
15-740/18-740
Computer Architecture

Lecture 11: OoO Wrap-Up and Advanced Caching

Prof. Onur Mutlu
Carnegie Mellon University

Announcements
  Chuck Thacker (Microsoft Research) Seminar

  RARE: Rethinking Architectural Research and Education
  October 7, 4:30-5:30pm, GHC Rashid Auditorium

  Ben Zorn (Microsoft Research) Seminar
  Performance is Dead, Long Live Performance!
  October 8, 11am-noon, GHC 6115

  Guest lecture Friday
  Dr. Ben Zorn, Microsoft Research
  Fault Tolerant, Efficient, and Secure Runtimes

2

Announcements
  Homework 2 due

  October 10

  Midterm I
  October 11
  Sample exams online
  You can bring one letter-sized cheat sheet

3

Last Time …

4

  Full Window Stalls
  Runahead Execution
  Memory Level Parallelism
  Memory Latency Tolerance Techniques

  Caching
  Prefetching
  Multithreading
  Out-of-order execution

  Improving Runahead Execution
  Efficiency
  Dependent Cache Misses: Address-Value Delta Prediction

OoO/Runahead Readings
  Mutlu et al., “Runahead Execution: An Alternative to Very Large

Instruction Windows for Out-of-order Processors,” HPCA 2003.
  Mutlu et al., “Efficient Runahead Execution: Power-Efficient

Memory Latency Tolerance,” IEEE Micro Top Picks 2006.

  Zhou, Dual-Core Execution: “Building a Highly Scalable Single-
Thread Instruction Window,” PACT 2005.

  Chrysos and Emer, “Memory Dependence Prediction Using Store
Sets,” ISCA 1998.

5

Efficient Scaling of Instruction Window Size

  One of the major research issues in out of order execution

  How to achieve the benefits of a large window with a small
one (or in a simpler way)?

  Runahead execution?
  Upon L2 miss, checkpoint architectural state, speculatively

execute only for prefetching, re-execute when data ready

  Continual flow pipelines?
  Upon L2 miss, deallocate everything belonging to an L2 miss

dependent, reallocate/re-rename and re-execute upon data ready

  Dual-core execution?
  One core runs ahead and does not stall on L2 misses, feeds

another core that commits instructions

6

Runahead Execution (III)
  Advantages:

+ Very accurate prefetches for data/instructions (all cache levels)
 + Follows the program path
+ Uses the same thread context as main thread, no waste of context
+ Simple to implement, most of the hardware is already built in

  Disadvantages/Limitations:
-- Extra executed instructions
-- Limited by branch prediction accuracy
-- Cannot prefetch dependent cache misses. Solution?
-- Effectiveness limited by available “memory-level parallelism” (MLP)
-- Prefetch distance limited by memory latency

  Implemented in IBM POWER6, Sun “Rock”

7

8

Memory Latency Tolerance Techniques

  Caching [initially by Wilkes, 1965]
  Widely used, simple, effective, but inefficient, passive
  Not all applications/phases exhibit temporal or spatial locality

  Prefetching [initially in IBM 360/91, 1967]
  Works well for regular memory access patterns
  Prefetching irregular access patterns is difficult, inaccurate, and hardware-

intensive

  Multithreading [initially in CDC 6600, 1964]
  Works well if there are multiple threads
  Improving single thread performance using multithreading hardware is an

ongoing research effort

  Out-of-order execution [initially by Tomasulo, 1967]
  Tolerates cache misses that cannot be prefetched
  Requires extensive hardware resources for tolerating long latencies

Runahead and Dual Core Execution
  Runahead execution:

+ Approximates the MLP benefits of a large instruction window (no stalling on
L2 misses)

-- Window size limited by L2 miss latency (runahead ends on miss return)

  Dual-core execution:
+ Window size is not limited by L2 miss latency
-- Multiple cores used to execute the application

  Zhou, Dual-Core Execution: “Building a Highly Scalable Single-Thread
Instruction Window,” PACT 2005.

9

Easier to scale (FIFO)

Runahead and Dual Core Execution

10

Load 3 Hit

Load 2 Miss

Stall

Miss 1

Load 1 Miss

Saved Cycles

DCE: front processor

Compute

Load 1 Miss

Runahead

Load 2 Miss Load 2 Hit

Miss 1
Miss 2

Compute

Load 1 Hit
Runahead:

Load 3 Miss

Runahead
Saved
Cycles

Load 1 Miss

DCE: back processor

Compute

Compute Compute

Load 2 Hit

Miss 3
Miss 2

Load 3 Miss

Handling of Store-Load Dependencies
  A load’s dependence status is not known until all previous store

addresses are available.

  How does the OOO engine detect dependence of a load instruction on a
previous store?
  Option 1: Wait until all previous stores committed (no need to

check)
  Option 2: Keep a list of pending stores in a store buffer and check

whether load address matches a previous store address

  How does the OOO engine treat the scheduling of a load instruction wrt
previous stores?
  Option 1: Assume load independent of all previous stores
  Option 2: Assume load dependent on all previous stores
  Option 3: Predict the dependence of a load on an outstanding store

11

Store Buffer Design (I)
  An age ordered list of pending stores

  un-committed as well as committed but not yet propoagated
into the memory hierarchy

  Two purposes:
  Dependency detection
  Data forwarding (to dependent loads)

  Each entry contains
  Store address, store data, valid bits for address and data,

store size

  A scheduled load checks whether or not its address
overlaps with a previous store

12

Store Buffer Design (II)
  Why is it complex to design a store buffer?

  Content associative, age-ordered, range search on an
address range
  Check for overlap of [load EA, load EA + load size] and [store

EA, store EA + store size]
  EA: effective address

  A key limiter of instruction window scalability
  Simplifying store buffer design or alternative designs an

important topic of research

13

Memory Disambiguation (I)
  Option 1: Assume load independent of all previous stores

 + Simple and can be common case: no delay for independent loads
 -- Requires recovery and re-execution of load and dependents on misprediction

  Option 2: Assume load dependent on all previous stores
 + No need for recovery

 -- Too conservative: delays independent loads unnecessarily

  Option 3: Predict the dependence of a load on an
outstanding store
 + More accurate. Load store dependencies persist over time

 -- Still requires recovery/re-execution on misprediction
  Alpha 21264 : Initially assume load independent, delay loads found to be dependent
  Moshovos et al., “Dynamic speculation and synchronization of data dependences,”

ISCA 1997.
  Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998.

14

Memory Disambiguation (II)
  Chrysos and Emer, “Memory Dependence Prediction Using Store

Sets,” ISCA 1998.

  Predicting store-load dependencies important for performance
  Simple predictors (based on past history) can achieve most of

the potential performance

15

Speculative Execution and Data Coherence

  Speculatively executed loads can load a stale value in a
multiprocessor system
  The same address can be written by another processor before

the load is committed  load and its dependents can use the
wrong value

  Solutions:
1. A store from another processor invalidates a load that loaded

the same address
 -- Stores of another processor check the load buffer

 -- How to handle dependent instructions? They are also
invalidated.

2. All loads re-executed at the time of retirement

16

Open Research Issues in OOO Execution (I)
  Performance with simplicity and energy-efficiency
  How to build scalable and energy-efficient instruction windows

  To tolerate very long memory latencies and to expose more memory
level parallelism

  Problems:
  How to scale or avoid scaling register files, store buffers
  How to supply useful instructions into a large window in the

presence of branches

  How to approximate the benefits of a large window
  MLP benefits vs. ILP benefits
  Can the compiler pack more misses (MLP) into a smaller window?

  How to approximate the benefits of OOO with in-order +
enhancements

17

Open Research Issues in OOO Execution (II)
  OOO in the presence of multi-core

  More problems: Memory system contention becomes a lot more
significant with multi-core
  OOO execution can overcome extra latencies due to contention
  How to preserve the benefits (e.g. MLP) of OOO in a multi-core system?

  More opportunity: Can we utilize multiple cores to perform more
scalable OOO execution?
  Improve single-thread performance using multiple cores

  Asymmetric multi-cores (ACMP): What should different cores look like in
a multi-core system?
  OOO essential to execute serial code portions

18

Open Research Issues in OOO Execution (III)
  Out-of-order execution in the presence of multi-core
  Powerful execution engines are needed to execute

  Single-threaded applications
  Serial sections of multithreaded applications (remember Amdahl’s law)
  Where single thread performance matters (e.g., transactions, game logic)
  Accelerate multithreaded applications (e.g., critical sections)

19

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Large
core

ACMP Approach

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

“Niagara” Approach

Large
core

Large
core

Large
core

Large
core

“Tile-Large” Approach

Asymmetric vs. Symmetric Cores
  Advantages of Asymmetric

+ Can provide better performance when thread parallelism is
limited

+ Can be more energy efficient
 + Schedule computation to the core type that can best execute it

  Disadvantages
- Need to design more than one type of core. Always?
- Scheduling becomes more complicated

 - What computation should be scheduled on the large core?
 - Who should decide? HW vs. SW?
- Managing locality and load balancing can become difficult if

threads move between cores (transparently to software)
- Cores have different demands from shared resources

20

Accelerated Critical Sections (ACS)

  Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” APSLOS 2009.

21

A = compute()

LOCK X
 result = CS(A)
UNLOCK X

print result

Small Core Small Core Large Core
A = compute()

CSDONE Response

CSCALL Request
Send X, TPC,

STACK_PTR, CORE_ID

PUSH A
CSCALL X, Target PC

…

…

…
Acquire X
POP A
result = CS(A)
PUSH result
Release X
CSRET X

TPC:

POP result
print result

…

…

…

…

…
…
…

Waiting in
Critical Section
Request Buffer

(CSRB)

Advanced Caching

22

Topics in (Advanced) Caching
  Inclusion vs. exclusion, revisited
  Handling writes
  Instruction vs. data
  Cache replacement policies
  Cache performance
  Enhancements to improve cache performance
  Enabling multiple concurrent accesses
  Enabling high bandwidth caches

23

Readings
  Required:

  Hennessy and Patterson, Appendix C.1-C.3
  Jouppi, “Improving Direct-Mapped Cache Performance by the

Addition of a Small Fully-Associative Cache and Prefetch Buffers,”
ISCA 1990.

  Qureshi et al., “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.

  Recommended:
  Seznec, “A Case for Two-way Skewed Associative Caches,” ISCA

1993.
  Chilimbi et al., “Cache-conscious Structure Layout,” PLDI 1999.
  Chilimbi et al., “Cache-conscious Structure Definition,” PLDI

1999.

24

Inclusion vs. Exclusion in Multi-Level Caches

  Inclusive caches
  Every block existing in the first level also exists in the next level
  When fetching a block, place it in all cache levels. Tradeoffs:

-- Leads to duplication of data in the hierarchy: less efficient
-- Maintaining inclusion takes effort (forced evictions)
+ But makes cache coherence in multiprocessors easier

  Need to track other processors’ accesses only in the highest-level cache

  Exclusive caches
  The blocks contained in cache levels are mutually exclusive
  When evicting a block, do you write it back to the next level?
+ More efficient utilization of cache space
+ (Potentially) More flexibility in replacement/placement
-- More blocks/levels to keep track of to ensure cache coherence; takes effort

  Non-inclusive caches
  No guarantees for inclusion or exclusion: simpler design
  Most Intel processors

25

Maintaining Inclusion and Exclusion
  When does maintaining inclusion take effort?

  L1 block size < L2 block size
  L1 associativity > L2 associativity
  Prefetching into L2
  When a block is evicted from L2, need to evict all corresponding

subblocks from L1  keep 1 bit per subblock in L2
  When a block is inserted, make sure all higher levels also have it

  When does maintaining exclusion take effort?
  L1 block size != L2 block size
  Prefetching into any cache level
  When a block is inserted into any level, ensure it is not in any

other

26

Multi-level Caching in a Pipelined Design
  First-level caches (instruction and data)

  Decisions very much affected by cycle time
  Small, lower associativity

  Second-level caches
  Decisions need to balance hit rate and access latency
  Usually large and highly associative; latency not as important
  Serial tag and data access

  Serial vs. Parallel access of levels
  Serial: Second level cache accessed only if first-level misses
  Second level does not see the same accesses as the first

  First level acts as a filter. Can you exploit this fact to improve hit
rate in the second level cache?

27

