15-740/18-740

Computer Architecture
Lecture 11: OoO Wrap-Up and Advanced Caching

Prof. Onur Mutlu
Carnegie Mellon University

Announcements

Chuck Thacker (Microsoft Research) Seminar

o RARE: Rethinking Architectural Research and Education
o October 7, 4:30-5:30pm, GHC Rashid Auditorium

Ben Zorn (Microsoft Research) Seminar
o Performance is Dead, Long Live Performance!
o October 8, 11am-noon, GHC 6115

Guest lecture Friday
o Dr. Ben Zorn, Microsoft Research
o Fault Tolerant, Efficient, and Secure Runtimes

Announcements

Homework 2 due
o October 10

Midterm I

o October 11
o Sample exams online
2 You can bring one letter-sized cheat sheet

Last Time ...

Full Window Stalls

Runahead Execution

Memory Level Parallelism

Memory Latency Tolerance Techniques
o Caching

o Prefetching

o Multithreading

o Out-of-order execution

Improving Runahead Execution

o Efficiency
o Dependent Cache Misses: Address-Value Delta Prediction

Oo0O/Runahead Readings

= Mutlu et al., "Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.

= Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” IEEE Micro Top Picks 2006.

= Zhou, Dual-Core Execution: “Building a Highly Scalable Single-
Thread Instruction Window,” PACT 2005.

= Chrysos and Emer, "Memory Dependence Prediction Using Store
Sets,” ISCA 1998.

Etticient Scaling of Instruction Window Size

One of the major research issues in out of order execution

How to achieve the benefits of a large window with a small
one (or in a simpler way)?

o Runahead execution?

Upon L2 miss, checkpoint architectural state, speculatively
execute only for prefetching, re-execute when data ready

a Continual flow pipelines?

Upon L2 miss, deallocate everything belonging to an L2 miss
dependent, reallocate/re-rename and re-execute upon data ready

o Dual-core execution?

One core runs ahead and does not stall on L2 misses, feeds
another core that commits instructions

Runahead Execution (I11)

Advantages:
+ Very accurate prefetches for data/instructions (all cache levels)
+ Follows the program path
+ Uses the same thread context as main thread, no waste of context
+ Simple to implement, most of the hardware is already built in

Disadvantages/Limitations:

-- Extra executed instructions

-- Limited by branch prediction accuracy

-- Cannot prefetch dependent cache misses. Solution?

-- Effectiveness limited by available “memory-level parallelism” (MLP)
-- Prefetch distance limited by memory latency

Implemented in IBM POWERS6, Sun “Rock”

Memory Latency Tolerance Techniques

Caching [initially by Wilkes, 1965]
o Widely used, simple, effective, but inefficient, passive
o Not all applications/phases exhibit temporal or spatial locality

Prefetching [initially in IBM 360/91, 1967]
o Works well for reqular memory access patterns

o Prefetching irregular access patterns is difficult, inaccurate, and hardware-
intensive

Multithreading [initially in CDC 6600, 1964]
o Works well if there are multiple threads

o Improving single thread performance using multithreading hardware is an
ongoing research effort

Out-of-order execution [initially by Tomasulo, 1967]
o Tolerates cache misses that cannot be prefetched
o Requires extensive hardware resources for tolerating long latencies

Runahead and Dual Core Execution

Runahead execution:

+ Approximates the MLP benefits of a large instruction window (no stalling on
L2 misses)

-- Window size limited by L2 miss latency (runahead ends on miss return)
Dual-core execution:

+ Window size is not limited by L2 miss latency

-- Multiple cores used to execute the application

(.:j)zy""“v-.l"”—\:.7"_',‘{]:' nrocessine
|
superscalar Jfront processor i
DM e | - Easier to scale (FIFO)
D _

: j:’.“".»-‘ ‘} .“‘

: APV D

E (. s UPEISCe | Ferre

! 2yl ol

i Z)('/(/C]J;’f_)(t’s5();' OIC

|

Zhou, Dual-Core Execution: “Building a Highly Scalable Single-Thread
Instruction Window,” PACT 2005.

Runahead and Dual Core Execution

Runahead: :
Load 1 Miss Load 2 Miss Load 1 Hit Load 2 Hit
< >:
M- 1 .I.I l.I.I l.I.I l.I.I.I.I l.l.l l.l.l l‘ I E Saved
ISS II%II%II%IIII.-II.-II.- - CyCIeS

Miss 2 Rttt Load 3 Miss

DCE: front processor
Load 1 Miss Load 2 [Aiss Load 3 Miss

Miss 1

DCE: back processor Load. 2 Hit
Load 1 Miss l

Saved Cycles

10

Handling of Store-l.oad Dependencies

A load’s dependence status is not known until all previous store
addresses are available.

How does the OO0 engine detect dependence of a load instruction on a
previous store?

o Option 1: Wait until all previous stores committed (no need to
check)

o Option 2: Keep a list of pending stores in a store buffer and check
whether load address matches a previous store address

How does the OOO engine treat the scheduling of a load instruction wrt
previous stores?

o Option 1: Assume load independent of all previous stores
o Option 2: Assume load dependent on all previous stores
o Option 3: Predict the dependence of a load on an outstanding store

11

Store Buffer Design (I)

An age ordered list of pending stores

o un-committed as well as committed but not yet propoagated
into the memory hierarchy

TwO purposes:
o Dependency detection
o Data forwarding (to dependent loads)

Each entry contains

o Store address, store data, valid bits for address and data,
store size

A scheduled load checks whether or not its address
overlaps with a previous store

12

Store Buffer Design (II)

Why is it complex to design a store buffer?

Content associative, age-ordered, range search on an
address range

o Check for overlap of [load EA, load EA + load size] and [store
EA, store EA + store size]

EA: effective address

A key limiter of instruction window scalability

o Simplifying store buffer design or alternative designs an
important topic of research

13

Memory Disambiguation (I)

Option 1: Assume load independent of all previous stores

+ Simple and can be common case: no delay for independent loads

-- Requires recovery and re-execution of load and dependents on misprediction

Option 2: Assume load dependent on all previous stores

+ No need for recovery
-- Too conservative: delays independent loads unnecessarily

Option 3: Predict the dependence of a load on an
outstanding store

+ More accurate. Load store dependencies persist over time

-- Still requires recovery/re-execution on misprediction
o Alpha 21264 : Initially assume load independent, delay loads found to be dependent

o Moshovos et al., "Dynamic speculation and synchronization of data dependences,”
ISCA 1997.

o Chrysos and Emer, *Memory Dependence Prediction Using Store Sets,” ISCA 1998.

14

Memory Disambiguation (II)

Chrysos and Emer, "Memory Dependence Prediction Using Store
Sets,” ISCA 1998.

IPC
O = NWHA G O

jjpeg
88ksim
mgrid SR
perl prim
swim
tomcatv
turb3d P
vortex
wave
xlisp (TR

compress Eraae

‘ano speculaﬁbﬁ B naive spéculatiOn [} berfect |

Predicting store-load dependencies important for performance

Simple predictors (based on past history) can achieve most of
the potential performance

15

Speculative Execution and Data Coherence

Speculatively executed loads can load a stale value in a
multiprocessor system

o The same address can be written by another processor before
the load is committed - load and its dependents can use the
wrong value

Solutions:

1. A store from another processor invalidates a load that loaded
the same address

-- Stores of another processor check the load buffer

-- How to handle dependent instructions? They are also
invalidated.

2. All loads re-executed at the time of retirement

16

Open Research Issues in OOO Execution (I)

Performance with simplicity and energy-efficiency
How to build scalable and energy-efficient instruction windows

o To tolerate very long memory latencies and to expose more memory
level parallelism

o Problems:
How to scale or avoid scaling register files, store buffers

How to supply useful instructions into a large window in the
presence of branches

How to approximate the benefits of a large window

o MLP benefits vs. ILP benefits
o Can the compiler pack more misses (MLP) into a smaller window?

How to approximate the benefits of OOO with in-order +

enhancements
17

Open Research Issues in OOO Execution (II)

OO0OO in the presence of multi-core

More problems: Memory system contention becomes a lot more
significant with multi-core

o 00O execution can overcome extra latencies due to contention
o How to preserve the benefits (e.g. MLP) of OOO in a multi-core system?

More opportunity: Can we utilize multiple cores to perform more
scalable OO0 execution?

o Improve single-thread performance using multiple cores

Asymmetric multi-cores (ACMP): What should different cores look like in
a multi-core system?

o 0OO0OQ essential to execute serial code portions

18

Open Research Issues in OOO Execution (I111)

Out-of-order execution in the presence of multi-core
Powerful execution engines are needed to execute

o Single-threaded applications
o Serial sections of multithreaded applications (remember Amdahl’s law)
o Where single thread performance matters (e.g., transactions, game logic)
o Accelerate multithreaded applications (e.g., critical sections)
Niagara |Niagara [Niagara [Niagara Niagara |Niagara
-like -like -like -like -like -like
Large Large core | core | core | core Large core | core
core core Niagara [Niagara |Niagara |Niagara core Niagara [Niagara
-like -like -like -like -like -like
core | core | core | core core | core
Niagara |Niagara [Niagara [Niagara Niagara |Niagara [Niagara [Niagara
-like -like -like -like -like -like -like -like
Large Large core core core core core core core core
core core Niagara [Niagara |Niagara |Niagara Niagara [Niagara |Niagara |Niagara
-like -like -like -like -like -like -like -like
core | core | core | core core | core | core | core
“Tile-Large” Approach “Niagara” Approach ACMP Approach

19

Asymmetric vs. Symmetric Cores

Advantages of Asymmetric

+ Can provide better performance when thread parallelism is
limited

+ Can be more energy efficient
+ Schedule computation to the core type that can best execute it

Disadvantages

- Need to design more than one type of core. Always?

- Scheduling becomes more complicated
- What computation should be scheduled on the large core?
- Who should decide? HW vs. SW?

- Managing locality and load balancing can become difficult if
threads move between cores (transparently to software)

- Cores have different demands from shared resources

20

Accelerated Critical Sections (ACS)

Small Core

A = compute()
LOCK X

result = CS(A)
UNLOCK X

print result

Small Core Large Core

A = compute()
PUSH A
CSCALL X, Target PC

CSCALL Request

Waiting in
Send X, TPC, —> i, \
STACK PTR, CORE ID Critical Section

- - Request Buffer

(CSRB)
TPC: Acquire X

POP A

result = CS(A)
PUSH result
Release X
CSRET X

o

CSDONE Response

POP result
print result

Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” APSLOS 2009.

21

Advanced Caching

Topics in (Advanced) Caching

Inclusion vs. exclusion, revisited

Handling writes

Instruction vs. data

Cache replacement policies

Cache performance

Enhancements to improve cache performance
Enabling multiple concurrent accesses
Enabling high bandwidth caches

23

Readings

Required:
o Hennessy and Patterson, Appendix C.1-C.3

a Jouppi, “Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully-Associative Cache and Prefetch Buffers,”
ISCA 1990.

a Qureshi et al., "A Case for MLP-Aware Cache Replacement,”
ISCA 2006.

Recommended:

a Seznec, “A Case for Two-way Skewed Associative Caches,” ISCA
1993.

o Chilimbi et al., "Cache-conscious Structure Layout,” PLDI 1999.

a Chilimbi et al., “"Cache-conscious Structure Definition,” PLDI
1999.

24

Inclusion vs. Exclusion in Multi-I.evel Caches

Inclusive caches
o Every block existing in the first level also exists in the next level
o When fetching a block, place it in all cache levels. Tradeoffs:

-- Leads to duplication of data in the hierarchy: less efficient

-- Maintaining inclusion takes effort (forced evictions)

+ But makes cache coherence in multiprocessors easier
0 Need to track other processors’ accesses only in the highest-level cache

Exclusive caches

o The blocks contained in cache levels are mutually exclusive

o When evicting a block, do you write it back to the next level?

+ More efficient utilization of cache space

+ (Potentially) More flexibility in replacement/placement

-- More blocks/levels to keep track of to ensure cache coherence; takes effort

Non-inclusive caches
o No guarantees for inclusion or exclusion: simpler design

o Most Intel processors
25

Maintaining Inclusion and Exclusion

When does maintaining inclusion take effort?
L1 block size < L2 block size

L1 associativity > L2 associativity

Prefetching into L2

When a block is evicted from L2, need to evict all corresponding
subblocks from L1 = keep 1 bit per subblock in L2

o When a block is inserted, make sure all higher levels also have it

L O 0O O

When does maintaining exclusion take effort?
o L1 block size '= L2 block size
o Prefetching into any cache level

o When a block is inserted into any level, ensure it is not in any
other

26

Multi-level Caching in a Pipelined Design

First-level caches (instruction and data)

o Decisions very much affected by cycle time

o Small, lower associativity

Second-level caches

o Decisions need to balance hit rate and access latency

o Usually large and highly associative; latency not as important
o Serial tag and data access

Serial vs. Parallel access of levels
o Serial: Second level cache accessed only if first-level misses

o Second level does not see the same accesses as the first

First level acts as a filter. Can you exploit this fact to improve hit
rate in the second level cache?

27

