
15-740/18-740
Computer Architecture
Lecture 14: Prefetching

Prof. Onur Mutlu
Carnegie Mellon University

Announcements
  Project Milestone I

  Due Today

  Paper Reviews
  Jouppi, “Improving Direct-Mapped Cache Performance by the

Addition of a Small Fully-Associative Cache and Prefetch
Buffers,” ISCA 1990.

  Qureshi et al., “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.

  Due Friday October 22

2

Last Time
  Enhancements to improve cache performance

  Victim caches
  Hashing
  Pseudo-associativity
  Skewed associative caches
  Software changes to improve hit rate
  Non-blocking caches, MSHRs
  Reducing miss cost via software

  Multiple cache accesses per cycle
  True multiporting
  Virtual multiporting
  Multiple cache copies
  Banking (interleaving)

3

Today: Prefetching
  Why prefetch? Why could/does it work?
  The four questions

  What (to prefetch), when, where, how

  Software prefetching
  Hardware prefetching algorithms
  Execution-based prefetching
  Prefetching performance

  Coverage, accuracy, timeliness
  Bandwidth consumption, cache pollution

  Prefetcher throttling
  Issues in multi-core

4

Readings in Prefetching
  Required:

  Jouppi, “Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully-Associative Cache and Prefetch
Buffers,” ISCA 1990.

  Joseph and Grunwald, “Prefetching using Markov Predictors,”
ISCA 1997.

  Recommended:
  Mowry et al., “Design and Evaluation of a Compiler Algorithm

for Prefetching,” ASPLOS 1992.
  Srinath et al., “Feedback Directed Prefetching: Improving the

Performance and Bandwidth-Efficiency of Hardware
Prefetchers“, HPCA 2007.

  Mutlu et al., “Runahead Execution: An Alternative to Very
Large Instruction Windows for Out-of-order Processors,” HPCA
2003.

5

Prefetching
  Idea: Fetch the data before it is needed (i.e. pre-fetch) by

the program

  Why?
  Memory latency is high. If we can prefetch accurately and

early enough we can reduce/eliminate that latency.
  Can eliminate compulsory cache misses
  Can eliminate all cache misses? Capacity, conflict, coherence?

  Involves predicting which address will be needed in the
future
  Works if programs have predictable miss address patterns

6

Prefetching and Correctness
  Does a misprediction in prefetching affect correctness?

  No, prefetched data at a “mispredicted” address is simply
not used

  There is no need for state recovery

  In contrast to branch misprediction or value misprediction

7

Basics
  In modern systems, prefetching is usually done in cache

block granularity

  Prefetching is a technique that can reduce both
  Miss rate
  Miss latency

  Prefetching can be done by
  hardware
  compiler
  programmer

8

How a Prefetcher Fits in the Memory System

9

Prefetching: The Four Questions
  What

  What addresses to prefetch

  When
  When to initiate a prefetch request

  Where
  Where to place the prefetched data

  How
  Software, hardware, execution-based, cooperative

10

Challenges in Prefetching: What
  What addresses to prefetch

  Prefetching useless data wastes resources
  Memory bandwidth
  Cache or prefetch buffer space
  Energy consumption
  These could all be utilized by demand requests or more accurate

prefetch requests

  Accurate prediction of addresses to prefetch is important
  Prefetch accuracy = used prefetches / sent prefetches

  How do we know what to prefetch
  Predict based on past access patterns
  Use the compiler’s knowledge of data structures

  Prefetching algorithm determines what to prefetch
11

Challenges in Prefetching: When
  When to initiate a prefetch request

  Prefetching too early
  Prefetched data might not be used before it is evicted from

storage

  Prefetching too late
  Might not hide the whole memory latency

  When a data item is prefetched affects the timeliness of the
prefetcher

  Prefetcher can be made more timely by
  Making it more aggressive: try to stay far ahead of the

processor’s access stream (hardware)
  Moving the prefetch instructions earlier in the code (software)

12

Challenges in Prefetching: Where (I)
  Where to place the prefetched data

  In cache
+ Simple design, no need for separate buffers
-- Can evict useful demand data cache pollution

  In a separate prefetch buffer
+ Demand data protected from prefetches no cache pollution
-- More complex memory system design

 - Where to place the prefetch buffer
 - When to access the prefetch buffer (parallel vs. serial with cache)
 - When to move the data from the prefetch buffer to cache
 - Keeping the prefetch buffer coherent

  Many modern systems place prefetched data into the cache
  Intel Pentium 4, Core2’s, AMD systems, IBM POWER4,5,6, …

13

Challenges in Prefetching: Where (II)
  Which level of cache to prefetch into?

  Memory to L2, memory to L1. Advantages/disadvantages?
  L2 to L1? (a separate prefetcher between levels)

  Where to place the prefetched data in the cache?
  Do we treat prefetched blocks the same as demand-fetched

blocks?
  Prefetched blocks are not known to be needed

  With LRU, a demand block is placed into the MRU position

  Do we skew the replacement policy such that it favors the
demand-fetched blocks?
  E.g., place all prefetches into the LRU position in a way?

14

Challenges in Prefetching: Where (III)
  Where to place the hardware prefetcher in the memory

hierarchy?
  In other words, what access patterns does the prefetcher see?
  L1 hits and misses
  L1 misses only
  L2 misses only

  Seeing a more complete access pattern:
+ Potentially better accuracy and coverage in prefetching
-- Prefetcher needs to examine more requests (bandwidth

intensive, more ports into the prefetcher?)

15

Challenges in Prefetching: How
  Software prefetching

  ISA provides prefetch instructions
  Programmer or compiler inserts prefetch instructions (effort)
  Usually works well only for “regular access patterns”

  Hardware prefetching
  Hardware monitors processor accesses
  Memorizes or finds patterns/strides
  Generates prefetch addresses automatically

  Execution-based prefetchers
  A “thread” is executed to prefetch data for the main program
  Can be generated by either software/programmer or hardware

16

Software Prefetching (I)
  Idea: Compiler/programmer places prefetch instructions into

appropriate places in code

  Mowry et al., “Design and Evaluation of a Compiler Algorithm for
Prefetching,” ASPLOS 1992.

  Two types: binding vs. non-binding
  Binding: Prefetch into a register (using a regular load)

+ No need for a separate “prefetch” instruction
-- Takes up registers. Exceptions?
-- What if another processor modifies the data value before it is used?

  Non-binding: Prefetch into cache (special instruction?)
+ No coherence issues since caches are coherent
-- Prefetches treated differently from regular loads

17

Software Prefetching (II)

  Can work for very regular array-based access patterns. Issues:
-- Prefetch instructions take up processing/execution bandwidth
  How early to prefetch? Determining this is difficult

-- Prefetch distance depends on hardware implementation (memory latency,
cache size, time between loop iterations) portability?

-- Going too far back in code reduces accuracy (branches in between)

  Need “special” prefetch instructions in ISA?
  Not really. Alpha load into register 31 treated as prefetch (r31==0)
  PowerPC dcbt (data cache block touch) instruction

-- Not easy to do for pointer-based data structures

18

for (i=0; i<N; i++) {
 __prefetch(a[i+8]);
 __prefetch(b[i+8]);
 sum += a[i]*b[i];
}

while (p) {
 __prefetch(pnext);
 work(pdata);
 p = pnext;
}

while (p) {
 __prefetch(pnextnextnext);
 work(pdata);
 p = pnext;
}

Which one is better?

X86 PREFETCH Instruction

19

microarchitecture
dependent
specification

different instructions
for different cache
levels

Software Prefetching (III)
  Where should a compiler insert prefetches?

  Prefetch for every load access?
  Too bandwidth intensive (both memory and execution bandwidth)

  Profile the code and determine loads that are likely to miss
  What if profile input set is not representative?

  How far ahead before the miss should the prefetch be inserted?
  Profile and determine probability of use for various prefetch

distances from the miss
  What if profile input set is not representative?
  Usually need to insert a prefetch far in advance to cover 100s of cycles

of main memory latency reduced accuracy

20

Hardware Prefetching (I)
  Idea: Specialized hardware observes load/store access

patterns and prefetches data based on past access behavior

  Tradeoffs:
+ Can be tuned to system implementation
+ No code portability issues (in terms of performance variation

between implementations)
+ Does not waste instruction execution bandwidth
-- More hardware complexity to detect patterns

 - Software can be more efficient in some cases

21

