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Announcements 
  Chuck Thacker (Microsoft Research) Seminar 

  RARE: Rethinking Architectural Research and Education 
  October 7, 4:30-5:30pm, GHC Rashid Auditorium 

  Ben Zorn (Microsoft Research) Seminar 
  Performance is Dead, Long Live Performance! 
  October 8, 11am-noon, GHC 6115 

  Guest lecture Friday 
  Dr. Ben Zorn, Microsoft Research 
  Fault Tolerant, Efficient, and Secure Runtimes 
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Announcements 
  Homework 2 due 

  October 10 

  Midterm I 
  October 11 
  Sample exams online 
  You can bring one letter-sized cheat sheet 
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Last Time … 
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  Full Window Stalls 
  Runahead Execution 
  Memory Level Parallelism 
  Memory Latency Tolerance Techniques 

  Caching 
  Prefetching 
  Multithreading 
  Out-of-order execution 

  Improving Runahead Execution 
  Efficiency 
  Dependent Cache Misses: Address-Value Delta Prediction 



OoO/Runahead Readings 
  Mutlu et al., “Runahead Execution: An Alternative to Very Large 

Instruction Windows for Out-of-order Processors,” HPCA 2003. 
  Mutlu et al., “Efficient Runahead Execution: Power-Efficient 

Memory Latency Tolerance,” IEEE Micro Top Picks 2006. 

  Zhou, Dual-Core Execution: “Building a Highly Scalable Single-
Thread Instruction Window,” PACT 2005. 

  Chrysos and Emer, “Memory Dependence Prediction Using Store 
Sets,” ISCA 1998. 
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Efficient Scaling of Instruction Window Size 

  One of the major research issues in out of order execution 

  How to achieve the benefits of a large window with a small 
one (or in a simpler way)? 

  Runahead execution? 
  Upon L2 miss, checkpoint architectural state, speculatively 

execute only for prefetching, re-execute when data ready 

  Continual flow pipelines? 
  Upon L2 miss, deallocate everything belonging to an L2 miss 

dependent, reallocate/re-rename and re-execute upon data ready 

  Dual-core execution? 
  One core runs ahead and does not stall on L2 misses, feeds 

another core that commits instructions  
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Runahead Execution (III) 
  Advantages: 

+ Very accurate prefetches for data/instructions (all cache levels) 
    + Follows the program path 
+ Uses the same thread context as main thread, no waste of context 
+ Simple to implement, most of the hardware is already built in 

  Disadvantages/Limitations: 
-- Extra executed instructions 
-- Limited by branch prediction accuracy 
-- Cannot prefetch dependent cache misses. Solution? 
-- Effectiveness limited by available “memory-level parallelism” (MLP) 
-- Prefetch distance limited by memory latency 

   Implemented in IBM POWER6, Sun “Rock” 
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Memory Latency Tolerance Techniques 

  Caching [initially by Wilkes, 1965] 
  Widely used, simple, effective, but inefficient, passive 
  Not all applications/phases exhibit temporal or spatial locality 

  Prefetching [initially in IBM 360/91, 1967] 
  Works well for regular memory access patterns 
  Prefetching irregular access patterns is difficult, inaccurate, and hardware-

intensive 

  Multithreading [initially in CDC 6600, 1964] 
  Works well if there are multiple threads 
  Improving single thread performance using multithreading hardware is an 

ongoing research effort 

  Out-of-order execution [initially by Tomasulo, 1967] 
  Tolerates cache misses that cannot be prefetched 
  Requires extensive hardware resources for tolerating long latencies 



Runahead and Dual Core Execution 
  Runahead execution:  

+ Approximates the MLP benefits of a large instruction window (no stalling on 
L2 misses) 

-- Window size limited by L2 miss latency (runahead ends on miss return) 

  Dual-core execution:  
+ Window size is not limited by L2 miss latency 
-- Multiple cores used to execute the application 

  Zhou, Dual-Core Execution: “Building a Highly Scalable Single-Thread 
Instruction Window,” PACT 2005. 
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Easier to scale (FIFO) 



Runahead and Dual Core Execution 
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Handling of Store-Load Dependencies 
  A load’s dependence status is not known until all previous store 

addresses are available.  

  How does the OOO engine detect dependence of a load instruction on a 
previous store? 
  Option 1: Wait until all previous stores committed (no need to 

check)  
  Option 2: Keep a list of pending stores in a store buffer and check 

whether load address matches a previous store address 

  How does the OOO engine treat the scheduling of a load instruction wrt 
previous stores? 
  Option 1: Assume load independent of all previous stores 
  Option 2: Assume load dependent on all previous stores 
  Option 3: Predict the dependence of a load on an outstanding store 

11 



Store Buffer Design (I) 
  An age ordered list of pending stores  

  un-committed as well as committed but not yet propoagated 
into the memory hierarchy 

  Two purposes: 
  Dependency detection 
  Data forwarding (to dependent loads) 

  Each entry contains 
  Store address, store data, valid bits for address and data, 

store size 

  A scheduled load checks whether or not its address 
overlaps with a previous store 
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Store Buffer Design (II) 
  Why is it complex to design a store buffer? 

  Content associative, age-ordered, range search on an 
address range  
  Check for overlap of [load EA, load EA + load size] and [store 

EA, store EA + store size] 
  EA: effective address 

  A key limiter of instruction window scalability 
  Simplifying store buffer design or alternative designs an 

important topic of research 
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Memory Disambiguation (I) 
  Option 1: Assume load independent of all previous stores 

 + Simple and can be common case: no delay for independent loads 
 -- Requires recovery and re-execution of load and dependents on misprediction 

  Option 2: Assume load dependent on all previous stores 
 + No need for recovery  

    -- Too conservative: delays independent loads unnecessarily 

  Option 3: Predict the dependence of a load on an 
outstanding store 
 + More accurate. Load store dependencies persist over time 

 -- Still requires recovery/re-execution on misprediction 
  Alpha 21264 : Initially assume load independent, delay loads found to be dependent  
  Moshovos et al., “Dynamic speculation and synchronization of data dependences,” 

ISCA 1997. 
  Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998. 
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Memory Disambiguation (II) 
  Chrysos and Emer, “Memory Dependence Prediction Using Store 

Sets,” ISCA 1998. 

  Predicting store-load dependencies important for performance 
  Simple predictors (based on past history) can achieve most of 

the potential performance  
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Speculative Execution and Data Coherence  

  Speculatively executed loads can load a stale value in a 
multiprocessor system 
  The same address can be written by another processor before 

the load is committed  load and its dependents can use the 
wrong value 

  Solutions: 
1. A store from another processor invalidates a load that loaded 

the same address  
  -- Stores of another processor check the load buffer 

 -- How to handle dependent instructions? They are also 
invalidated. 

2. All loads re-executed at the time of retirement 
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Open Research Issues in OOO Execution (I) 
  Performance with simplicity and energy-efficiency 
  How to build scalable and energy-efficient instruction windows 

  To tolerate very long memory latencies and to expose more memory 
level parallelism 

  Problems:  
  How to scale or avoid scaling register files, store buffers 
  How to supply useful instructions into a large window in the 

presence of branches 

  How to approximate the benefits of a large window 
  MLP benefits vs. ILP benefits 
  Can the compiler pack more misses (MLP) into a smaller window? 

  How to approximate the benefits of OOO with in-order + 
enhancements 
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Open Research Issues in OOO Execution (II) 
  OOO in the presence of multi-core  

  More problems: Memory system contention becomes a lot more 
significant with multi-core 
  OOO execution can overcome extra latencies due to contention 
  How to preserve the benefits (e.g. MLP) of OOO in a multi-core system? 

  More opportunity: Can we utilize multiple cores to perform more 
scalable OOO execution? 
  Improve single-thread performance using multiple cores 

  Asymmetric multi-cores (ACMP): What should different cores look like in 
a multi-core system?  
  OOO essential to execute serial code portions 
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Open Research Issues in OOO Execution (III) 
  Out-of-order execution in the presence of multi-core 
  Powerful execution engines are needed to execute 

  Single-threaded applications 
  Serial sections of multithreaded applications (remember Amdahl’s law) 
  Where single thread performance matters (e.g., transactions, game logic) 
  Accelerate multithreaded applications (e.g., critical sections) 
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Asymmetric vs. Symmetric Cores 
  Advantages of Asymmetric 

+ Can provide better performance when thread parallelism is 
limited 

+ Can be more energy efficient 
 + Schedule computation to the core type that can best execute it 

  Disadvantages 
- Need to design more than one type of core. Always? 
- Scheduling becomes more complicated 

 - What computation should be scheduled on the large core? 
    - Who should decide? HW vs. SW? 
- Managing locality and load balancing can become difficult if 

threads move between cores (transparently to software) 
- Cores have different demands from shared resources 
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Accelerated Critical Sections (ACS) 

  Suleman et al., “Accelerating Critical Section Execution with 
Asymmetric Multi-Core Architectures,” APSLOS 2009. 
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A = compute() 

LOCK X 
      result = CS(A) 
UNLOCK X 

print result 

Small Core Small Core Large Core 
A = compute() 

CSDONE Response 

CSCALL Request 
Send X, TPC, 

STACK_PTR, CORE_ID 

PUSH A 
CSCALL X, Target PC 

…

…

…
Acquire X 
POP A 
result  = CS(A) 
PUSH result 
Release X 
CSRET X 

TPC:  

POP result 
print result 

…

…

…

…

… 
… 
… 

Waiting in 
Critical Section 
Request Buffer 

(CSRB) 



Advanced Caching 
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Topics in (Advanced) Caching 
  Inclusion vs. exclusion, revisited 
  Handling writes 
  Instruction vs. data 
  Cache replacement policies 
  Cache performance 
  Enhancements to improve cache performance 
  Enabling multiple concurrent accesses 
  Enabling high bandwidth caches 
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Readings 
  Required: 

  Hennessy and Patterson, Appendix C.1-C.3 
  Jouppi, “Improving Direct-Mapped Cache Performance by the 

Addition of a Small Fully-Associative Cache and Prefetch Buffers,” 
ISCA 1990. 

  Qureshi et al., “A Case for MLP-Aware Cache Replacement,“ 
ISCA 2006. 

  Recommended: 
  Seznec, “A Case for Two-way Skewed Associative Caches,” ISCA 

1993. 
  Chilimbi et al., “Cache-conscious Structure Layout,” PLDI 1999. 
  Chilimbi et al., “Cache-conscious Structure Definition,” PLDI 

1999. 
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Inclusion vs. Exclusion in Multi-Level Caches 

  Inclusive caches 
  Every block existing in the first level also exists in the next level 
  When fetching a block, place it in all cache levels. Tradeoffs: 

-- Leads to duplication of data in the hierarchy: less efficient 
-- Maintaining inclusion takes effort (forced evictions) 
+ But makes cache coherence in multiprocessors easier 

  Need to track other processors’ accesses only in the highest-level cache 

  Exclusive caches 
  The blocks contained in cache levels are mutually exclusive 
  When evicting a block, do you write it back to the next level? 
+ More efficient utilization of cache space 
+ (Potentially) More flexibility in replacement/placement 
-- More blocks/levels to keep track of to ensure cache coherence; takes effort 

  Non-inclusive caches 
  No guarantees for inclusion or exclusion: simpler design 
  Most Intel processors 
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Maintaining Inclusion and Exclusion 
  When does maintaining inclusion take effort? 

  L1 block size < L2 block size 
  L1 associativity > L2 associativity 
  Prefetching into L2 
  When a block is evicted from L2, need to evict all corresponding 

subblocks from L1  keep 1 bit per subblock in L2 
  When a block is inserted, make sure all higher levels also have it 

  When does maintaining exclusion take effort? 
  L1 block size != L2 block size 
  Prefetching into any cache level 
  When a block is inserted into any level, ensure it is not in any 

other 
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Multi-level Caching in a Pipelined Design 
  First-level caches (instruction and data) 

  Decisions very much affected by cycle time 
  Small, lower associativity 

   Second-level caches 
  Decisions need to balance hit rate and access latency 
  Usually large and highly associative; latency not as important 
  Serial tag and data access 

  Serial vs. Parallel access of levels 
  Serial: Second level cache accessed only if first-level misses 
  Second level does not see the same accesses as the first 

  First level acts as a filter. Can you exploit this fact to improve hit 
rate in the second level cache? 
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