core 1 Core 2 Core 3

Dem 2 Dem 2 Dem 3 Dem 3 Dem 2 Dem 2 Dem 3 Dem 3

Dem 3 Dem 3 Dem 2 Dem 2 Dem 3 Dem 3 Dem 3 Dem 3

Dem 2 Dem 2 Dem 2 Dem 2 Dem 3 Dem 3 Dem 3 Dem 3

Pref 0Used_P Pref 0 Pref 1 Pref 1

Prefetcher
Degree:

Prefetcher
Degree:

Used_P Used_P Used_P

Pref 0Pref 0 Pref 1 Pref 1Used_P Used_P Used_P Used_P

FDP Throttle Up
24 24

Pref 0 Pref 0 Pref 0 Pref 0 Pref 1 Pref 1 Pref 1 Pref 1

Dem 2 Dem 3Dem 2 Dem 3

Local-only prefetcher control techniques
have no mechanism to detect inter-core interference

Shared Cache

Set 0

Set 1

FDP Throttle Up

Prefetching in Multi-Core (II)
Ideas for coordinating different prefetchers’ actions

Utility-based prioritization
Prioritize prefetchers that provide the best marginal utility on
system performance

Cost-benefit analysis
Compute cost-benefit of each prefetcher to drive prioritization

Heuristic based methods
Global controller overrides local controller’s throttling decision
based on interference and accuracy of prefetchers
Ebrahimi et al., “Coordinated Management of Multiple Prefetchers
in Multi-Core Systems,” MICRO 2009.

7

Hierarchical Prefetcher Throttling

8

Memory Controller

Cache Pollution
Feedback

Accuracy

Bandwidth Feedback

Local control’s goal:
Maximize the
prefetching performance of
core i independently

Global control’s goal: Keep
track of and control
prefetcher-caused
inter-core interference in
shared memory system

Global
Control

Global Control: accepts or
overrides decisions made by
local control to improve
overall system performance

Core i

Local
Control

Pref. i

Shared Cache

Throttling Decision

Local
Throttling Decision

Final
Throttling Decision

Hierarchical Prefetcher Throttling Example

9

Memory Controller

Pol (i)

Acc (i)

BW (i)
BWNO (i)

Global
Control

Core i

Local
Control

Pref. i

Shared Cache

Local
Throttling Decision

Final
Throttling Decision

High Acc (i)

Local
Throttle Up High Pol (i)

High BW (i)
High BWNO (i)

Pol. Filter i

- High accuracy
- High pollution
- High bandwidth consumed
while other cores need bandwidth

Enforce
Throttle Down

Multi-Core Issues in Caching
Multi-core

More pressure on the memory/cache hierarchy cache efficiency a
lot more important
Private versus shared caching
Providing fairness/QoS in shared multi-core caches
Migration of shared data in private caches
How to organize/connect caches:

Non-uniform cache access and cache interconnect design

Placement/insertion
Identifying what is most profitable to insert into cache
Minimizing dead/useless blocks

Replacement
Cost-aware: which block is most profitable to keep?

10

Cache Coherence
Basic question: If multiple processors cache the same
block, how do they ensure they all see a consistent state?

11

P1 P2

x

Interconnection Network

Main Memory

1000

The Cache Coherence Problem

12

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

1000

1000

The Cache Coherence Problem

13

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

ld r2, x

1000

1000 1000

The Cache Coherence Problem

14

P1 P2

x

Interconnection Network

Main Memory

ld r2, x
add r1, r2, r4
st x, r1

ld r2, x

1000

10002000

The Cache Coherence Problem

15

P1 P2

x

Interconnection Network

Main Memory

ld r2, x
add r1, r2, r4
st x, r1

ld r2, x

1000

10002000

ld r5, x

Should NOT
load 1000

Cache Coherence: Whose Responsibility?
Software

Can the programmer ensure coherence if caches are invisible to
software?
What if the ISA provided the following instruction?

FLUSH-LOCAL A: Flushes/invalidates the cache block containing address A from a
processor’s local cache
When does the programmer need to FLUSH-LOCAL an address?

What if the ISA provided the following instruction?
FLUSH-GLOBAL A: Flushes/invalidates the cache block containing address A from all
other processors’ caches
When does the programmer need to FLUSH-GLOBAL an address?

Hardware
Simplifies software’s job
One idea: Invalidate all other copies of block A when a processor writes
to it

16

Snoopy Cache Coherence
Caches “snoop” (observe) each other’s write/read
operations
A simple protocol:

17

Write-through, no-
write-allocate
cache
Actions: PrRd,
PrWr, BusRd,
BusWr

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd/--

Multi-core Issues in Caching
How does the cache hierarchy change in a multi-core
system?
Private cache: Cache belongs to one core
Shared cache: Cache is shared by multiple cores

18

CORE 0 CORE 1 CORE 2 CORE 3

L2
CACHE

L2
CACHE

L2
CACHE

DRAM MEMORY CONTROLLER

L2
CACHE

CORE 0 CORE 1 CORE 2 CORE 3

DRAM MEMORY CONTROLLER

L2
CACHE

Shared Caches Between Cores
Advantages:

Dynamic partitioning of available cache space
No fragmentation due to static partitioning

Easier to maintain coherence
Shared data and locks do not ping pong between caches

Disadvantages
Cores incur conflict misses due to other cores’ accesses

Misses due to inter-core interference
Some cores can destroy the hit rate of other cores

What kind of access patterns could cause this?

Guaranteeing a minimum level of service (or fairness) to each
core is harder (how much space, how much bandwidth?)
High bandwidth harder to obtain (N cores N ports?)

19

Shared Caches: How to Share?
Free-for-all sharing

Placement/replacement policies are the same as a single core
system (usually LRU or pseudo-LRU)
Not thread/application aware
An incoming block evicts a block regardless of which threads
the blocks belong to

Problems
A cache-unfriendly application can destroy the performance of
a cache friendly application
Not all applications benefit equally from the same amount of
cache: free-for-all might prioritize those that do not benefit
Reduced performance, reduced fairness

20

Problem with Shared Caches

21

L2 $

L1 $

……

Processor Core 1

L1 $

Processor Core 2←t1

Problem with Shared Caches

22

L1 $

Processor Core 1

L1 $

Processor Core 2

L2 $

……

t2→

Problem with Shared Caches

23

L1 $

L2 $

……

Processor Core 1 Processor Core 2←t1

L1 $

t2→

t2’s throughput is significantly reduced due to unfair cache sharing.

Controlled Cache Sharing
Utility based cache partitioning

Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-Overhead, High-
Performance, Runtime Mechanism to Partition Shared Caches,” MICRO
2006.
Suh et al., “A New Memory Monitoring Scheme for Memory-Aware
Scheduling and Partitioning,” HPCA 2002.

Fair cache partitioning
Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor
Architecture,” PACT 2004.

Shared/private mixed cache mechanisms
Qureshi, “Adaptive Spill-Receive for Robust High-Performance Caching in
CMPs,” HPCA 2009.
Hardavellas et al., “Reactive NUCA: Near-Optimal Block Placement and
Replication in Distributed Caches,” ISCA 2009.

24

Utility Based Shared Cache Partitioning
Goal: Maximize system throughput
Observation: Not all threads/applications benefit equally from
caching simple LRU replacement not good for system
throughput
Idea: Allocate more cache space to applications that obtain the
most benefit from more space

The high-level idea can be applied to other shared resources as
well.

Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-
Overhead, High-Performance, Runtime Mechanism to Partition
Shared Caches,” MICRO 2006.
Suh et al., “A New Memory Monitoring Scheme for Memory-
Aware Scheduling and Partitioning,” HPCA 2002.

25

Utility Based Cache Partitioning (I)

26

Utility Ua
b = Misses with a ways – Misses with b ways

Low Utility
High Utility

Saturating Utility

Num ways from 16-way 1MB L2

M
is

se
s

pe
r 1

00
0

in
st

ru
ct

io
ns

Utility Based Cache Partitioning (II)

27

M
is

se
s

pe
r 1

00
0

in
st

ru
ct

io
ns

 (M
P

K
I) equake

vpr

LRU

UTIL

Idea: Give more cache to the application that
benefits more from cache

Utility Based Cache Partitioning (III)

28

Three components:

Utility Monitors (UMON) per core

Partitioning Algorithm (PA)

Replacement support to enforce partitions

I$

D$
Core1

I$

D$
Core2Shared

L2 cache

Main Memory

UMON1 UMON2PA

Utility Monitors

29

For each core, simulate LRU using auxiliary tag store (ATS)

Hit counters in ATS to count hits per recency position

LRU is a stack algorithm: hit counts utility
E.g. hits(2 ways) = H0+H1

MTS

Set B

Set E

Set G

Set A

Set C
Set D

Set F

Set H

ATS
Set B

Set E

Set G

Set A

Set C
Set D

Set F

Set H

++ + +
(MRU)H0 H1 H2…H15(LRU)

Utility Monitors

30

Dynamic Set Sampling
Extra tags incur hardware and power overhead

DSS reduces overhead [Qureshi+ ISCA’06]

32 sets sufficient (analytical bounds)

Storage < 2kB/UMON

31

MTD

ATD Set B

Set E

Set G

Set A

Set C
Set D

Set F

Set H

++ + +
(MRU)H0 H1 H2…H15(LRU)

Set B

Set E

Set G

Set A

Set C
Set D

Set F

Set H

Set B

Set E

Set G

Set A

Set C
Set D

Set F

Set H

Set B
Set E
Set G

UMON (DSS)

Partitioning Algorithm
Evaluate all possible partitions and select the best

With a ways to core1 and (16-a) ways to core2:
Hitscore1 = (H0 + H1 + … + Ha-1) ---- from UMON1
Hitscore2 = (H0 + H1 + … + H16-a-1) ---- from UMON2

Select a that maximizes (Hitscore1 + Hitscore2)

Partitioning done once every 5 million cycles

32

Way Partitioning

33

Way partitioning support:
1. Each line has core-id bits

2. On a miss, count ways_occupied in set by miss-causing app

ways_occupied < ways_given

Yes No

Victim is the LRU line
from other app

Victim is the LRU line
from miss-causing app

Performance Metrics
Three metrics for performance:

1. Weighted Speedup (default metric)
perf = IPC1/SingleIPC1 + IPC2/SingleIPC2
correlates with reduction in execution time

2. Throughput
perf = IPC1 + IPC2
can be unfair to low-IPC application

3. Hmean-fairness
perf = hmean(IPC1/SingleIPC1, IPC2/SingleIPC2)
balances fairness and performance

34

Utility Based Cache Partitioning Performance

35

Four cores sharing a 2MB 32-way L2

Mix2
(swm-glg-mesa-prl)

Mix3
(mcf-applu-art-vrtx)

Mix4
(mcf-art-eqk-wupw)

Mix1
(gap-applu-apsi-gzp)

LRU
UCP(Greedy)
UCP(Lookahead)
UCP(EvalAll)

Utility Based Cache Partitioning
Advantages over LRU
+ Better utilizes the shared cache

Disadvantages/Limitations
- Scalability: Partitioning limited to ways. What if you have

numWays < numApps?
- Scalability: How is utility computed in a distributed cache?
- What if past behavior is not a good predictor of utility?

36

