
15-740/18-740
Computer Architecture

Lecture 16: Prefetching Wrap-up

Prof. Onur Mutlu
Carnegie Mellon University

Announcements
  Exam solutions online
  Pick up your exams

  Feedback forms

2

Feedback Survey Results (I)
  How fast is the pace of the course so far?

  Good: 29
  Fast: 13
  Slow: 2

  How fast is the pace of lectures?
  Good: 33
  Fast: 6
  Slow: 5

  How easy is the course material?
  Right level: 33
  Hard: 11
  Easy: 0

3

Feedback Survey Results (II)
  How heavy is the course workload?

  Right amount: 13
  High: 29
  Low: 1

4

Last Time
  Hardware Prefetching

  Next-line
  Stride

  Instruction based
  Cache block address based

  Stream buffers
  Locality based prefetchers
  Prefetcher performance: Accuracy, coverage, timeliness
  Prefetcher aggressiveness
  Feedback directed prefetcher throttling

5

How to Cover More Irregular Access Patterns?

  More irregular access patterns
  Indirect array accesses
  Linked data structures
  Multiple regular strides (1,2,3,1,2,3,1,2,3,…)
  Random patterns?
  Generalized prefetcher for all patterns?

  Correlation based prefetchers
  Content-directed prefetchers
  Precomputation or execution-based prefetchers

6

Markov Prefetching (I)
  Consider the following history of load addresses

A, B, C, D, C, E, A, C, F, F, E, A, A, B, C, D, E, A, B, C, D, C

  After referencing a particular address (say A or E), are
some addresses more likely to be referenced next

7

A B C

D E F
1.0

.33 .5

.2

1.0 .6 .2

.67
.6

.5

.2

Markov
Model

Markov Prefetching (II)

  Track the likely next addresses after seeing a particular address
  Prefetch accuracy is generally low so prefetch up to N next addresses to

increase coverage
  Prefetch accuracy can be improved by using longer history

  Decide which address to prefetch next by looking at the last K load addresses
instead of just the current one

  e.g., index with the XOR of the data addresses from the last K loads
  Using history of a few loads can increase accuracy dramatically

  Joseph and Grunwald, “Prefetching using Markov Predictors,” ISCA 1997.

8

Load Data Addr Prefetch Confidence …. Prefetch Confidence

(tag) Candidate 1 …. Candidate N

……. ……. …… .… ……. ……
….

Load
Data
Addr

Markov Prefetching (III)
  Advantages:

  Can cover arbitrary access patterns
  Linked data structures
  Streaming patterns (though not so efficiently!)

  Disadvantages:
  Correlation table needs to be very large for high coverage

  Recording every miss address and its subsequent miss addresses
is infeasible

  Low timeliness: Lookahead is limited since a prefetch for the
next access/miss is initiated right after previous

  Consumes a lot of memory bandwidth
  Especially when Markov model probabilities (correlations) are low

  Cannot reduce compulsory misses
9

Content Directed Prefetching (I)
  A specialized prefetcher for pointer values
  Cooksey et al., “A stateless, content-directed data

prefetching mechanism,” ASPLOS 2002.
  Idea: Identify pointers among all values in a fetched cache

block and issue prefetch requests for them.

+ No need to memorize/record past addresses!
+ Can eliminate compulsory misses (never-seen pointers)
-- Indiscriminately prefetches all pointers in a cache block

  How to identify pointer addresses:
  Compare address sized values within cache block with cache

block’s address if most-significant few bits match, pointer
10

Content Directed Prefetching (II)

11

x40373551

L2 DRAM … …

= = = = = = = =

[31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

x80011100

Generate Prefetch
Virtual Address Predictor

X80022220

22220 X800

11100 x800

Making Content Directed Prefetching Efficient

  Hardware does not have enough information on pointers
  Software does (and can profile to get more information)

  Idea:
  Compiler profiles and provides hints as to which pointer

addresses are likely-useful to prefetch.
  Hardware uses hints to prefetch only likely-useful pointers.

  Ebrahimi et al., “Techniques for Bandwidth-Efficient
Prefetching of Linked Data Structures in Hybrid Prefetching
Systems,” HPCA 2009.

12

13

Shortcomings of CDP – An example

HashLookup(int Key) {
 …
 for (node = head ; node -> Key != Key;

Struct node{
 int Key;
 int * D1_ptr;
 int * D2_ptr;
 node * Next;
}

node = node -> Next;
 if (node) return node->D1;
}

…

Key
D2

Key D1

D2

Key D1

D2

…

Key D1

D2

Key

D1

D2

D1

) ;

Key

Example from mst

14

Shortcomings of CDP – An example

= = = = = = = =

[31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

Virtual Address Predictor

Key Next Key Next
Cache Line Addr

…

Key
D2

Key D1

D2

Key D1

D2

…

…

Key D1

D2

D1

D2

D1

D1_ptr D2_ptr D1_ptr D2_ptr

Key

15

Shortcomings of CDP – An example

HashLookup(int Key) {
 …
 for (node = head ; node = node -> Next;
 if (node)
}

) ;

…

Key
D2

D1

D2

Key D1

D2

…

Key D1

D2

Key D1

D2

D1

node -> Key != Key;
return node -> D1;

Key

16

Shortcomings of CDP – An example

…

= = = = = = = =

[31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

Virtual Address Predictor

Key D1_ptr D2_ptr Next Key D1_ptr D2_ptr Next
Cache Line Addr

Key D1

D2

Key D1

D2

Key D1

D2

…

…

Key D1

D2

Key D1

D2

[31:20]

Hybrid Hardware Prefetchers
  Many different access patterns

  Streaming, striding
  Linked data structures
  Localized random

  Idea: Use multiple prefetchers to cover all patterns

+ Better prefetch coverage
-- More complexity
-- More bandwidth-intensive
-- Prefetchers start getting in each other’s way (contention,

pollution
 - Need to manage accesses from each prefetcher

17

Execution-based Prefetchers (I)
  Idea: Pre-execute a piece of the (pruned) program solely

for prefetching data
  Only need to distill pieces that lead to cache misses

  Speculative thread: Pre-executed program piece can be
considered a “thread”

  Speculative thread can be executed
  On a separate processor/core
  On a separate hardware thread context (think fine-grained

multithreading)
  On the same thread context in idle cycles (during cache misses)

18

Execution-based Prefetchers (II)
  How to construct the speculative thread:

  Software based pruning and “spawn” instructions
  Hardware based pruning and “spawn” instructions
  Use the original program (no construction), but

  Execute it faster without stalling and correctness constraints

  Speculative thread
  Needs to discover misses before the main program

  Avoid waiting/stalling and/or compute less

  To get ahead, uses
  Branch prediction, value prediction, only address generation

computation

19

Thread-Based Pre-Execution
  Dubois and Song, “Assisted

Execution,” USC Tech
Report 1998.

  Chappell et al.,
“Simultaneous Subordinate
Microthreading (SSMT),”
ISCA 1999.

  Zilles and Sohi, “Execution-
based Prediction Using
Speculative Slices”, ISCA
2001.

20

Thread-Based Pre-Execution Issues
  Where to execute the precomputation thread?

1. Separate core (least contention with main thread)
2. Separate thread context on the same core (more contention)
3. Same core, same context

  When the main thread is stalled

  When to spawn the precomputation thread?
1. Insert spawn instructions well before the “problem” load

  How far ahead?
  Too early: prefetch might not be needed
  Too late: prefetch might not be timely

2. When the main thread is stalled

  When to terminate the precomputation thread?
1. With pre-inserted CANCEL instructions
2. Based on effectiveness/contention feedback

21

Thread-Based Pre-Execution Issues
  Read

  Luk, “Tolerating Memory Latency through Software-Controlled
Pre-Execution in Simultaneous Multithreading Processors,”
ISCA 2001.

  Many issues in software-based pre-execution discussed

22

An Example

23

Example ISA Extensions

24

Results on an SMT Processor

25

Problem Instructions

26

Fork Point for Prefetching Thread

27

Pre-execution Slice Construction

28

Runahead Execution (I)
  A simple pre-execution method for prefetching purposes

  When the oldest instruction is a long-latency cache miss:
  Checkpoint architectural state and enter runahead mode

  In runahead mode:
  Speculatively pre-execute instructions
  The purpose of pre-execution is to generate prefetches
  L2-miss dependent instructions are marked INV and dropped

  Runahead mode ends when the original miss returns
  Checkpoint is restored and normal execution resumes

  Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.

29

Runahead Execution (Mutlu et al., HPCA 2003)

30

Compute

Compute

Load 1 Miss

Miss 1

Stall Compute

Load 2 Miss

Miss 2

Stall

Load 1 Miss

Runahead

Load 2 Miss Load 2 Hit

Miss 1

Miss 2

Compute

Load 1 Hit

Saved Cycles

Small Window:

Runahead:

Runahead Execution (III)
  Advantages:

+ Very accurate prefetches for data/instructions (all cache levels)
 + Follows the program path
+ No need to construct a pre-execution thread
+ Uses the same thread context as main thread, no waste of context
+ Simple to implement, most of the hardware is already built in

  Disadvantages/Limitations:
-- Extra executed instructions
-- Limited by branch prediction accuracy
-- Cannot prefetch dependent cache misses. Solution?
-- Effectiveness limited by available MLP
-- Prefetch distance limited by memory latency

  Implemented in IBM POWER6, Sun “Rock”
31

Execution-based Prefetchers (III)
+ Can prefetch pretty much any access pattern
+ Can be very low cost (e.g., runahead execution)
 + Especially if it uses the same hardware context
 + Why? The processsor is equipped to execute the program anyway

+ Can be bandwidth-efficient (e.g., runahead execution)

-- Depend on branch prediction and possibly value prediction
accuracy

 - Mispredicted branches dependent on missing data throw the thread
off the correct execution path

-- Can be wasteful
 -- speculatively execute many instructions
 -- can occupy a separate thread context

32

