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Announcements 
  Chuck Thacker (Microsoft Research) Seminar 

  RARE: Rethinking Architectural Research and Education 
  October 7, 4:30-5:30pm, GHC Rashid Auditorium 

  Ben Zorn (Microsoft Research) Seminar 
  Performance is Dead, Long Live Performance! 
  October 8, 11am-noon, GHC 6115 

  Guest lecture Friday 
  Dr. Ben Zorn, Microsoft Research 
  Fault Tolerant, Efficient, and Secure Runtimes 
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Announcements 
  Homework 2 due 

  October 10 

  Midterm I 
  October 11 
  Sample exams online 
  You can bring one letter-sized cheat sheet 
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Last Time … 

4 

  Full Window Stalls 
  Runahead Execution 
  Memory Level Parallelism 
  Memory Latency Tolerance Techniques 

  Caching 
  Prefetching 
  Multithreading 
  Out-of-order execution 

  Improving Runahead Execution 
  Efficiency 
  Dependent Cache Misses: Address-Value Delta Prediction 



OoO/Runahead Readings 
  Mutlu et al., “Runahead Execution: An Alternative to Very Large 

Instruction Windows for Out-of-order Processors,” HPCA 2003. 
  Mutlu et al., “Efficient Runahead Execution: Power-Efficient 

Memory Latency Tolerance,” IEEE Micro Top Picks 2006. 

  Zhou, Dual-Core Execution: “Building a Highly Scalable Single-
Thread Instruction Window,” PACT 2005. 

  Chrysos and Emer, “Memory Dependence Prediction Using Store 
Sets,” ISCA 1998. 
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Efficient Scaling of Instruction Window Size 

  One of the major research issues in out of order execution 

  How to achieve the benefits of a large window with a small 
one (or in a simpler way)? 

  Runahead execution? 
  Upon L2 miss, checkpoint architectural state, speculatively 

execute only for prefetching, re-execute when data ready 

  Continual flow pipelines? 
  Upon L2 miss, deallocate everything belonging to an L2 miss 

dependent, reallocate/re-rename and re-execute upon data ready 

  Dual-core execution? 
  One core runs ahead and does not stall on L2 misses, feeds 

another core that commits instructions  
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Runahead Execution (III) 
  Advantages: 

+ Very accurate prefetches for data/instructions (all cache levels) 
    + Follows the program path 
+ Uses the same thread context as main thread, no waste of context 
+ Simple to implement, most of the hardware is already built in 

  Disadvantages/Limitations: 
-- Extra executed instructions 
-- Limited by branch prediction accuracy 
-- Cannot prefetch dependent cache misses. Solution? 
-- Effectiveness limited by available “memory-level parallelism” (MLP) 
-- Prefetch distance limited by memory latency 

   Implemented in IBM POWER6, Sun “Rock” 
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Memory Latency Tolerance Techniques 

  Caching [initially by Wilkes, 1965] 
  Widely used, simple, effective, but inefficient, passive 
  Not all applications/phases exhibit temporal or spatial locality 

  Prefetching [initially in IBM 360/91, 1967] 
  Works well for regular memory access patterns 
  Prefetching irregular access patterns is difficult, inaccurate, and hardware-

intensive 

  Multithreading [initially in CDC 6600, 1964] 
  Works well if there are multiple threads 
  Improving single thread performance using multithreading hardware is an 

ongoing research effort 

  Out-of-order execution [initially by Tomasulo, 1967] 
  Tolerates cache misses that cannot be prefetched 
  Requires extensive hardware resources for tolerating long latencies 



Runahead and Dual Core Execution 
  Runahead execution:  

+ Approximates the MLP benefits of a large instruction window (no stalling on 
L2 misses) 

-- Window size limited by L2 miss latency (runahead ends on miss return) 

  Dual-core execution:  
+ Window size is not limited by L2 miss latency 
-- Multiple cores used to execute the application 

  Zhou, Dual-Core Execution: “Building a Highly Scalable Single-Thread 
Instruction Window,” PACT 2005. 
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Easier to scale (FIFO) 



Runahead and Dual Core Execution 
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Handling of Store-Load Dependencies 
  A load’s dependence status is not known until all previous store 

addresses are available.  

  How does the OOO engine detect dependence of a load instruction on a 
previous store? 
  Option 1: Wait until all previous stores committed (no need to 

check)  
  Option 2: Keep a list of pending stores in a store buffer and check 

whether load address matches a previous store address 

  How does the OOO engine treat the scheduling of a load instruction wrt 
previous stores? 
  Option 1: Assume load independent of all previous stores 
  Option 2: Assume load dependent on all previous stores 
  Option 3: Predict the dependence of a load on an outstanding store 
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Store Buffer Design (I) 
  An age ordered list of pending stores  

  un-committed as well as committed but not yet propoagated 
into the memory hierarchy 

  Two purposes: 
  Dependency detection 
  Data forwarding (to dependent loads) 

  Each entry contains 
  Store address, store data, valid bits for address and data, 

store size 

  A scheduled load checks whether or not its address 
overlaps with a previous store 
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Store Buffer Design (II) 
  Why is it complex to design a store buffer? 

  Content associative, age-ordered, range search on an 
address range  
  Check for overlap of [load EA, load EA + load size] and [store 

EA, store EA + store size] 
  EA: effective address 

  A key limiter of instruction window scalability 
  Simplifying store buffer design or alternative designs an 

important topic of research 
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Memory Disambiguation (I) 
  Option 1: Assume load independent of all previous stores 

 + Simple and can be common case: no delay for independent loads 
 -- Requires recovery and re-execution of load and dependents on misprediction 

  Option 2: Assume load dependent on all previous stores 
 + No need for recovery  

    -- Too conservative: delays independent loads unnecessarily 

  Option 3: Predict the dependence of a load on an 
outstanding store 
 + More accurate. Load store dependencies persist over time 

 -- Still requires recovery/re-execution on misprediction 
  Alpha 21264 : Initially assume load independent, delay loads found to be dependent  
  Moshovos et al., “Dynamic speculation and synchronization of data dependences,” 

ISCA 1997. 
  Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998. 
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Memory Disambiguation (II) 
  Chrysos and Emer, “Memory Dependence Prediction Using Store 

Sets,” ISCA 1998. 

  Predicting store-load dependencies important for performance 
  Simple predictors (based on past history) can achieve most of 

the potential performance  
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Speculative Execution and Data Coherence  

  Speculatively executed loads can load a stale value in a 
multiprocessor system 
  The same address can be written by another processor before 

the load is committed  load and its dependents can use the 
wrong value 

  Solutions: 
1. A store from another processor invalidates a load that loaded 

the same address  
  -- Stores of another processor check the load buffer 

 -- How to handle dependent instructions? They are also 
invalidated. 

2. All loads re-executed at the time of retirement 
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Open Research Issues in OOO Execution (I) 
  Performance with simplicity and energy-efficiency 
  How to build scalable and energy-efficient instruction windows 

  To tolerate very long memory latencies and to expose more memory 
level parallelism 

  Problems:  
  How to scale or avoid scaling register files, store buffers 
  How to supply useful instructions into a large window in the 

presence of branches 

  How to approximate the benefits of a large window 
  MLP benefits vs. ILP benefits 
  Can the compiler pack more misses (MLP) into a smaller window? 

  How to approximate the benefits of OOO with in-order + 
enhancements 
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Open Research Issues in OOO Execution (II) 
  OOO in the presence of multi-core  

  More problems: Memory system contention becomes a lot more 
significant with multi-core 
  OOO execution can overcome extra latencies due to contention 
  How to preserve the benefits (e.g. MLP) of OOO in a multi-core system? 

  More opportunity: Can we utilize multiple cores to perform more 
scalable OOO execution? 
  Improve single-thread performance using multiple cores 

  Asymmetric multi-cores (ACMP): What should different cores look like in 
a multi-core system?  
  OOO essential to execute serial code portions 
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Open Research Issues in OOO Execution (III) 
  Out-of-order execution in the presence of multi-core 
  Powerful execution engines are needed to execute 

  Single-threaded applications 
  Serial sections of multithreaded applications (remember Amdahl’s law) 
  Where single thread performance matters (e.g., transactions, game logic) 
  Accelerate multithreaded applications (e.g., critical sections) 
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Asymmetric vs. Symmetric Cores 
  Advantages of Asymmetric 

+ Can provide better performance when thread parallelism is 
limited 

+ Can be more energy efficient 
 + Schedule computation to the core type that can best execute it 

  Disadvantages 
- Need to design more than one type of core. Always? 
- Scheduling becomes more complicated 

 - What computation should be scheduled on the large core? 
    - Who should decide? HW vs. SW? 
- Managing locality and load balancing can become difficult if 

threads move between cores (transparently to software) 
- Cores have different demands from shared resources 
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Accelerated Critical Sections (ACS) 

  Suleman et al., “Accelerating Critical Section Execution with 
Asymmetric Multi-Core Architectures,” APSLOS 2009. 
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Advanced Caching 
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Topics in (Advanced) Caching 
  Inclusion vs. exclusion, revisited 
  Handling writes 
  Instruction vs. data 
  Cache replacement policies 
  Cache performance 
  Enhancements to improve cache performance 
  Enabling multiple concurrent accesses 
  Enabling high bandwidth caches 
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Readings 
  Required: 

  Hennessy and Patterson, Appendix C.1-C.3 
  Jouppi, “Improving Direct-Mapped Cache Performance by the 

Addition of a Small Fully-Associative Cache and Prefetch Buffers,” 
ISCA 1990. 

  Qureshi et al., “A Case for MLP-Aware Cache Replacement,“ 
ISCA 2006. 

  Recommended: 
  Seznec, “A Case for Two-way Skewed Associative Caches,” ISCA 

1993. 
  Chilimbi et al., “Cache-conscious Structure Layout,” PLDI 1999. 
  Chilimbi et al., “Cache-conscious Structure Definition,” PLDI 

1999. 
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Inclusion vs. Exclusion in Multi-Level Caches 

  Inclusive caches 
  Every block existing in the first level also exists in the next level 
  When fetching a block, place it in all cache levels. Tradeoffs: 

-- Leads to duplication of data in the hierarchy: less efficient 
-- Maintaining inclusion takes effort (forced evictions) 
+ But makes cache coherence in multiprocessors easier 

  Need to track other processors’ accesses only in the highest-level cache 

  Exclusive caches 
  The blocks contained in cache levels are mutually exclusive 
  When evicting a block, do you write it back to the next level? 
+ More efficient utilization of cache space 
+ (Potentially) More flexibility in replacement/placement 
-- More blocks/levels to keep track of to ensure cache coherence; takes effort 

  Non-inclusive caches 
  No guarantees for inclusion or exclusion: simpler design 
  Most Intel processors 
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Maintaining Inclusion and Exclusion 
  When does maintaining inclusion take effort? 

  L1 block size < L2 block size 
  L1 associativity > L2 associativity 
  Prefetching into L2 
  When a block is evicted from L2, need to evict all corresponding 

subblocks from L1  keep 1 bit per subblock in L2 
  When a block is inserted, make sure all higher levels also have it 

  When does maintaining exclusion take effort? 
  L1 block size != L2 block size 
  Prefetching into any cache level 
  When a block is inserted into any level, ensure it is not in any 

other 
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Multi-level Caching in a Pipelined Design 
  First-level caches (instruction and data) 

  Decisions very much affected by cycle time 
  Small, lower associativity 

   Second-level caches 
  Decisions need to balance hit rate and access latency 
  Usually large and highly associative; latency not as important 
  Serial tag and data access 

  Serial vs. Parallel access of levels 
  Serial: Second level cache accessed only if first-level misses 
  Second level does not see the same accesses as the first 

  First level acts as a filter. Can you exploit this fact to improve hit 
rate in the second level cache? 
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