15-740/18-740

Computer Architecture
Lecture 14: Pretetching

Prof. Onur Mutlu
Carnegie Mellon University

Announcements

Project Milestone I
o Due Today

Paper Reviews

a Jouppi, “Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully-Associative Cache and Prefetch
Buffers,” ISCA 1990.

o Qureshi et al., "A Case for MLP-Aware Cache Replacement,”
ISCA 2006.

o Due Friday October 22

Last Time

Enhancements to improve cache performance
Victim caches

Hashing

Pseudo-associativity

Skewed associative caches

Software changes to improve hit rate
Non-blocking caches, MSHRs

Reducing miss cost via software

L 0o 0O O O O D

Multiple cache accesses per cycle
o True multiporting

o Virtual multiporting

o Multiple cache copies

o Banking (interleaving)

Today: Prefetching

Why prefetch? Why could/does it work?

The four questions
o What (to prefetch), when, where, how

Software prefetching

Hardware prefetching algorithms
Execution-based prefetching
Prefetching performance

o Coverage, accuracy, timeliness
o Bandwidth consumption, cache pollution

Prefetcher throttling
Issues in multi-core

Readingsin Prefetching

= Required:

a Jouppi, “Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully-Associative Cache and Prefetch
Buffers,” ISCA 1990.

o Joseph and Grunwald, “Prefetching using Markov Predictors,”
ISCA 1997.

= Recommended:

o Mowry et al., "Design and Evaluation of a Compiler Algorithm
for Prefetching,” ASPLOS 1992.

o Srinath et al., "Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware
Prefetchers", HPCA 2007.

o Mutlu et al., "Runahead Execution: An Alternative to Very
Large Instruction Windows for Out-of-order Processors,” HPCA
2003.

5

Prefetching

Idea: Fetch the data before it is needed (i.e. pre-fetch) by
the program

Why?
o Memory latency is high. If we can prefetch accurately and
early enough we can reduce/eliminate that latency.

o Can eliminate compulsory cache misses
o Can eliminate all cache misses? Capacity, conflict, coherence?

Involves predicting which address will be needed in the
future

o Works if programs have predictable miss address patterns

Pretetching and Correctness

Does a misprediction in prefetching affect correctness?

No, prefetched data at a "mispredicted” address is simply
not used

There is no need for state recovery

In contrast to branch misprediction or value misprediction

Basics

In modern systems, prefetching is usually done in cache
block granularity

Prefetching is a technique that can reduce both

o Miss rate
o Miss latency

Prefetching can be done by
o hardware

o compiler

a programmer

How a Pretetcher Fits in the Memory System

I-Cache fills |-Cache fills
|I-Cache -) |I-Cache
I-(.?ache D-Cache D-Cache fills I-Qache D-Cache D-Cache fills
misses misses
D-Cache misses and D-Cache misses and
A\l write backs write backs
Prefetches
L2 Request Queue Prefetch Req Queue f------- -{ L2 Request Queue
[T
1 o mmsss=ay
A : '
1 1 :
L2-Cache hits * E L2-Cache hits
Hardware !
L2 Cache Stream fe------cmoeaaod L2 Cache Gache fil
= 2 P -
 L2-Cache fill _ Prefetcher [L2 demandaccesses L= Canhe The
T
' [SRR vuyepupupupays
L2 misses and | write backs L2 demand misses L2 misses and | write backs
o create streams
Bus Request Queue ‘ ’ L2 Fill Queue Bus Request Queue L2 Fill Queue
i
. S | On-Chip Oon-Chip
Bus : Bus i
) At N e e e e m e e dEeemeemeeeemeemeemeememeeepeme— .- ’
Off-Chip T Off-Chip
) 4
Memory Controller Memory Controller
[}
DRAM Memory Banks DRAM Memory Banks
. - -

Prefetching: The Four Questions
What
o What addresses to prefetch

When
o When to initiate a prefetch request

Where
o Where to place the prefetched data

How
o Software, hardware, execution-based, cooperative

10

Challenges in Prefetching: What

What addresses to prefetch

o Prefetching useless data wastes resources
Memory bandwidth
Cache or prefetch buffer space
Energy consumption

These could all be utilized by demand requests or more accurate
prefetch requests

o Accurate prediction of addresses to prefetch is important
Prefetch accuracy = used prefetches / sent prefetches

How do we know what to prefetch

o Predict based on past access patterns
o Use the compiler’s knowledge of data structures

Prefetching algorithm determines what to prefetch
11

Challenges in Prefetching: When

When to initiate a prefetch request

o Prefetching too early

Prefetched data might not be used before it is evicted from
storage

o Prefetching too late
Might not hide the whole memory latency

When a data item is prefetched affects the timeliness of the
prefetcher

Prefetcher can be made more timely by

o Making it more aggressive: try to stay far ahead of the
processor’s access stream (hardware)

o Moving the prefetch instructions earlier in the code (software)

12

Challenges in Prefetching: Where (I)

Where to place the prefetched data
o In cache
+ Simple design, no need for separate buffers
-- Can evict useful demand data = cache pollution
o In a separate prefetch buffer
+ Demand data protected from prefetches = no cache pollution
-- More complex memory system design
- Where to place the prefetch buffer
- When to access the prefetch buffer (parallel vs. serial with cache)
- When to move the data from the prefetch buffer to cache
- Keeping the prefetch buffer coherent

Many modern systems place prefetched data into the cache
o Intel Pentium 4, Core2’s, AMD systems, IBM POWERS4,5,6, ...

13

Challenges 1n Pretetching: Where (1I)

Which level of cache to prefetch into?

o Memory to L2, memory to L1. Advantages/disadvantages?
o L2 to L1? (a separate prefetcher between levels)

Where to place the prefetched data in the cache?

o Do we treat prefetched blocks the same as demand-fetched
blocks?

o Prefetched blocks are not known to be needed
With LRU, a demand block is placed into the MRU position

Do we skew the replacement policy such that it favors the
demand-fetched blocks?

o E.g., place all prefetches into the LRU position in a way?

14

Challenges in Prefetching: Where (I11)

Where to place the hardware prefetcher in the memory
hierarchy?

o In other words, what access patterns does the prefetcher see?
o L1 hits and misses

o L1 misses only

o L2 misses only

Seeing a more complete access pattern:

+ Potentially better accuracy and coverage in prefetching

-- Prefetcher needs to examine more requests (bandwidth
intensive, more ports into the prefetcher?)

15

Challenges in Prefetching: How

Software prefetching

o ISA provides prefetch instructions
o Programmer or compiler inserts prefetch instructions (effort)
o Usually works well only for “regular access patterns”

Hardware prefetching

o Hardware monitors processor accesses

o Memorizes or finds patterns/strides

o Generates prefetch addresses automatically

Execution-based prefetchers
o A “thread” is executed to prefetch data for the main program
o Can be generated by either software/programmer or hardware

16

Sottware Pretetching (I)

Idea: Compiler/programmer places prefetch instructions into
appropriate places in code

Mowry et al., "Design and Evaluation of a Compiler Algorithm for
Prefetching,” ASPLOS 1992.

Two types: binding vs. non-binding
o Binding: Prefetch into a register (using a regular load)
+ No need for a separate “prefetch” instruction
-- Takes up registers. Exceptions?
-- What if another processor modifies the data value before it is used?
o Non-binding: Prefetch into cache (special instruction?)
+ NoO coherence issues since caches are coherent

-- Prefetches treated differently from regular loads
17

Sottware Pretetching (II)

for (i=0; i<N; i++) { while (p) { while (p) {
___prefetch(a[i+8]); ___prefetch(p—>next); __prefetch(p—>next->next->next);
___prefetch(b[i+8]); work(p—>data); work(p—~>data);
sum += a[i]*bl[il; p = p>next; —>next;

} } } Which one is better?
Can work for very regular array-based access patterns. Issues:

-- Prefetch instructions take up processing/execution bandwidth
o How early to prefetch? Determining this is difficult

-- Prefetch distance depends on hardware implementation (memory latency,
cache size, time between loop iterations) - portability?

-- Going too far back in code reduces accuracy (branches in between)
o Need “special” prefetch instructions in ISA?
Not really. Alpha load into register 31 treated as prefetch (r31==0)
PowerPC dcbt (data cache block touch) instruction

-- Not easy to do for pointer-based data structures

18

X86 PREFETCH Instruction

PREFETCHh—Prefetch Data Into Caches

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

0F18/1 PREFETCHTO m8 Valid Valid Move data from m8 closer to the
processor using TO hint.

OF 18/2 PREFETCHT1 m8 Valid Valid Move data from m8 closer to the
processor using T1 hint.

0OF18/3 PREFETCHTZ m8 Valid Valid Move data from m8 closer to the
processor using T2 hint.

OF18/0 PREFETCHNTAm8 Valid Valid Move data from m8 closer to the
processor using NTA hint.

Description

Fetches the line of data from memory that contains the byte specified with the source
operand to a location in the cache hierarchy specified by a locality hint:

microarchitecture * TO (temporal data)—prefetch data into all levels of the cache hierarchy.
dependent < — Pentium lll processor—1st- or 2nd-level cache.
specification — Pentium 4 and Intel Xeon processors—2nd-level cache.

* T1 (temporal data with respect to first level cache)—prefetch data into level 2
cache and higher.

— Pentium Il processor—2nd-level cache.

— Pentium 4 and Intel Xeon processors—2nd-level cache.

* T2 (temporal data with respect to second level cache)—prefetch data into level 2
cache and higher.

different instructions
for different cache
levels

— Pentium Il processor—2nd-level cache.
— Pentium 4 and Intel Xeon processors—2nd-level cache.

NTA (non-temporal data with respect to all cache levels)—prefetch data into non-
temporal cache structure and into a location close to the processor, minimizing
cache pollution.

— Pentium lll processor—1st-level cache

— Pentium 4 and Intel Xeon processors—2nd-level cache 19

Sotftware Pretetching (I1I)

Where should a compiler insert prefetches?

o Prefetch for every load access?
Too bandwidth intensive (both memory and execution bandwidth)

o Profile the code and determine loads that are likely to miss
What if profile input set is not representative?

o How far ahead before the miss should the prefetch be inserted?

Profile and determine probability of use for various prefetch
distances from the miss
o What if profile input set is not representative?

0 Usually need to insert a prefetch far in advance to cover 100s of cycles
of main memory latency = reduced accuracy

20

Hardware Prefetching (I)

Idea: Specialized hardware observes load/store access
patterns and prefetches data based on past access behavior

Tradeoffs:
+ Can be tuned to system implementation

+ No code portability issues (in terms of performance variation
between implementations)

+ Does not waste instruction execution bandwidth
-- More hardware complexity to detect patterns
- Software can be more efficient in some cases

21

