
15-740/18-740
Computer Architecture

Lecture 12: Advanced Caching

Prof. Onur Mutlu
Carnegie Mellon University

Announcements
Chuck Thacker (Microsoft Research) Seminar Tomorrow

RARE: Rethinking Architectural Research and Education
October 7, 4:30-5:30pm, GHC Rashid Auditorium

Ben Zorn (Microsoft Research) Seminar Friday
Performance is Dead, Long Live Performance!
October 8, 11am-noon, GHC 6115

Guest lecture Friday
Dr. Ben Zorn, Microsoft Research
Fault Tolerant, Efficient, and Secure Runtimes

2

Announcements
Homework 2 due

October 10

Midterm I
October 11
Sample exams online
You can bring one letter-sized cheat sheet

Project proposals
Meetings with some groups Wednesday, October 13
Contact TAs assigned Meet with them
Come to office hours for feedback

3

Last Time …

4

Dual-core Execution, Slipstream Idea
Store-Load Dependency Handling
Speculative Execution and Data Coherence
Open Research Issues in OoO Execution
Asymmetric vs. Symmetric Cores
ACMP
Accelerated Critical Sections using ACMP

Advanced Caching
Inclusion vs. Exclusion
Multi-level caches in Pipelined Designs

Topics in (Advanced) Caching
Inclusion vs. exclusion, revisited
Handling writes
Instruction vs. data
Cache replacement policies
Cache performance
Enhancements to improve cache performance
Enabling multiple concurrent accesses
Enabling high bandwidth caches

5

Readings
Required:

Hennessy and Patterson, Appendix C.1-C.3
Jouppi, “Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully-Associative Cache and Prefetch
Buffers,” ISCA 1990.
Qureshi et al., “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.

Recommended:
Seznec, “A Case for Two-way Skewed Associative Caches,” ISCA
1993.
Chilimbi et al., “Cache-conscious Structure Layout,” PLDI 1999.
Chilimbi et al., “Cache-conscious Structure Definition,” PLDI
1999.

6

Handling Writes (Stores)
When do we write the modified data in a cache to the next level?

Write through: At the time the write happens
Write back: When the block is evicted

Write-back
-- Need a bit in the tag store indicating the block is “modified”
+ Can consolidate multiple writes to the same block before eviction

Potentially saves bandwidth between cache levels + saves energy

Write-through
+ Simpler
+ All levels are up to date. Consistency: Simpler cache coherence

because no need to check lower-level caches
-- More bandwidth intensive

7

Handling Writes (Stores)
Do we allocate a cache block on a write miss?

Allocate on write miss: Yes
No-allocate on write miss: No

Allocate on write miss
+ Can consolidate writes instead of writing each of them

individually to next level
+ Simpler because write misses can be treated the same way as

read misses
-- Requires (?) transfer of the whole cache block

No-allocate
+ Conserves cache space if locality of writes is low

8

Instruction vs. Data Caching
Unified:
+ Dynamic sharing of cache space: no overprovisioning that might

happen with static partitioning (i.e., split I and D caches)
-- Instructions and data can conflict with each other (i.e., no

guaranteed space for either)
-- I and D are accessed in different places in the pipeline. Where

do we place the unified cache for fast access?

First level caches are almost always split
for the last reason above

Second and higher levels are almost always unified

9

Set-Associative Caches (I)
Diminishing returns in hit rate from higher associativity
Longer access time with higher associativity
Which block in the set to replace on a cache miss?

Any invalid block first
If all are valid, consult the replacement policy

Random
FIFO
Least recently used (how to implement?)
Not most recently used
Least frequently used?
Least costly to re-fetch?

Why would memory accesses have different cost?
Hybrid replacement policies
Optimal replacement policy?

10

Set-Associative Caches (II)
Belady’s OPT

Replace the block that is going to be referenced furthest in the
future by the program
Belady, “A study of replacement algorithms for a virtual-
storage computer,” IBM Systems Journal, 1966.
How do we implement this? Simulate?

Is this optimal for minimizing miss rate?
Is this optimal for minimizing execution time?

No. Cache miss latency/cost varies from block to block!
Two reasons: Remote vs. local caches and miss overlapping
Qureshi et al. “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.

11

12

Memory Level Parallelism (MLP)

Memory Level Parallelism (MLP) means generating and
servicing multiple memory accesses in parallel [Glew’98]

Several techniques to improve MLP (out-of-order, runahead etc.)

MLP varies. Some misses are isolated and some parallel

How does this affect cache replacement?

time

A
B

C

isolated miss parallel miss

Traditional Cache Replacement Policies

Traditional cache replacement policies try to reduce miss
count

Implicit assumption: Reducing miss count reduces memory-
related stall time

Misses with varying cost/MLP breaks this assumption!

Eliminating an isolated miss helps performance more than
eliminating a parallel miss
Eliminating a higher-latency miss could help performance
more than eliminating a lower-latency miss

13

14

Misses to blocks P1, P2, P3, P4 can be parallel
Misses to blocks S1, S2, and S3 are isolated

Two replacement algorithms:
1. Minimizes miss count (Belady’s OPT)
2. Reduces isolated miss (MLP-Aware)

For a fully associative cache containing 4 blocks

S1P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

An Example

Fewest Misses = Best Performance

15

P3 P2 P1 P4

H H H H M H H H MHit/Miss
Misses=4
Stalls=4

S1P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

Time stall

Belady’s OPT replacement

M M

MLP-Aware replacement

Hit/Miss

P3 P2 S1 P4 P3 P2 P1 P4 P3 P2 S2P4 P3 P2 S3P4 S1 S2 S3P1 P3 P2 S3P4 S1 S2 S3P4

H H H

S1 S2 S3P4

H M M M H M M M

Time stall Misses=6
Stalls=2

Saved
cycles

Cache

Cache Performance

Improving Cache “Performance”
Reducing miss rate

Caveat: reducing miss rate can reduce performance if more
costly-to-refetch blocks are evicted

Reducing miss latency

Reducing hit latency

17

Improving Basic Cache Performance
Reducing miss rate

More associativity
Alternatives/enhancements to associativity

Victim caches, hashing, pseudo-associativity, skewed associativity

Software approaches

Reducing miss latency/cost
Multi-level caches
Critical word first
Subblocking
Non-blocking caches
Multiple accesses per cycle
Software approaches

18

Cache Parameters vs. Miss Rate
Cache size

Block size

Associativity

Replacement policy
Insertion/Placement policy

19

Cache Size
Cache size in the total data (not including tag) capacity

bigger can exploit temporal locality better
not ALWAYS better

Too large a cache adversely affects hit and miss latency
smaller is faster => bigger is slower
access time may degrade critical path

Too small a cache
doesn’t exploit temporal locality well
useful data replaced often

Working set: the whole set of data
the executing application references

Within a time interval
20

hit rate

cache size

“working set”
size

Block Size
Block size is the data that is associated with an address tag

not necessarily the unit of transfer between hierarchies
Sub-blocking: A block divided into multiple pieces (each with V bit)

Can improve “write” performance

Small blocks
don’t exploit spatial locality well
have larger tag overhead

Large blocks
likely-useless data transferred

Extra bandwidth/energy consumed

too few total # of blocks
Useful data frequently replaced

21

hit rate

block
size

Large Blocks: Critical-Word and Subblocking
Large cache blocks can take a long time to fill into the cache

fill cache line critical word first
restart cache access before complete fill

Large cache blocks can waste bus bandwidth
divide a block into subblocks
associate separate valid bits for each subblock
When is this useful?

22

tagsubblockvsubblockv subblockv

Associativity
How many blocks can map to the same index (or set)?

Larger associativity
lower miss rate, less variation among programs
diminishing returns

Smaller associativity
lower hardware cost
faster hit time

Especially important for L1 caches

Power of 2 associativity?

23

associativity

hit rate

Replacement Policy
LRU vs. Random

Set thrashing: When the “program working set” in a set is
larger than set associativity
4-way: Cyclic references to A, B, C, D, E

0% hit rate with LRU policy

Random replacement policy is better when thrashing occurs
In practice:

Depends on workload
Average hit rate of LRU and Random are similar

Hybrid of LRU and Random
How to choose between the two? Set sampling

See Qureshi et al., “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.

24

Hybrid Replacement Policies
Idea:

Have 3 tag stores:
2 auxiliary tag stores (ATS) dedicated to alternate policies
One main tag store (MTS) implementing both policies.

Simulate alternate policies in the ATS
Use the “winning” policy in the MTS

25

Random-LRU Hybrid Replacement (I)

26

ATS-RAND ATS-LRU Saturating Counter (SCTR)
HIT HIT Unchanged

MISS MISS Unchanged

HIT MISS += 1

MISS HIT -= 1

SET A SET A+
SCTR

If MSB of SCTR is 1, MTS uses RAND
else MTS uses LRU

ATS-RAND ATS-LRU

SET A
MTS

Random-LRU Hybrid Replacement (II)

27

Implementing this on a per-set basis is expensive
Counter overhead can be reduced by using a global counter

+
SCTR

Policy for All
Sets In MTS

Set A
ATS-RAND

Set B
Set C
Set D
Set E
Set F
Set G
Set H

Set A
ATS-LRU

Set B
Set C
Set D
Set E
Set F
Set G
Set H

Random-LRU Hybrid Replacement (III)

28

+
SCTR

Policy for All
Sets In MTS

ATS-RAND

Set B

Set E

Set G

Set B

Set E

Set G

ATS-LRU
Set ASet A

Set C
Set D

Set F

Set H

Set C
Set D

Set F

Set H

Not all sets are required to decide the best policy

Have the ATS entries only for few sets. This is called set sampling.

Sets that have ATS entries (B, E, G) are called leader sets

Set Sampling for Hybrid Replacement
How many sets are required to choose best performing
policy?

Bounds using analytical model and simulation (in Qureshi et
al., ISCA 2006)
Sampling 32 leader sets performs similar to having all sets
Last-level cache typically contains 1000s of sets

ATS entries are required for only 3% of the sets

ATS overhead can further be reduced by using MTS to
always simulate one of the policies (say RAND)

29

Sampling-Based Random-LRU Hybrid

30

Decide policy only for
follower sets

+
SCTR

MTS

Set B

Set E

Set G

Set G

ATS-LRU
Set A

Set C
Set D

Set F

Set H

Set B
Set E

Leader sets
Follower sets

Classification of Cache Misses
Compulsory (Cold)

The block was never accessed before
Can sole caching do anything about compulsory misses?

Conflict
A same-size fully-associative cache would not have missed

Capacity
The cache was too small (even if it were fully associative)

Neither compulsory nor conflict

Coherence/communication (multiprocessor)
Another processor invalidated the block

31

How to Reduce Each Miss Type
Compulsory

Caching cannot help
Prefetching

Conflict
More associativity
Other ways to get more associativity without making the
cache associative

Victim cache
Hashing
Software hints?

Capacity
Utilize cache space better: keep blocks that will be referenced
Software management: divide working set such that each
“phase” fits in cache

32

Victim Cache: Reducing Conflict Misses

Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a
Small Fully-Associative Cache and Prefetch Buffers,” ISCA 1990.

Idea: Use a small fully associative buffer (victim cache) to
store evicted blocks
+ Can avoid ping ponging of cache blocks mapped to the same

set (if two cache blocks continuously accessed in nearby time
conflict with each other)

-- Increases miss latency if accessed serially with L2
33

Direct
Mapped
Cache

Next Level
Cache

Victim
cache

Victim Cache Performance
Generally helps with

Temporally close conflict misses
Smaller associativity

Smaller cache size
Instruction caches
Larger block size (fewer total blocks)

34

Hashing and Pseudo-Associativity
Hashing: Better “randomizing” index functions
+ can reduce conflict misses

by distributing the accessed memory blocks more evenly to sets

Example: stride where stride value equals cache size
-- More complex to implement: can lengthen critical path

Pseudo-associativity (Poor Man’s associative cache)
Serial lookup: On a miss, use a different index function and
access cache again
Given a direct-mapped array with K cache blocks

Implement K/N sets
Given address Addr, sequentially look up: {0,Addr[lg(K/N)-1: 0]},
{1,Addr[lg(K/N)-1: 0]}, … , {N-1,Addr[lg(K/N)-1: 0]}

35

