
Advanced Computer Architecture Spring 2009, O. Mutlu

1

18-741 Project Statement (Spring 2009)

Important Dates

Proposal due: Friday, February 11, 2009; 4:30pm

Milestone 1 report due: Tuesday, March 3, 2009, 4:30pm

Milestone 1 meeting: March 4-6, 2009 (meeting with TA’s at scheduled times)

Milestone 2 report due: Tuesday, March 31st, 2009, 4:30pm

Milestone 2 meeting week: April 1-3, 2009 (meeting with Prof. Mutlu or TA’s)

Final presentation/posters: April 27 and April 29 (location and time TBD)

Final report due: Wednesday, April 29, 2009 4:30pm

All reports and proposals should be submitted via blackboard as pdf files.

Introduction

In this project, you will improve the state-of-the-art and understanding in computer architecture

by developing new architecture techniques or designing extensions to techniques presented in

class or a recent architecture conference. The purpose of this project is to propose, conduct, and

generate publication-quality research and to improve the state of the art. The project report will be

in the form of a research article similar to those we have been reading and discussing in class.

High-quality projects and reports will likely have a chance to be submitted to a top computer

architecture conference (ISCA, MICRO, ASPLOS, HPCA) or systems (OSDI, SOSP, USENIX,

USENIX Security, DSN) conference.

The project will account for 40% of your final course grade. It will be graded out of 100 points:

- proposal (10 points)

- milestone 1 (5 points)

- milestone 2 (5 points)

- final report (70 points)

- final poster/presentation (10 points)

Advice

When in doubt, meet with us during appointment or office hours. Conducting research is a time-

consuming experience and choosing a topic you are excited about is an important part of it.

Carefully choose your topic and write up your proposal after doing extensive literature search and

consulting with the TAs and me.

Proposal

The proposal is a written two-page document including the following:

1. Problem definition and motivation: What is the problem the intended project is trying to

solve? Why is it important and/or interesting?

2. A brief survey of related work: What is the most relevant previous research that was

published on the problem? Why previous research did did not solve this problem (fully)

or why could previous research be (possibly) wrong or incomplete?

Advanced Computer Architecture Spring 2009, O. Mutlu

2

Please explain in detail how this prior work relates to your proposed work. The CALCM

web page (www.ece.cmu.edu/CALCM) has links to online IEEE and ACM proceedings.

Conferences that primarily focus on architecture research are ISCA, ASPLOS, MICRO,

HPCA, SIGMETRICS, ISLPED, and DSN). Other relevant systems conferences are

OSDI, SOSP, USENIX (all variants). You can search the online pages and/or contact us

for pointers. You will also find the World Wide Computer Architecture web page

www.cs.wisc.edu/~arch/www is a good source of information.

3. A brief description of how you plan to solve the problem (This does not have to be

complete, but you are encouraged to provide initial ideas which can later change during

the course of your discovery and experimentation)

4. A description of your experimental methodology/setup including modifications you plan

to make to the simulation/evaluation environment of your choice.

5. A brief research plan: What is your goal? What are the steps you will take to achieve

your goal? What do you expect to see in each Milestone (1 and 2)? How would you

change your plan if your hypotheses are not supported as you gather intuition and

experimental data on the problem?

Milestone 1

This milestone will ensure that you have successfully brought up the infrastructure you

will need for your project. Furthermore, you must demonstrate the problem your project

attacks using this experimental infrastructure. For example, you might need to bring up

a simulation framework and reproduce some baseline case or prior results as a starting

point for your own work. This milestone consists of two parts:

1. You will hand in a two-page (double-column, single-spaced) writeup describing:

a. The current status of the project (what have you done so far)

b. The infrastructure you are using for the project

c. The demonstration of the research problem you are planning to solve

using the infrastructure

d. Any changes to your research/evaluation plans you outlined in the

proposal (must be justified with data and analyses)

2. You will make an appointment to meet with one of us (faculty or TA team) to

present your own results (possibly replicated) motivating your project and explain

how your infrastructure is suitable for your project. The appointments are made

by filling out an appointment sheet in class the week prior to the meetings.

NOTE: The purpose of this milestone is not for you to explain to us why you are having

difficulty bringing up your infrastructure. If you encounter unexpected difficulties please

notify us early on so we can help you work through them.

Milestone 2

The purpose of this milestone is to ensure that you are well ahead in executing your

research plan. The milestone consists of two parts:

1. You will hand in a two-page (double-column, single-spaced) write-up describing:

a. The preliminary results you have obtained

Advanced Computer Architecture Spring 2009, O. Mutlu

3

b. Your understanding of the reliability and validity of these preliminary

results

c. Based on the results, what are your plans for the rest of the project? What

kind of analyses will you conduct? What kind of techniques you will

develop and evaluate? How and why did your original research plan

change (if it did)? (Again, changes must be backed up with data and

analyses)

2. You will make an appointment to meet with one of us (faculty or TA team) to go

over the project status. The appointments are made by filling out an appointment

sheet in class the week prior to the meetings.

Final Report

You will hand in a report in the conference submission style. The report should include

the following:

- A descriptive title and author names

- Abstract

- Introduction (Problem and Motivation)

- Related Work and its Shortcomings

- Description of the Techniques (designed and evaluated)

- Evaluation Methodology

- Results and Analyses

- Conclusion/Summary

- Lessons Learned, Shortcomings, and Future Work

- Acknowledgements (if any)

- References (cited throughout the paper)

The page limit is 10 double-column, single-spaced pages. Make sure your document is

spell-checked and grammatically sound.

Advice: The key characteristic that distinguishes a “good” research paper from a “bad”

one is the existence of “clearly explained insight.” I expect the highest quality of writing

as well as clear descriptions of the ideas and techniques from the final report. Even if

your research results in a “negative result” (not all research ideas pan out to be useful – in

fact few of them do) writing it in a very insightful and intuitive manner can make the

research very powerful and important. So, please do spend a significant amount of time

and effort to ensure that your report is insightful and explains the ideas very clearly

(possibly with examples and good analogies).

Final Presentation/Poster

In the last week of classes we will hold poster or presentation session(s) in which teams

get to present their projects and findings orally. More information on this will follow.

Advanced Computer Architecture Spring 2009, O. Mutlu

4

Best Projects

The top projects in class will be selected for submission to a computer systems

conference for publication. In the past a number of papers from 741/742 have become

full-blown research projects including the SMARTS paper on simulation sampling that

appeared in ISCA 2003, and the Spatial Pattern Prediction paper that appeared in HPCA

2004, and subsequently in ISCA 2006.

Evaluation Techniques and Infrastructures

You are welcome to use any infrastructure, tools, and benchmarks/applications that

satisfy the needs of your project However, you will need to justify why you use the

infrastructure you choose. There are many simulation infrastructures available to perform

experimental computer architecture research. Some of the tools you might find useful are:

- Flexus (contains timing models)

- Simplescalar (contains timing models)

- PTLSim (contains timing models)

- GEMS (contains timing models)

- Pin dynamic binary instrumentation tool (no timing models)

- Simics (very crude timing models)

- Garnet (interconnection network simulator)

These and other simulators can be found at http://www.cs.wisc.edu/arch/www/tools.html

Note that your proposed project does not have to use a simulator for evaluation. You can

design real hardware, FPGA implementations, or even provide theoretical analyses. You

only need to convincingly justify that your methodology is valid and satisfactory for the

purposes of the project you propose.

Suggested (Sample) Research Project Topics

Many of the project topics discussed below are new ideas and are strictly

confidential. Please do not distribute this list. If you make strides in any of these topics

(and if you write it up well), you will likely be able to publish a good paper in a top

computer architecture or systems conference.

While I provide this list for your benefit, I am open to any ideas you might have for a

research project. In fact, you are encouraged to do a project that combines computer

architecture with your area of expertise/strength (e.g., machine learning, theory,

databases, etc). Please get in touch with me to discuss your proposal and ideas early if

you are considering doing another architecture-related research project not listed here. I

am open to project ideas in compilers, dynamic optimization, operating systems, parallel

programming, circuits, and logic design as long as the ideas have interactions with

computer architecture. I am also very open to entertaining ideas related to those you have

http://www.cs.wisc.edu/arch/www/tools.html

Advanced Computer Architecture Spring 2009, O. Mutlu

5

been working on in your existing research areas, as long as you can show relationship to

computer architecture.

1. QoS and Fairness in Bufferless Interconnection Networks: Bufferless on-chip

networks have been proposed to save energy and area consumption due to large buffers

used in routing [see Moscibroda and Mutlu tech report and ISCA 2009 submission] (ask

me for copies). These networks use “deflection routing” to deflect network packets

instead of buffering them when there is contention for a particular output port. Because

these networks do not make use of per-flow buffers, they cannot distinguish (or so far

have not distinguished) between different flows. One important open problem that needs

to be solved to make such networks viable is to design efficient techniques that can

prioritize different flows and ensure bandwidth or QoS guarantees to different flows. For

example, thread A could be allocated 50% of the network bandwidth, whereas thread B

could be allocated 10% (similar allocations can be promised in terms of latency). How

does the routing mechanism guarantee this allocation when no routing buffers are

employed? What are the modifications needed for the routing algorithms? Is there a need

for an “admission control” policy that ensures that some bandwidth allocations will not

be violated? How is this policy designed and how can it be implemented? Can the classic

“network fair queueing” concepts be used and modified in bufferless routing? Please talk

with Onur Mutlu, the TAs, or Yoongu Kim about this problem. The following papers

could help you get started on this topic:

Moscibroda and Mutlu, “A Case for Bufferless Routing in On-Chip Networks,” MSR

Technical Report 2008 (extended version submitted to ISCA 2009)

http://www.ece.cmu.edu/~omutlu/pub/tr-buffless.pdf

Lee, Ng, and Asanovic, “Globally-Synchronized Frames for Guaranteed Quality-of-

Service in On-Chip Networks,” ISCA 2008.

http://www.icsi.berkeley.edu/pubs/arch/qos-isca2008.pdf

For a significantly extended and more detailed version of the first paper with better

experimental methodology, please contact me.

2. Preserving bank parallelism in multiple multi-core memory controllers: When

multiple cores share a single memory controller, the “memory level parallelism” of each

core can be destroyed because the memory controller can service each core’s concurrent

requests serially in the banks rather than in parallel. Mutlu and Moscibroda proposed a

solution to this problem in ISCA 2008 in their “Parallelism-aware batch scheduling

(PAR-BS)” paper. The basic idea in that paper is to service requests in “batches” and

within each batch to service one thread’s requests after another (in a shortest job first

manner) such that bank-level parallelism of each thread is maintained as much as

possible (threads are ranked in a shortest-job-first manner to accomplish this). This

approach works well with a single memory controller. The purpose of this project is to

explore how this approach can be extended and made to work with *multiple* memory

controllers (i.e. when there are multiple memory controllers shared by cores, where each

memory controller controls a statically assigned portion of DRAM memory). One

solution is to simple employ PAR-BS independently in each controller without any

communication. However, this approach might not work well because the ranking of

threads might be different in each controller. Another solution is to design a meta-

controller that determines the thread ranking and batching in a global manner for all

http://www.ece.cmu.edu/~omutlu/pub/tr-buffless.pdf
http://www.icsi.berkeley.edu/pubs/arch/qos-isca2008.pdf

Advanced Computer Architecture Spring 2009, O. Mutlu

6

controllers (and enforces it). These two solutions are opposite extremes in a continuum

and alternate designs are possible. How does such a meta-controller work? What is the

hardware algorithm used for ranking and batching? When does a batch start and end? Are

the batches aligned across different controllers? Your goal is to examine the tradeoffs in

designing multiple memory controllers to preserve memory-level parallelism and

experimentally evaluating different designs. Talk with Onur Mutlu, the TAs, or Yoongu

Kim about this problem. The following paper is a prerequisite for performing this project:

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling: Enhancing both

Performance and Fairness of Shared DRAM Systems," in ISCA 2008.

http://www.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf

3. Approximate computing: application analysis and microarchitecture design:

Processors are designed to produce correct results. However, not all software algorithms

require absolute correctness. For example, when you are watching a video, you might not

notice it if a pixel is rendered in a wrong color. Can we take advantage of this fact to

relax the design constraints of processors such that we can simplify the design and/or

improve performance? For example, can the processor ignore some cache misses and

assume that a cache miss always returns some value (without checking the correctness of

the returned value)? This would reduce the performance impact of some cache misses

because the processor can simply supply a (possibly predicted) data value for that cache

miss rather than fetching the needed data from main memory. Similarly, can the

processor ignore some dependencies between store and load instructions? This could

simplify the design of the load-store queue which ensures that memory dataflow is

correctly maintained in a sequential program. As a final example, can the processor

ignore some instructions, for example some branch mispredictions? It might be that

executing the wrong path produces acceptable output and the processor could save time

by not recovering from a branch misprediction? How and when are these aggressive

optimizations possible to do?

In this project, you will examine applications and determine the feasibility of the

aforementioned (and similar) ideas. The ideal tool for this project is perhaps the Pin

dynamic binary instrumentation tool, where you can modify the data values of any

memory instruction and examine the output of the program. The following papers could

help you get started on this topic (pay attention to the methodology used in these papers –

that will come in very handy in doing your research project):

Wang, Fertig, and Patel, “Y-Branches: When You Come to a Fork in the Road, Take It,”

in PACT 2004.

http://www.crhc.uiuc.edu/ACS/pub/branchflip.pdf

Li and Yeung, “Application-Level Correctness and its Impact on Fault Tolerance,” in

HPCA 2007.

http://maggini.eng.umd.edu/pub/faults-HPCA2007.pdf

 This project is very open ended. You are encouraged to stretch your imagination and

think about what aspects of hardware or software can be simplified if you can avoid the

“strict correctness” requirement. While I would prefer you to pick an optimization

enabled by “relaxed correctness” and examine it in detail (i.e. when is this optimization

possible, how should the code be written to make it possible, what are the benefits, what

are the downsides, etc), you can examine multiple optimizations (e.g. ignoring both cache

http://www.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://www.crhc.uiuc.edu/ACS/pub/branchflip.pdf
http://maggini.eng.umd.edu/pub/faults-HPCA2007.pdf

Advanced Computer Architecture Spring 2009, O. Mutlu

7

misses and memory dependencies) I am open to software versions of this project (i.e.

what can you relax in the software if things do not need to be strictly correct) as well, if

you can specify the project reasonably well.

4. On-chip Security (denial of service): Shared resources among threads/cores in a multi-

core multi-threaded system presents a vulnerability: if the sharing of resources is left

uncontrolled, one thread can deny service to another (or all others) and cause starvation

or possibly in severe cases deadlock. In fact, malicious programs can be written to

destroy the performance of other programs by exploiting the behavior of controllers

controlling access to shared resources. Previous research demonstrated this problem in

shared memory controllers (see Moscibroda and Mutlu, USENIX Security 2007), trace

caches shared by multiple threads in SMT processors (see Grunwald and Ghiasi, MICRO

2002), and shared power management (see “Heat Stroke” paper by Hasan and

Vijaykumar in HPCA 2005). The goal of this project is to demonstrate the possibility and

degree of such denial of service attacks in other shared system resources (and hopefully

suggest/design techniques to mitigate such attacks) in multi-core and multi-threaded

processors. The shared resources you might want to examine include but are not limited

to:

o On-chip interconnects (buses, 2D mesh designs, rings)

o Flash memories

o On-chip thermal/power controllers (e.g. thermal management mechanism of

shared memory controllers)

o Shared floating-point units?

o Shared controller buffers on other chips (e.g. in a distributed shared memory

system like AMD Athlon)

o Shared disk

Your goal is to 1) demonstrate the problem in a cycle-accurate simulator or (preferably)

in a real system using microbenchmarks as well as real applications, 2) quantify the

degree of the problem (how bad the denial of service can be), 3) describe how malicious

applications can be designed, 4) suggest and possibly evaluate ways of solving the

problem. In my opinion, examining on-chip interconnects is the most promising, but you

might find other resources you are interested in. The following papers could get you

started thinking in the right direction:

Moscibroda and Mutlu, “Memory Performance Attacks: Denial of Memory Service in

Multi-Core Systems,” USENIX SECURITY 2007.

http://www.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf

Woo and Lee, “Analyzing Performance Vulnerability due to Resource

DenialofService Attack on Chip Multiprocessors,” CMP-MSI 2007.

http://arch.ece.gatech.edu/pub/cmpmsi07.pdf

Grunwald and Ghiasi, “Microarchitectural denial of service: insuring microarchitectural

fairness,” MICRO 2002.

http://portal.acm.org/citation.cfm?doid=774861.774905

Hasan et al., “Heat Stroke: Power-Density-Based Denial of Service in SMT,” HPCA 2005.

http://cobweb.ecn.purdue.edu/~vijay/papers/2005/heatstroke.pdf

http://www.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://arch.ece.gatech.edu/pub/cmpmsi07.pdf
http://portal.acm.org/citation.cfm?doid=774861.774905
http://cobweb.ecn.purdue.edu/~vijay/papers/2005/heatstroke.pdf

Advanced Computer Architecture Spring 2009, O. Mutlu

8

Lee, Ng, and Asanovic, “Globally-Synchronized Frames for Guaranteed Quality-of-

Service in On-Chip Networks,” ISCA 2008.

http://www.icsi.berkeley.edu/pubs/arch/qos-isca2008.pdf

5. Fault tolerance: Architectural techniques for efficiently recovering from detected

hardware design bugs: Techniques have been proposed to detect at run-time hardware

design bugs that were not caught during the testing of a microprocessor. These techniques

all assume that once a bug is detected, some recovery technique can recover from the

effects of the bug and place the system into a consistent state. However, specific

mechanisms for accomplishing this recovery have not been researched or designed in

detail. The goal of this project is to design techniques that enable efficient recovery from

the unwanted effects of a processor design bug. The project has three components, any of

which can be proposed as independent projects:

o As a first step, rigorously analyze and classify real design bugs to gain insights

into their behavior. What makes a bug detectable? What makes it recoverable?

What types of bugs should be detected and recovered from? What mechanisms

are needed for different types of bugs? Initial analysis of simple logic bugs by

Constantinides, Mutlu, and Austin [MICRO 2008] suggests mechanisms for

different bug types (e.g., algorithmic vs. logic) should be very different. At the

end of your analysis, you might end up with different classes of bugs based on

their recoverability.

o Develop new logic that can efficiently recover from the effects of a detected bug.

What are the recovery techniques for design bug types? For example, an

algorithmic bug might almost always require good reconfiguration support, but

some logic bugs can be avoided with simple re-execution.

o A realistic evaluation of both the coverage and performance impact of design bug

detection/recovery mechanisms.

This project is a relatively low-level project which will very likely be enhanced by

careful and detailed examination of the RTL source code of an open source processor.

The experimental methodology can also be significantly enhanced with FPGA

implementation of a simple open-source processor and injection of different types of

design bugs (I recommend this only if you have previous experience in FPGA

implementations – Michael Papamichael and Eric Chung can help you with this). The

following papers can help you get started on this problem:

Constantinides, Mutlu, and Austin, “Online Design Bug Detection: RTL Analysis,

Flexible Mechanisms, and Evaluation,” MICRO 2008.

http://www.ece.cmu.edu/~omutlu/pub/hwbugs_micro08.pdf

Wagner, Bertacco, and Austin, “Using Field-Repairable Control Logic to Correct Design

Errors in Microprocessors,” IEEE TCAD 2008.

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04358502

Sarangi, Tiwari, and Torrellas, “Phoenix: Detecting and Recovering from Permanent

Processor Design Bugs with Programmable Hardware,” MICRO 2006.

http://iacoma.cs.uiuc.edu/iacoma-papers/micro06_phoenix.pdf

http://www.icsi.berkeley.edu/pubs/arch/qos-isca2008.pdf
http://www.ece.cmu.edu/~omutlu/pub/hwbugs_micro08.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04358502
http://iacoma.cs.uiuc.edu/iacoma-papers/micro06_phoenix.pdf

Advanced Computer Architecture Spring 2009, O. Mutlu

9

Narayanasamy, Carneal, and Calder, “Patching Processor Design Errors,” ICCD 2006.

http://www.cse.ucsd.edu/~calder/papers/ICCD-06-HWPatch.pdf

Man-Lap Li et al., “Understanding the propagation of hard errors to software and

implications for resilient system design”, ASPLOS 2008.

http://portal.acm.org/citation.cfm?id=1346281.1346315&coll=ACM&dl=ACM&CFID=1

8308174&CFTOKEN=57845610

6. Asymmetric multi-core designs: An asymmetric multi-core system consists of one or

more powerful cores augmented with a large number of small cores. Large cores have

been proposed to use serialization due to the serial portions of programs (think Amdahl’s

law) and serialization due to contention in critical sections (see Suleman et al. ASPLOS

2009). The basic idea of the latter work is to execute a critical section in a large core such

that the likelihood of another thread waiting for that critical section to complete is

reduced. This work did not examine the following:

o When is it profitable to ship a critical section to a large core? Your job is to

develop a cost-benefit model that decides whether it is beneficial to ship a critical

section to a large core or it is better to execute it on a small core. The cost-benefit

model can include dynamically-changing information about the characteristics of

critical sections, contention for them, as well as speedup obtained by executing

the critical section.

o When is it profitable to execute the “serial bottleneck” on the large core? This is

a simpler problem because in the “serial bottleneck” there are no threads running.

However, previous work always assumed that it is better to execute the serial

bottleneck on the large core. Your task is to challenge this assumption and

develop a model for deciding when the serial bottleneck should be shipped to the

large core.

o The effect of running multiple applications on the same chip. If multiple

applications are running concurrently, then how should the operating system or

hardware allocate the large core? What are the decision mechanisms that are

needed to optimize overall system throughput while respecting fairness? What

happens if one application is executing in a critical section and another is

executing its serial bottleneck? How does the hardware decide which application

should use the large core? What are the required cost-benefit analyses or

heuristics that can efficiently determine the allocation decision to be made by the

OS/hardware?

o Very open ended: For what other purposes can a large core be used in an

asymmetric multi-core system? If you have ideas and are ready for a more open-

ended project, I encourage you to work on this problem. Talk with me if you

would like some hints.

Understanding the following papers (especially the first one) would help a lot with this

project:

Suleman et al., “Accelerating Critical Section Execution with Asymmetric Multi-Core

Architectures,” ASPLOS 2009. http://www.ece.cmu.edu/~omutlu/pub/acs_asplos09.pdf

http://www.cse.ucsd.edu/~calder/papers/ICCD-06-HWPatch.pdf
http://portal.acm.org/citation.cfm?id=1346281.1346315&coll=ACM&dl=ACM&CFID=18308174&CFTOKEN=57845610
http://portal.acm.org/citation.cfm?id=1346281.1346315&coll=ACM&dl=ACM&CFID=18308174&CFTOKEN=57845610
http://www.ece.cmu.edu/~omutlu/pub/acs_asplos09.pdf

Advanced Computer Architecture Spring 2009, O. Mutlu

10

Hill and Marty, “Amdahl’s Law in the Multicore Era,”

http://www.cs.wisc.edu/multifacet/papers/ieeecomputer08_amdahl_multicore.pdf

Suleman et al., “Asymmetric Chip Multiprocessors: Balancing Hardware Efficiency and

Programmer Efficiency,” UT-Austin HPS Technical Report, 2007.

http://projects.ece.utexas.edu/hps/pub/TR-HPS-2007-001.pdf

7. Temporal and Spatial Streaming in Disks: Temporal and Spatial streaming have been

used to accurately prefetch data in memory systems. The key idea in these approaches is

to use the fetch of a stream of data blocks as an indicator that a larger stream will need to

be fetched in the future. The goal of this project is to examine the feasibility of these

approaches within the context of I/O systems and apply it to prefetching disk blocks

rather than cache blocks (remember that the latency of a disk access is actually much

larger than the latency of a memory access – hence the need for a memory hierarchy).

You are expected to analyze and characterize the access behavior of real applications to

the disk and develop temporal/spatial streaming (or similarly inspired) techniques to

efficiently prefetch disk blocks into the buffer cache before they are needed. In addition

to me and the TAs, you are welcome to talk with Stephen Somogyi about this project.

Actual disk traces from Windows can be used for this project (talk to me about this). The

following papers are required reading if you are interested in this project:

Wenisch et al., “Temporal Streaming of Shared Memory,” ISCA 2005,

http://www.eecs.umich.edu/~twenisch/papers/isca05.pdf

Somogyi et al., “Spatial Memory Streaming,” ISCA 2006,

http://www.eecg.toronto.edu/~moshovos/research/sms.pdf

Good characterization of memory streams:

Wenisch et al., “Temporal streams in commercial server applications,” IISWC 2008,

http://www.iiswc.org/iiswc2008/Papers/010.pdf

8. QoS aware (fair) memory controllers in the presence of prefetching: Previous work

on fair multi-core memory controllers did not take into account the existence of prefetch

requests. They assumed every request was a load request (and sometimes store request as

well). This is a shortcoming because most real systems employ aggressive stream or

stride-based prefetching which can affect the fairness in the memory system. Your task in

this project is to understand the effect of memory prefetching on memory system fairness.

Based on this understanding, you will extend existing fair memory control schemes (such

as “Stall time fair memory scheduling, MICRO 2007” or “Parallelism-aware batch

scheduling, ISCA 2008” to take into account prefetch requests (and to take into account

store requests better). Alternatively you can devise a new scheme from the ground up that

takes into account prefetch requests. Talk to me or Yoongu Kim about this problem for

more detail. Some required reading:

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling: Enhancing both

Performance and Fairness of Shared DRAM Systems," in ISCA 2008.

http://www.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf

http://www.cs.wisc.edu/multifacet/papers/ieeecomputer08_amdahl_multicore.pdf
http://projects.ece.utexas.edu/hps/pub/TR-HPS-2007-001.pdf
http://www.eecs.umich.edu/~twenisch/papers/isca05.pdf
http://www.eecg.toronto.edu/~moshovos/research/sms.pdf
http://www.iiswc.org/iiswc2008/Papers/010.pdf
http://www.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf

Advanced Computer Architecture Spring 2009, O. Mutlu

11

Mutlu and Moscibroda, “Stall-time Fair Memory Access Scheduling for Chip

Multiprocessors,” in MICRO 2007.

http://www.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf

Lee et al., “Prefetch-aware DRAM Controllers,” in MICRO 2008,

http://www.ece.cmu.edu/~omutlu/pub/prefetch-dram_micro08.pdf

9. Fair/QoS-aware caching in the presence of prefetching: Previous work on fair multi-

core caches did not take into account the existence of prefetch requests. They assumed

every request was a demand request. This is a shortcoming because most real systems

employ aggressive stream or stride-based prefetching which can affect the fairness in

shared caches. Your task in this project is to understand the effect of memory prefetching

on shared cache fairness. Based on this understanding, you will extend existing fair

caching schemes (such as “Utility based cache partitioning, MICRO 2006” or “Fair cache

sharing and partitioning, PACT 2004” to take into account prefetching. Alternatively you

can devise a new caching scheme from the ground up that takes into account prefetch

requests. Some reading that can help:

Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-Overhead, High-

Performance, Runtime Mechanism to Partition Shared Caches,” in MICRO 2006,

http://users.ece.utexas.edu/~qk/papers/util.pdf

Kim, Chandra, and Solihin, “Fair Cache Sharing and Partitioning in a Chip

Multiprocessor Architecture,” PACT 2004,

http://www.ece.ncsu.edu/arpers/Papers/faircaching.pdf

10. Improving memory fairness and memory-level parallelism via dynamic physical-to-

bank (or virtual-to-physical) address mapping: In the main memory system, programs

interfere with each other because the data they need are mapped to the same banks or

same channels (see publications on fair memory controllers). One way to reduce these

“collisions” among different programs is to detect them dynamically and change the bank

mapping of frequently-colliding data elements by adjusting either 1) virtual-to-physical

page mappings at the OS layer or 2) physical-to-bank mappings at the memory controller.

The purpose of this project is to examine such strategies to reduce unfairness and inter-

thread collisions in the memory system as well as to improve intra-thread bank-level

parallelism. You will develop algorithms and mechanisms that detect collisions among

different threads and dynamically change the mappings such that collisions (bank,

channel, or bus) are minimized across the entire memory system. Note that changing a

page mapping incurs overhead of data transfer so your mechanism will likely have to take

into account this overhead cost of mapping adjustments. You will examine both OS-level

and hardware-level (OS-transparent) techniques to perform page migration.

Similar techniques can be employed to improve the performance of a single thread. The

memory controller can keep track of bank conflicts incurred by accesses from the same

thread. If accesses are serialized too often because they go to the same bank, the memory

controller can change the bank mapping of the colliding pages to ensure that accesses to

those pages are serviced in parallel. A possibly separate but related project idea is to

develop techniques to improve the bank-level parallelism of a single thread.

http://www.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.ece.cmu.edu/~omutlu/pub/prefetch-dram_micro08.pdf
http://users.ece.utexas.edu/~qk/papers/util.pdf
http://www.ece.ncsu.edu/arpers/Papers/faircaching.pdf

Advanced Computer Architecture Spring 2009, O. Mutlu

12

11. Prefetching in a distributed cache system: Non-uniform access caches whose banks are

distributed across a 2D-mesh network were proposed in past research to reduce average

cache access time. Ideally, the data that will be accessed soon should be placed in a cache

bank that is close to the processor that needs to access the data soon. To accomplish this,

you will design targeted prefetching techniques that prefetch data between the cache

banks of a NUCA (non-uniform cache access) cache. The first step is to evaluate some

existing prefetching mechanisms within the context of NUCA, document and describe

their shortcomings, and develop better prefetching techniques that consider the

movement of data between the banks. You can also develop new interconnection

networks that enable better prefetching in a NUCA cache. The key question to keep in

mind is “If there are multiple processors sharing the NUCA cache, how should

prefetching techniques be modified to account for this sharing?” Talk to Nikos

Hardavellas if you are interested in this topic. The following publications could help you

develop the required background:

Kim, Burger, and Keckler, “An Adaptive, Non-Uniform Cache Structure for Wire-Delay

Dominated On-Chip Caches,” ASPLOS 2002.

http://www.cs.utexas.edu/users/ckkim/papers/nuca_dist.pdf

Beckmann, Marty, and Wood, “ASR: Adaptive Selective Replication for CMP Caches,”

MICRO 2006, http://www.cs.wisc.edu/multifacet/papers/micro06_asr.pdf

12. Benchmark development (Pointer-intensive Applications): Computer architecture

development and research critically depends on the quality of benchmarks. Dhrystone,

SPEC, synthetic benchmarks, Livermore Loops, TPC benchmarks, etc have shaped the

way in which architectures have evolved (and have been criticized as well). In this

project, your task is to develop a modern, pointer-intensive (preferably parallel)

benchmark suite that stresses the memory system. The benchmarks you will use should

be realistic and representative (as much as possible) of real workloads. You will

characterize the applications, describe the way in which pointer-based data structures are

actually used, and suggest techniques to improve their memory system performance

based on this characterization. Previously developed pointer-intensive benchmark suite

(Olden) mainly consists of very small kernels, which are somewhat outdated. A good

new suite developed for pointer-intensive workloads with good characterization

(especially of the memory system, data sharing, and branching behavior) and analysis

could be made public and possibly used by a large number of researchers. I suggest you

start studying the source code as well as publications related to that suite:

Rogers et al., “Supporting dynamic data structures on distributed memory machines,”

ACM TOPLAS 1995.

Woo et al., “The SPLASH-2 Programs: Characterization and Methodological

Considerations,” ISCA 1995. http://www.csd.uoc.gr/~hy527/papers/splash2_isca.pdf

Luk and Mowry, “Compiler-based prefetching for recursive data structures,” ASPLOS

1996. http://www.ckluk.org/ck/luk_papers/luk_asplos96.pdf

http://www.cs.utexas.edu/users/ckkim/papers/nuca_dist.pdf
http://www.cs.wisc.edu/multifacet/papers/micro06_asr.pdf
http://www.csd.uoc.gr/~hy527/papers/splash2_isca.pdf
http://www.ckluk.org/ck/luk_papers/luk_asplos96.pdf

Advanced Computer Architecture Spring 2009, O. Mutlu

13

Mutlu, Kim, Patt, “Address-Value Delta (AVD) Prediction: A Hardware Technique for

Efficiently Parallelizing Dependent Cache Misses,” IEEE TC 2006.

http://www.ece.cmu.edu/~omutlu/pub/mutlu_ieee_tc06.pdf

Bienia et al., “The PARSEC Benchmark Suite: Characterization and Architectural

Implications,” PACT 2008.

http://parsec.cs.princeton.edu/publications/bienia08characterization.pdf

13. Benchmark development (Artificial Intelligence and Robotics Related

Applications): See above (project 12) for motivation. AI and Robotics related programs

have not been specifically analyzed in computer architecture or workload characterization

research. Your task will be to analyze AI/robotics-related applications and

develop/characterize a benchmark suite that represents the important AI/robotics

applications in use today. You will also motivate the uses of such applications in real

workloads (This motivates the development of your benchmark suite and argues why it is

important). Characterization of the applications should be insightful: it should provide

insights into the memory, branching, sharing, locking, scaling behavior of applications

and provide hints into how to design a system that executes these applications well.

Intel’s RMS (Recognition, Mining, and Synthesis) suite contains some AI-flavored

kernels, so I would suggest you take a look at that suite. Other publications that would be

of interest are:

Woo et al., “The SPLASH-2 Programs: Characterization and Methodological

Considerations,” ISCA 1995. http://www.csd.uoc.gr/~hy527/papers/splash2_isca.pdf

Bienia et al., “The PARSEC Benchmark Suite: Characterization and Architectural

Implications,” PACT 2008.

http://parsec.cs.princeton.edu/publications/bienia08characterization.pdf

14. Bufferless Interconnection Networks - Implementation: Bufferless routers are a

promising way to interconnect cores and caches in an energy- and area-efficient manner.

The goal of this project is to design a bufferless (or lightly buffered) pipelined router

from scratch on an FPGA and demonstrate its performance, power, and QoS

characteristics using traces fed into the implementation (or even real applications). You

will design the router pipeline and deal with the timing issues arising from the lack of

buffers in routing. The router will be aggressively clocked. Once the basic design is

complete, you will extend it with enhancements to improve the performance of the

bufferless router (for example, reduce the number of pipeline stages or add a small

amount of buffering to improve bandwidth efficiency in the presence of congestion). You

will implement both flit-level packet-switched and wormhole-based versions of

bufferless routing (as well as any other versions you choose to develop as long as you

justify their benefits). The end goal is to demonstrate the feasibility and characteristics of

bufferless routing in a 2D-mesh topology. The following publications should get you

started:

Moscibroda and Mutlu, “A Case for Bufferless Routing in On-Chip Networks,” MSR

Technical Report 2008 (extended version submitted to ISCA 2009)

http://www.ece.cmu.edu/~omutlu/pub/tr-buffless.pdf

http://www.ece.cmu.edu/~omutlu/pub/mutlu_ieee_tc06.pdf
http://parsec.cs.princeton.edu/publications/bienia08characterization.pdf
http://www.csd.uoc.gr/~hy527/papers/splash2_isca.pdf
http://parsec.cs.princeton.edu/publications/bienia08characterization.pdf
http://www.ece.cmu.edu/~omutlu/pub/tr-buffless.pdf

Advanced Computer Architecture Spring 2009, O. Mutlu

14

Konstantinidou and Snyder, “The Chaos Router,” IEEE TC 1994,

http://portal.acm.org/citation.cfm?id=191594

 For a significantly extended and more detailed version of the first paper with better

experimental methodology, please contact me.

15. Predictive DRAM row buffer management: Some memory access patterns benefit

from keeping the row buffer open, others benefit from keeping it closed (or proactively

opening rows). Design a prediction mechanism that more intelligently manages the

DRAM row buffers compared to simply using a static (and rigid) open-row or closed-row

policy. Your mechanism can proactively determine when a row should be closed;

proactively predict which rows should be opened, etc. You can get inspiration from

prefetching mechanisms to design your own row-buffer management policy. In your

design, you should keep in mind the complex parallelism and locality issues present in

the DRAM system. You will also need to examine interactions of your developed row

buffer management policy with the scheduling policy of the memory controller (they will

very likely not be independent of each other). Your management policy needs to take into

account the existence of multiple cores sharing the DRAM banks; however, I would

suggest starting with a single core. See memory controller related publications for

inspiration and background:

Rixner et al. “Memory Access Scheduling”, ISCA 2000.

http://www.cs.rice.edu/~rixner/rixner_isca27.pdf

16. Bufferless Interconnection Networks – Parallel Applications: Previous work on

bufferless routing in on-chip networks did not consider parallel applications. Your task in

this project is to evaluate the effectiveness of bufferless networks with parallel

applications such as SPLASH-2, NAS, and PARSEC benchmarks. Based on your

analyses, you will develop new bufferless (or lightly buffered) routing algorithms that

can better accommodate the communication properties of shared-memory parallel

applications. One important question you might need to answer is: How can a bufferless

network efficiently support broadcast/multicast as well as invalidation/coherence traffic?

Moscibroda and Mutlu, “A Case for Bufferless Routing in On-Chip Networks,” MSR

Technical Report 2008 (extended version submitted to ISCA 2009)

http://www.ece.cmu.edu/~omutlu/pub/tr-buffless.pdf

For a significantly extended and more detailed version of the first paper with better

experimental methodology, please contact me.

17. Cost-benefit analysis driven prefetching in multi-core systems with shared

resources: In a multi-core system, each core contains one or more (hardware) prefetchers

to reduce memory access time. These prefetchers share valuable system resources such as

memory bandwidth, cache bandwidth, and shared cache space. Existing systems do not

take into account the interactions between the prefetchers on different cores. The

prefetcher of one core can deny service to demands of another core by hogging the

DRAM or cache bus, or it can displace useful cache blocks of another core in the shared

cache. As a result, system performance can degrade compared to employing no

prefetching. In this project you will design mechanisms to control the interference caused

http://portal.acm.org/citation.cfm?id=191594
http://www.cs.rice.edu/~rixner/rixner_isca27.pdf
http://www.ece.cmu.edu/~omutlu/pub/tr-buffless.pdf

Advanced Computer Architecture Spring 2009, O. Mutlu

15

by prefetchers of cores in the shared memory system resources. The basic idea is to

develop a cost-benefit model based on which the hardware can adjust the aggressiveness

of each prefetcher. Each prefetcher (at an aggressiveness level) provides some benefit but

also incurs some cost on system performance. You will devise a model that predicts this

cost-benefit based on prefetcher accuracy, coverage, timeliness, pollution, etc (and other

possible characteristics). Based on the outcome of the model, the hardware should decide

on an aggressiveness level for each prefetcher (say, for the next program phase or time

interval). Note that previous research (under submission) used heuristics based

approaches to achieve the same goal, but not a model-based approach as described here.

Previous research on adjusting the aggressiveness of a single-core prefetcher also used

heuristics (Srinath et al. HPCA 2007).

The following papers would be good to gain background on this topic:

Ebrahimi, Mutlu, and Patt, “Coordinated Management of Multiple Prefetchers in Multi-

Core Systems,” under submission to ISCA 2009. Email me for a copy and discussion.

Ebrahimi, Mutlu, and Patt, “Techniques for Bandwidth-Efficient Prefetching of Linked

Data Structures in Hybrid Prefetching Systems,” HPCA 2009.

http://www.ece.cmu.edu/~omutlu/pub/bandwidth_lds_hpca09.pdf Section 4 is especially

relevant.

Srinath, Mutlu, Kim, and Patt, “Feedback Directed Prefetching: Improving the

Performance and Bandwidth-Efficiency of Hardware Prefetchers,” HPCA 2007.

http://www.ece.cmu.edu/~omutlu/pub/srinath_hpca07.pdf

18. Transactional memory - intelligent contention management: In transactional memory,

if a data conflict is detected between two transactions, usually one of the transactions is

aborted, and the other is allowed to continue. This is called contention management.

Existing contention management policies usually do not take into account the importance

and length of the thread that is executing the transaction. As a result they might make

choices that are suboptimal in terms of system throughput as well as QoS. The goal of

this project is to design a “thread-aware” contention management policy for transactional

memory. The policy is supposed to maximize system thread throughput (how?) while

ensuring non-starvation/fairness and being flexible enough to satisfy different QoS

requirements (such as thread priorities). You will design both the software and hardware

support required to support such a policy. See the following papers for related work:

Scherer and Scott, “Advanced Contention Management for Dynamic Software

Transactional Memory,” PODC 2005. http://www.cs.rice.edu/~wns1/papers/2005-

PODC-AdvCM.pdf

Chafi et al. “A Scalable, Non-blocking Approach to Transactional Memory,” HPCA 2007.

http://csl.stanford.edu/~christos/publications/2007.scalable_tcc.hpca.pdf

19. Denial of Service via Wearout in Flash and Phase-Change Memory Systems: Flash

memory and Phase Change Memory are promising non-volatile memories. Unfortunately,

these memories have one shortcoming: the storage cell wears out with each write

operation. As a result, over time, the ability of a storage cell to store digital data degrades

and diminishes. To improve the lifetime of such memories, flash controller architects

http://www.ece.cmu.edu/~omutlu/pub/bandwidth_lds_hpca09.pdf
http://www.ece.cmu.edu/~omutlu/pub/srinath_hpca07.pdf
http://www.cs.rice.edu/~wns1/papers/2005-PODC-AdvCM.pdf
http://www.cs.rice.edu/~wns1/papers/2005-PODC-AdvCM.pdf
http://csl.stanford.edu/~christos/publications/2007.scalable_tcc.hpca.pdf

Advanced Computer Architecture Spring 2009, O. Mutlu

16

have developed techniques called “wear-leveling” which tries to equalize the number of

write operations to each memory cell. Many wear-leveling techniques use a level of

indirection (between the physical address and the actual bank address) to migrate blocks

that have been written to too much. The goal of this project is to design malicious

programs that can wear out Flash and PCM memories very quickly by subverting the

defense mechanisms used by the wear-leveling techniques. You will study existing wear-

leveling techniques and show in a real Flash-based system how to write a program that

achieves this purpose. Then, you will develop better and more robust wear-leveling

techniques that are not vulnerable to malicious programs that can quickly wearout

memories. The problem becomes more severe if PCM memory is used as an alternative

to DRAM memory. You will demonstrate the attacks and defenses you develop via

simulation of a modern memory system employing PCM memory instead of DRAM as

the main memory of the system. Talk to me if you are interested in this project.

20. Application scaling analysis on multi-core engines (suggested by Brian Gold @

CMU): The goal is to study OS and application scaling on multi-core architectures.

Example applications include web servers, database servers, etc. You are expected to

analyze and report on contention for shared resources (e.g., locks) and propose solutions

to alleviate contention. Build analytic models of performance as number of cores scales,

memory hierarchy changes, etc. and test models in both real hardware and simulated

machines. Talk to me and Brian Gold about this project.

21. Improving Idle Power Management in Servers (suggested by Brian Gold @ CMU):

PowerNap is a recently proposed system for cutting server idle power: entire servers

(CPUs, memory, disk, etc.) are put into a low power state as soon as the OS task queue is

empty. Implement key software components of PowerNap (see paper link below), and

report on any practical limitations of this proposed work. In particular, implement

suspend and resume mechanisms in the Linux scheduler and report on average wake and

sleep transitions [NOTE: requires a server w/ solid-state disk, a modern CPU, and power-

saving DRAM]. Measure performance impact (response time) and energy savings on

SPECweb, and compare with analytic models in paper:

http://www.ece.cmu.edu/~bgold/papers/meisner-asplos09.pdf

Talk with me and Brian Gold if you want to pursue this topic.

22. Analytical modeling of CPU temperature (suggested by Brian Gold @ CMU):

Temperature modeling is notoriously difficult, with state-of-the-art tools requiring

multiple, time-consuming simulation runs. Recent (unpublished) work done here at

CMU has developed analytic models of server CPU temperature based on queuing theory.

Validate these models by performing experiments on real hardware running SPECweb,

and compare with results using conventional simulation tools (HotSpot from UVA).

Queuing theory experience desirable, but not necessary. Talk with me and Brian Gold if

you want to pursue a similar direction.

23. Hardware support for tolerating data races in multithreaded programs (suggested

by Darko Kirovski @ Microsoft Research): ToleRace is a runtime system that allows

programs to detect and even tolerate asymmetric data races. Asymmetric races are race

conditions where one thread correctly acquires and releases a lock for a shared variable

while another thread improperly accesses the same variable. In this project we want to

explore the type of hardware support that would enable the benefits provided by the

ToleRace oracle described in Ratanaworabhan et al. The following paper is required

reading if you would like to work on this project:

http://www.ece.cmu.edu/~bgold/papers/meisner-asplos09.pdf

Advanced Computer Architecture Spring 2009, O. Mutlu

17

Ratanaworabhan et al., “Detecting and Tolerating Asymmetric Races,” PPOPP 2009.

http://www.csl.cornell.edu/~paruj/papers/ppopp09.pdf

24. Feature selection for data predictors/prefetchers (suggested by Nikos Hardavellas @

CMU): Data prefetchers hide the data access latency by predicting future

accesses and issuing requests ahead of time. Typically, the prediction is based on some

recorded history stored at a table. When the current set of events match a historic event,

the next entry in the history table is used as a prediction. For example, the history table

entries could be data miss addresses (as in Markov Prefetchers, see Joseph et al.

“Prefetching using Markov predictors” ISCA 1997,

http://portal.acm.org/citation.cfm?id=264207). If the current miss matches entry "k" in

the history table, the predictor may forecast that the next miss will be at an address that is

the same as the address in entry "k+1" in the history table. In general, the entries in the

history table are more complex than in our simplistic example, and are a combination of

execution attributes. However, which execution attributes constitute that history is

typically decided in an ad-hoc manner. A history table entry is usually a combination of

some bits of the miss address and some bits of the PC (program counter) that generates

the reference, but it could be any other attribute (e.g., recent branch predictor outcomes,

the last n frame pointers, the previous k data misses, the previous k data misses with

some reordering, the previous misses in the same page, general purpose register values,

any combination of the previously mentioned attributes, etc). The goal of this project is to

investigate which set of attributes forms the best predictor to forecast the address of the

k_th miss ahead of the current one (for example using principal component analysis or

independent component analysis techniques, or time series forecasting). We are interested

in the k_th miss so that there is enough time for the predictor to issue the prefetch request

and get back the data from the memory system before the processor requests that data.

A similar analysis can be done for any other type of predictor (e.g., a branch predictor).

The fundamental question this project tries to answer is: “Which pieces of on-chip

information are the most important to use to correctly predict the next branch (or the

next address to be prefetched)?” Talk to Nikos Hardavellas and me if you are interested

in this problem. Some preliminary reading that could be useful:

For data prefetching:

Nesbit and Smith, “Data Cache Prefetching Using a Global History Buffer,” HPCA 2004.

Somogyi et al., “Spatial Memory Streaming,” ISCA 2006.

http://www.eecg.toronto.edu/~moshovos/research/sms.pdf

For branch prediction:

Yeh and Patt, “Alternative Implementations of Two-level Adaptive Branch Prediction,”

ISCA 1992, http://portal.acm.org/citation.cfm?id=139709

Gonzalez and Gonzalez, “Control-Flow Speculation through Value Prediction for

Superscalar Processors” PACT 1999

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00807406

http://www.csl.cornell.edu/~paruj/papers/ppopp09.pdf
http://portal.acm.org/citation.cfm?id=264207
http://www.eecg.toronto.edu/~moshovos/research/sms.pdf
http://portal.acm.org/citation.cfm?id=139709
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00807406

Advanced Computer Architecture Spring 2009, O. Mutlu

18

25. Finite directories for private multi-core caches (suggested by Nikos Hardavellas @

CMU): Future processors are expected to form a "tiled" architecture, with each tile

housing a core and a portion of the on-chip cache. A common way to manage such a

cache is to treat the cache "slice" within each tile as a cache private to the core within the

tile. Because the cores actively share data, the cache must employ a coherence

mechanism to maintain data correctness. Such a mechanism is typically directory based,

with each entry in the directory keeping information about the sharers and the state of a

particular cache block. In a traditional directory-based coherence mechanism, each tile is

responsible for keeping information about a subset of the addresses in the address space.

Usually the addresses are assigned to tiles in a round-robin fashion. Every cached block

is assigned to a unique directory tile, and that tile has an entry for that block in its

directory storage. In the extreme case, the entire on-chip cache is full (has only valid

blocks) and every block has an address that maps to the same directory tile. To maintain

correctness, a conventional directory-based scheme should provide the resources even for

the extreme case. This could result in a directory that occupies several times larger chip

area than the cache itself, which is a very inefficient use of the available die area. It is

possible that a multi-core processor with private caches can maintain high performance

and correctness with a significantly smaller directory that covers the common case,

coupled with either a backup mechanism that engages when a request misses in the

directory (e.g., broadcast to locate the requested block), or a prevention mechanism that

guarantees that when a request misses in the directory, the block is not on chip (e.g.,

when evicting a directory entry, evict the respective block from the cache). The goal of

this project is to identify the ideal directory size across a range of workloads, and the

ideal backup or prevention mechanism, for a range of workloads. Talk to Nikos

Hardavellas and me if you are interested in this problem. Some papers to get you started:

Chaiken et al., “Directory-Based Cache Coherence in Large-Scale Multiprocessors,”

IEEE Computer, 1990

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=55500&isnumber=2005

Chapter 8 of “Parallel Computer Architecture” by Culler & Singh

Zhang and Asanovic, “Victim Replication: Maximizing Capacity while Hiding Wire

Delay in Tiled Chip Multiprocessors,” ISCA 2005

http://pages.cs.wisc.edu/~isca2005/papers/06A-01.PDF

26. Need more topics?

One way of finding research topics is to read recent interesting papers published in top

conferences and critically evaluating them. If you find a shortcoming in a paper that is

written on an important problem and have an idea to solve the problem that is left

unsolved, feel free to talk to me and the TAs. Some topics you might want to think about

or search for are as follows (if you need more detail on any of these topics, talk with

me and/or the TAs):

- Applications of machine learning to the design of architectural controllers, e.g.

o Cache replacement and insertion policies

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=55500&isnumber=2005
http://pages.cs.wisc.edu/~isca2005/papers/06A-01.PDF

Advanced Computer Architecture Spring 2009, O. Mutlu

19

o More efficient and intelligent memory controllers. See the following paper:

 Self-Optimizing Memory Controllers: A Reinforcement Learning

Approach (http://www.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf)

o Thread switching policies in fine-grained multithreading systems. See the

following paper:

 Dynamic Warp Formation and Scheduling for Efficient GPU Control

Flow (http://www.ece.ubc.ca/~aamodt/papers/wwlfung.micro2007.pdf)

- Supporting Quality of Service and fairness in machine learning based memory controllers

See the following paper:

o Self-Optimizing Memory Controllers: A Reinforcement Learning Approach

(http://www.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf)

- Secure architectures and hardware support for security. For example,

o Memory encryption

o Extension of virtual memory mechanisms

- Hardware support for thread scheduling

o In GPU architectures, see the following paper:

Dynamic Warp Formation and Scheduling for Efficient GPU Control Flow

(http://www.ece.ubc.ca/~aamodt/papers/wwlfung.micro2007.pdf)

- Hard error tolerant architectures

- Architectural support for operating systems

- Shared resource management in multicore and multithreaded systems. Some resources of

interest are:

o Caches shared among different cores/threads

o Interconnect shared among different cores/threads

o Processor pipeline shared among different threads in a fine-grained multithreaded

or simultaneously multithreaded system

- Cache replacement and insertion techniques

- Memory controllers for 1000-core systems

- Architectural support for garbage collection

How does garbage collection affect memory system performance of the

application? What techniques can we design to mitigate the negative effects of

garbage collection?

- Memory bandwidth aware cache replacement policies

- Providing QoS guarantees in shared on-chip caches

- Thermal management of the DRAM system

- Topics in transactional memory – a variety of open-ended research problems exist in this

area

http://www.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://www.ece.ubc.ca/~aamodt/papers/wwlfung.micro2007.pdf
http://www.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://www.ece.ubc.ca/~aamodt/papers/wwlfung.micro2007.pdf

