
15-740/18-740
Computer Architecture

Lecture 11: OoO Wrap-Up and Advanced Caching

Prof. Onur Mutlu
Carnegie Mellon University

Announcements
  Chuck Thacker (Microsoft Research) Seminar

  RARE: Rethinking Architectural Research and Education
  October 7, 4:30-5:30pm, GHC Rashid Auditorium

  Ben Zorn (Microsoft Research) Seminar
  Performance is Dead, Long Live Performance!
  October 8, 11am-noon, GHC 6115

  Guest lecture Friday
  Dr. Ben Zorn, Microsoft Research
  Fault Tolerant, Efficient, and Secure Runtimes

2

Announcements
  Homework 2 due

  October 10

  Midterm I
  October 11
  Sample exams online
  You can bring one letter-sized cheat sheet

3

Last Time …

4

  Full Window Stalls
  Runahead Execution
  Memory Level Parallelism
  Memory Latency Tolerance Techniques

  Caching
  Prefetching
  Multithreading
  Out-of-order execution

  Improving Runahead Execution
  Efficiency
  Dependent Cache Misses: Address-Value Delta Prediction

OoO/Runahead Readings
  Mutlu et al., “Runahead Execution: An Alternative to Very Large

Instruction Windows for Out-of-order Processors,” HPCA 2003.
  Mutlu et al., “Efficient Runahead Execution: Power-Efficient

Memory Latency Tolerance,” IEEE Micro Top Picks 2006.

  Zhou, Dual-Core Execution: “Building a Highly Scalable Single-
Thread Instruction Window,” PACT 2005.

  Chrysos and Emer, “Memory Dependence Prediction Using Store
Sets,” ISCA 1998.

5

Efficient Scaling of Instruction Window Size

  One of the major research issues in out of order execution

  How to achieve the benefits of a large window with a small
one (or in a simpler way)?

  Runahead execution?
  Upon L2 miss, checkpoint architectural state, speculatively

execute only for prefetching, re-execute when data ready

  Continual flow pipelines?
  Upon L2 miss, deallocate everything belonging to an L2 miss

dependent, reallocate/re-rename and re-execute upon data ready

  Dual-core execution?
  One core runs ahead and does not stall on L2 misses, feeds

another core that commits instructions

6

Runahead Execution (III)
  Advantages:

+ Very accurate prefetches for data/instructions (all cache levels)
 + Follows the program path
+ Uses the same thread context as main thread, no waste of context
+ Simple to implement, most of the hardware is already built in

  Disadvantages/Limitations:
-- Extra executed instructions
-- Limited by branch prediction accuracy
-- Cannot prefetch dependent cache misses. Solution?
-- Effectiveness limited by available “memory-level parallelism” (MLP)
-- Prefetch distance limited by memory latency

  Implemented in IBM POWER6, Sun “Rock”

7

8

Memory Latency Tolerance Techniques

  Caching [initially by Wilkes, 1965]
  Widely used, simple, effective, but inefficient, passive
  Not all applications/phases exhibit temporal or spatial locality

  Prefetching [initially in IBM 360/91, 1967]
  Works well for regular memory access patterns
  Prefetching irregular access patterns is difficult, inaccurate, and hardware-

intensive

  Multithreading [initially in CDC 6600, 1964]
  Works well if there are multiple threads
  Improving single thread performance using multithreading hardware is an

ongoing research effort

  Out-of-order execution [initially by Tomasulo, 1967]
  Tolerates cache misses that cannot be prefetched
  Requires extensive hardware resources for tolerating long latencies

Runahead and Dual Core Execution
  Runahead execution:

+ Approximates the MLP benefits of a large instruction window (no stalling on
L2 misses)

-- Window size limited by L2 miss latency (runahead ends on miss return)

  Dual-core execution:
+ Window size is not limited by L2 miss latency
-- Multiple cores used to execute the application

  Zhou, Dual-Core Execution: “Building a Highly Scalable Single-Thread
Instruction Window,” PACT 2005.

9

Easier to scale (FIFO)

Runahead and Dual Core Execution

10

Load 3 Hit

Load 2 Miss

Stall

Miss 1

Load 1 Miss

Saved Cycles

DCE: front processor

Compute

Load 1 Miss

Runahead

Load 2 Miss Load 2 Hit

Miss 1
Miss 2

Compute

Load 1 Hit
Runahead:

Load 3 Miss

Runahead
Saved
Cycles

Load 1 Miss

DCE: back processor

Compute

Compute Compute

Load 2 Hit

Miss 3
Miss 2

Load 3 Miss

Handling of Store-Load Dependencies
  A load’s dependence status is not known until all previous store

addresses are available.

  How does the OOO engine detect dependence of a load instruction on a
previous store?
  Option 1: Wait until all previous stores committed (no need to

check)
  Option 2: Keep a list of pending stores in a store buffer and check

whether load address matches a previous store address

  How does the OOO engine treat the scheduling of a load instruction wrt
previous stores?
  Option 1: Assume load independent of all previous stores
  Option 2: Assume load dependent on all previous stores
  Option 3: Predict the dependence of a load on an outstanding store

11

Store Buffer Design (I)
  An age ordered list of pending stores

  un-committed as well as committed but not yet propoagated
into the memory hierarchy

  Two purposes:
  Dependency detection
  Data forwarding (to dependent loads)

  Each entry contains
  Store address, store data, valid bits for address and data,

store size

  A scheduled load checks whether or not its address
overlaps with a previous store

12

Store Buffer Design (II)
  Why is it complex to design a store buffer?

  Content associative, age-ordered, range search on an
address range
  Check for overlap of [load EA, load EA + load size] and [store

EA, store EA + store size]
  EA: effective address

  A key limiter of instruction window scalability
  Simplifying store buffer design or alternative designs an

important topic of research

13

Memory Disambiguation (I)
  Option 1: Assume load independent of all previous stores

 + Simple and can be common case: no delay for independent loads
 -- Requires recovery and re-execution of load and dependents on misprediction

  Option 2: Assume load dependent on all previous stores
 + No need for recovery

 -- Too conservative: delays independent loads unnecessarily

  Option 3: Predict the dependence of a load on an
outstanding store
 + More accurate. Load store dependencies persist over time

 -- Still requires recovery/re-execution on misprediction
  Alpha 21264 : Initially assume load independent, delay loads found to be dependent
  Moshovos et al., “Dynamic speculation and synchronization of data dependences,”

ISCA 1997.
  Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998.

14

Memory Disambiguation (II)
  Chrysos and Emer, “Memory Dependence Prediction Using Store

Sets,” ISCA 1998.

  Predicting store-load dependencies important for performance
  Simple predictors (based on past history) can achieve most of

the potential performance

15

Speculative Execution and Data Coherence

  Speculatively executed loads can load a stale value in a
multiprocessor system
  The same address can be written by another processor before

the load is committed load and its dependents can use the
wrong value

  Solutions:
1. A store from another processor invalidates a load that loaded

the same address
 -- Stores of another processor check the load buffer

 -- How to handle dependent instructions? They are also
invalidated.

2. All loads re-executed at the time of retirement

16

Open Research Issues in OOO Execution (I)
  Performance with simplicity and energy-efficiency
  How to build scalable and energy-efficient instruction windows

  To tolerate very long memory latencies and to expose more memory
level parallelism

  Problems:
  How to scale or avoid scaling register files, store buffers
  How to supply useful instructions into a large window in the

presence of branches

  How to approximate the benefits of a large window
  MLP benefits vs. ILP benefits
  Can the compiler pack more misses (MLP) into a smaller window?

  How to approximate the benefits of OOO with in-order +
enhancements

17

Open Research Issues in OOO Execution (II)
  OOO in the presence of multi-core

  More problems: Memory system contention becomes a lot more
significant with multi-core
  OOO execution can overcome extra latencies due to contention
  How to preserve the benefits (e.g. MLP) of OOO in a multi-core system?

  More opportunity: Can we utilize multiple cores to perform more
scalable OOO execution?
  Improve single-thread performance using multiple cores

  Asymmetric multi-cores (ACMP): What should different cores look like in
a multi-core system?
  OOO essential to execute serial code portions

18

Open Research Issues in OOO Execution (III)
  Out-of-order execution in the presence of multi-core
  Powerful execution engines are needed to execute

  Single-threaded applications
  Serial sections of multithreaded applications (remember Amdahl’s law)
  Where single thread performance matters (e.g., transactions, game logic)
  Accelerate multithreaded applications (e.g., critical sections)

19

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Large
core

ACMP Approach

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

“Niagara” Approach

Large
core

Large
core

Large
core

Large
core

“Tile-Large” Approach

Asymmetric vs. Symmetric Cores
  Advantages of Asymmetric

+ Can provide better performance when thread parallelism is
limited

+ Can be more energy efficient
 + Schedule computation to the core type that can best execute it

  Disadvantages
- Need to design more than one type of core. Always?
- Scheduling becomes more complicated

 - What computation should be scheduled on the large core?
 - Who should decide? HW vs. SW?
- Managing locality and load balancing can become difficult if

threads move between cores (transparently to software)
- Cores have different demands from shared resources

20

Accelerated Critical Sections (ACS)

  Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” APSLOS 2009.

21

A = compute()

LOCK X
 result = CS(A)
UNLOCK X

print result

Small Core Small Core Large Core
A = compute()

CSDONE Response

CSCALL Request
Send X, TPC,

STACK_PTR, CORE_ID

PUSH A
CSCALL X, Target PC

…

…

…
Acquire X
POP A
result = CS(A)
PUSH result
Release X
CSRET X

TPC:

POP result
print result

…

…

…

…

…
…
…

Waiting in
Critical Section
Request Buffer

(CSRB)

Advanced Caching

22

Topics in (Advanced) Caching
  Inclusion vs. exclusion, revisited
  Handling writes
  Instruction vs. data
  Cache replacement policies
  Cache performance
  Enhancements to improve cache performance
  Enabling multiple concurrent accesses
  Enabling high bandwidth caches

23

Readings
  Required:

  Hennessy and Patterson, Appendix C.1-C.3
  Jouppi, “Improving Direct-Mapped Cache Performance by the

Addition of a Small Fully-Associative Cache and Prefetch Buffers,”
ISCA 1990.

  Qureshi et al., “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.

  Recommended:
  Seznec, “A Case for Two-way Skewed Associative Caches,” ISCA

1993.
  Chilimbi et al., “Cache-conscious Structure Layout,” PLDI 1999.
  Chilimbi et al., “Cache-conscious Structure Definition,” PLDI

1999.

24

Inclusion vs. Exclusion in Multi-Level Caches

  Inclusive caches
  Every block existing in the first level also exists in the next level
  When fetching a block, place it in all cache levels. Tradeoffs:

-- Leads to duplication of data in the hierarchy: less efficient
-- Maintaining inclusion takes effort (forced evictions)
+ But makes cache coherence in multiprocessors easier

  Need to track other processors’ accesses only in the highest-level cache

  Exclusive caches
  The blocks contained in cache levels are mutually exclusive
  When evicting a block, do you write it back to the next level?
+ More efficient utilization of cache space
+ (Potentially) More flexibility in replacement/placement
-- More blocks/levels to keep track of to ensure cache coherence; takes effort

  Non-inclusive caches
  No guarantees for inclusion or exclusion: simpler design
  Most Intel processors

25

Maintaining Inclusion and Exclusion
  When does maintaining inclusion take effort?

  L1 block size < L2 block size
  L1 associativity > L2 associativity
  Prefetching into L2
  When a block is evicted from L2, need to evict all corresponding

subblocks from L1 keep 1 bit per subblock in L2
  When a block is inserted, make sure all higher levels also have it

  When does maintaining exclusion take effort?
  L1 block size != L2 block size
  Prefetching into any cache level
  When a block is inserted into any level, ensure it is not in any

other

26

Multi-level Caching in a Pipelined Design
  First-level caches (instruction and data)

  Decisions very much affected by cycle time
  Small, lower associativity

  Second-level caches
  Decisions need to balance hit rate and access latency
  Usually large and highly associative; latency not as important
  Serial tag and data access

  Serial vs. Parallel access of levels
  Serial: Second level cache accessed only if first-level misses
  Second level does not see the same accesses as the first

  First level acts as a filter. Can you exploit this fact to improve hit
rate in the second level cache?

27

