
15-740/18-740
Computer Architecture
Lecture 14: Prefetching

Prof. Onur Mutlu
Carnegie Mellon University

Announcements
  Project Milestone I

  Due Today

  Paper Reviews
  Jouppi, “Improving Direct-Mapped Cache Performance by the

Addition of a Small Fully-Associative Cache and Prefetch
Buffers,” ISCA 1990.

  Qureshi et al., “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.

  Due Friday October 22

2

Last Time
  Enhancements to improve cache performance

  Victim caches
  Hashing
  Pseudo-associativity
  Skewed associative caches
  Software changes to improve hit rate
  Non-blocking caches, MSHRs
  Reducing miss cost via software

  Multiple cache accesses per cycle
  True multiporting
  Virtual multiporting
  Multiple cache copies
  Banking (interleaving)

3

Today: Prefetching
  Why prefetch? Why could/does it work?
  The four questions

  What (to prefetch), when, where, how

  Software prefetching
  Hardware prefetching algorithms
  Execution-based prefetching
  Prefetching performance

  Coverage, accuracy, timeliness
  Bandwidth consumption, cache pollution

  Prefetcher throttling
  Issues in multi-core

4

Readings in Prefetching
  Required:

  Jouppi, “Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully-Associative Cache and Prefetch
Buffers,” ISCA 1990.

  Joseph and Grunwald, “Prefetching using Markov Predictors,”
ISCA 1997.

  Recommended:
  Mowry et al., “Design and Evaluation of a Compiler Algorithm

for Prefetching,” ASPLOS 1992.
  Srinath et al., “Feedback Directed Prefetching: Improving the

Performance and Bandwidth-Efficiency of Hardware
Prefetchers“, HPCA 2007.

  Mutlu et al., “Runahead Execution: An Alternative to Very
Large Instruction Windows for Out-of-order Processors,” HPCA
2003.

5

Prefetching
  Idea: Fetch the data before it is needed (i.e. pre-fetch) by

the program

  Why?
  Memory latency is high. If we can prefetch accurately and

early enough we can reduce/eliminate that latency.
  Can eliminate compulsory cache misses
  Can eliminate all cache misses? Capacity, conflict, coherence?

  Involves predicting which address will be needed in the
future
  Works if programs have predictable miss address patterns

6

Prefetching and Correctness
  Does a misprediction in prefetching affect correctness?

  No, prefetched data at a “mispredicted” address is simply
not used

  There is no need for state recovery

  In contrast to branch misprediction or value misprediction

7

Basics
  In modern systems, prefetching is usually done in cache

block granularity

  Prefetching is a technique that can reduce both
  Miss rate
  Miss latency

  Prefetching can be done by
  hardware
  compiler
  programmer

8

How a Prefetcher Fits in the Memory System

9

Prefetching: The Four Questions
  What

  What addresses to prefetch

  When
  When to initiate a prefetch request

  Where
  Where to place the prefetched data

  How
  Software, hardware, execution-based, cooperative

10

Challenges in Prefetching: What
  What addresses to prefetch

  Prefetching useless data wastes resources
  Memory bandwidth
  Cache or prefetch buffer space
  Energy consumption
  These could all be utilized by demand requests or more accurate

prefetch requests

  Accurate prediction of addresses to prefetch is important
  Prefetch accuracy = used prefetches / sent prefetches

  How do we know what to prefetch
  Predict based on past access patterns
  Use the compiler’s knowledge of data structures

  Prefetching algorithm determines what to prefetch
11

Challenges in Prefetching: When
  When to initiate a prefetch request

  Prefetching too early
  Prefetched data might not be used before it is evicted from

storage

  Prefetching too late
  Might not hide the whole memory latency

  When a data item is prefetched affects the timeliness of the
prefetcher

  Prefetcher can be made more timely by
  Making it more aggressive: try to stay far ahead of the

processor’s access stream (hardware)
  Moving the prefetch instructions earlier in the code (software)

12

Challenges in Prefetching: Where (I)
  Where to place the prefetched data

  In cache
+ Simple design, no need for separate buffers
-- Can evict useful demand data  cache pollution

  In a separate prefetch buffer
+ Demand data protected from prefetches  no cache pollution
-- More complex memory system design

 - Where to place the prefetch buffer
 - When to access the prefetch buffer (parallel vs. serial with cache)
 - When to move the data from the prefetch buffer to cache
 - Keeping the prefetch buffer coherent

  Many modern systems place prefetched data into the cache
  Intel Pentium 4, Core2’s, AMD systems, IBM POWER4,5,6, …

13

Challenges in Prefetching: Where (II)
  Which level of cache to prefetch into?

  Memory to L2, memory to L1. Advantages/disadvantages?
  L2 to L1? (a separate prefetcher between levels)

  Where to place the prefetched data in the cache?
  Do we treat prefetched blocks the same as demand-fetched

blocks?
  Prefetched blocks are not known to be needed

  With LRU, a demand block is placed into the MRU position

  Do we skew the replacement policy such that it favors the
demand-fetched blocks?
  E.g., place all prefetches into the LRU position in a way?

14

Challenges in Prefetching: Where (III)
  Where to place the hardware prefetcher in the memory

hierarchy?
  In other words, what access patterns does the prefetcher see?
  L1 hits and misses
  L1 misses only
  L2 misses only

  Seeing a more complete access pattern:
+ Potentially better accuracy and coverage in prefetching
-- Prefetcher needs to examine more requests (bandwidth

intensive, more ports into the prefetcher?)

15

Challenges in Prefetching: How
  Software prefetching

  ISA provides prefetch instructions
  Programmer or compiler inserts prefetch instructions (effort)
  Usually works well only for “regular access patterns”

  Hardware prefetching
  Hardware monitors processor accesses
  Memorizes or finds patterns/strides
  Generates prefetch addresses automatically

  Execution-based prefetchers
  A “thread” is executed to prefetch data for the main program
  Can be generated by either software/programmer or hardware

16

Software Prefetching (I)
  Idea: Compiler/programmer places prefetch instructions into

appropriate places in code

  Mowry et al., “Design and Evaluation of a Compiler Algorithm for
Prefetching,” ASPLOS 1992.

  Two types: binding vs. non-binding
  Binding: Prefetch into a register (using a regular load)

+ No need for a separate “prefetch” instruction
-- Takes up registers. Exceptions?
-- What if another processor modifies the data value before it is used?

  Non-binding: Prefetch into cache (special instruction?)
+ No coherence issues since caches are coherent
-- Prefetches treated differently from regular loads

17

Software Prefetching (II)

  Can work for very regular array-based access patterns. Issues:
-- Prefetch instructions take up processing/execution bandwidth
  How early to prefetch? Determining this is difficult

-- Prefetch distance depends on hardware implementation (memory latency,
cache size, time between loop iterations)  portability?

-- Going too far back in code reduces accuracy (branches in between)

  Need “special” prefetch instructions in ISA?
  Not really. Alpha load into register 31 treated as prefetch (r31==0)
  PowerPC dcbt (data cache block touch) instruction

-- Not easy to do for pointer-based data structures

18

for (i=0; i<N; i++) {
 __prefetch(a[i+8]);
 __prefetch(b[i+8]);
 sum += a[i]*b[i];
}

while (p) {
 __prefetch(pnext);
 work(pdata);
 p = pnext;
}

while (p) {
 __prefetch(pnextnextnext);
 work(pdata);
 p = pnext;
}

Which one is better?

X86 PREFETCH Instruction

19

microarchitecture
dependent
specification

different instructions
for different cache
levels

Software Prefetching (III)
  Where should a compiler insert prefetches?

  Prefetch for every load access?
  Too bandwidth intensive (both memory and execution bandwidth)

  Profile the code and determine loads that are likely to miss
  What if profile input set is not representative?

  How far ahead before the miss should the prefetch be inserted?
  Profile and determine probability of use for various prefetch

distances from the miss
  What if profile input set is not representative?
  Usually need to insert a prefetch far in advance to cover 100s of cycles

of main memory latency  reduced accuracy

20

Hardware Prefetching (I)
  Idea: Specialized hardware observes load/store access

patterns and prefetches data based on past access behavior

  Tradeoffs:
+ Can be tuned to system implementation
+ No code portability issues (in terms of performance variation

between implementations)
+ Does not waste instruction execution bandwidth
-- More hardware complexity to detect patterns

 - Software can be more efficient in some cases

21

