
Recursive Neural Networks
for NLP

Spring 2020

Security and Fairness of Deep Learning

Natural Language Processing

Understand natural language (e.g., English, Mandarin, Hindi) to
perform useful tasks

Example tasks
• Sentiment analysis
• Language translation
• Google Translate, Microsoft Translator, …

• Question answering
• Cortana, Google Assistant, Siri, …

Major successes of
deep learning

Rest of the Course

• Word embedding
• Representing words succinctly while preserving “semantic distance”

• Neural language modeling (uses word embedding)
• Prior approach (n-gram model)
• RNN (basics)
• LSTM (if there is time)

• Gender bias in word embedding and RNN

• + Missed lecture (real world adversarial examples)
• + Course review (or suggested topic)

Word Embedding

How to represent words?

First idea: integer, nth word represented as integer n

Weaknesses
• Difficult for neural networks to extract useful information
• Closer two words are in ordering, the more difficult for the network it is to tell

them apart.
• No relationship between adjacent/nearby words.

• Other weaknesses?

How to represent words?

Second idea: one-hot encoding
• Recall class/label encoding in MNIST, etc.
• Each word is separate dimension, easy to single out words.

Weaknesses
• Does not capture “similarity” between words

(e.g., “motel” and “hotel”)
• Other weaknesses?

How to represent words?

• Insight: “You shall know a word by the company it keeps” - J. R. Wirth

• The context of a word is the set of words that appear nearby (within a
fixed size window)

• Use the contexts of a word w to build up its representation

How to represent words?

• Third idea: word embeddings (or word vectors)

• A dense vector for each word such that vectors of words that appear
in similar contexts are similar

Popular word embedding: Word2vec

• Papers from Mikolov et al. (Google)
• Efficient Estimation of Word Representations in Vector Space
• Distributed Representations of Words and Phrases and their Compositionality

• Will focus on Word2vec Skip-gram model

https://arxiv.org/pdf/1301.3781.pdf
https://arxiv.org/pdf/1310.4546.pdf

Word2vec approach

• Train neural network with single hidden layer to perform a specific
task
• Weights of the hidden layer give us the word embeddings

• Seems familiar?
• Recall autoencoders

Word2vec Skip-gram task

• Given a specific word in the middle of a sentence (the input word), look at the
words nearby and pick one at random.

• The network is going to tell us the probability for every word in our vocabulary of
being the “nearby word” that we chose.

• “Nearby” words: A typical window size might be 2, meaning 2 words behind and
2 words ahead (4 in total).

• Example: If input word “Soviet”, the output probabilities are going to be much
higher for words like “Union” and “Russia” than for unrelated words like
“watermelon” and “kangaroo”.

Training samples

Model

Embedding matrix for hidden layer

• Embedding matrix is
10,000 x 300

Embedding matrix: lookup table for word
vectors

• Each one-hot encoding selects a row of the matrix (its word vector)

Output layer slice

Output layer slice

ants weights car w
eights P[car | ant]

Note

If two words have similar contexts, then the network is motivated to
learn similar word vectors for these two words

Examples
• “smart”, “intelligent”
• “ant”, “ants”

Word2Vec overview

Word2Vec: toward objective function

Example m=1: Problems turning into banking crises as …

P(turning | problems) (center is problems)
* P(problems | turning) * P(into | turning) (center is turning)
* P(turning | into) * P(banking | into) (center is into)
* P(into | banking) * P(crises | banking) (center is banking)
* P(banking |crises) * P(as | crises) (center is crises)
* …

Word2Vec: objective function

• Objective function is negative log likelihood

• Objective now looks like the familiar batchable per-instance loss

-log P(turning | problems) (center is problems)
-log P(problems | turning) (center is turning)
-log P(into | turning) (center is turning)
-log P(turning | into) (center is into)
-log P(banking | into) (center is into)
-log P(into | banking) (center is banking)
-log P(crises | banking) (center is banking)
-log P(banking |crises) (center is crises)
-log P(as | crises) (center is crises)

Word2Vec: objective function

Word2Vec: prediction function

vc

u
o

P(o | c)

Word2Vec: train model using SGD

Scalability is a challenge

• With 300 features and a vocab of 10,000 words, that’s 3M weights in
the hidden layer and output layer each!

• Two techniques in Mikolov et al. Distributed Representations of
Words and Phrases and their Compositionality
• Subsampling frequent words
• Negative sampling

https://arxiv.org/pdf/1310.4546.pdf

Subsampling frequent words

• There are two “problems” with common words like “the”:
1. When looking at word pairs, (“fox”, “the”) doesn’t tell us much about the

meaning of “fox”. “the” appears in the context of pretty much every word.
2. We will have many more samples of (“the”, …) than we need to learn a good

vector for “the”.

Subsampling frequent words

P (wi) = (

r
z(wi)

0.001
+ 1) · 0.001

z(wi)

is the word
is the fraction of the total words in the corpus that are that word

wi
z(wi)

Probability of keeping word wi

•P(wi)=1 (100% chance of being kept) when z(wi)<=0.0026
•P(wi)=0.5 (50% chance of being kept) when z(wi)=0.00746

Negative sampling

• Scalability challenge
• For each training sample, update all weights in output layer
• 3M weights in our running example!

• Negative sampling
• For each training sample, update only a small number of weights in output

layer
• Weights for the correct output word (300 weights) + 5 randomly selected

“negative words” for whom the output should be 0 (5x 300 weights)

Negative sampling

• Negative samples are chosen according to their empirical frequency

P (wi) =
f(wi)

3/4

Pn
j=0

⇣
f(wj)

3/4
⌘

Negative sampling: objective function

• Maximize probability that real words appear around center word; and
• Minimize probability that random words appear around center word

Word embeddings capture relationships

Additive compositionality

Rest of the Course

• Word embedding
• Representing words succinctly while preserving “semantic distance”

• Neural language modeling (uses word embedding)
• Prior approach (n-gram model)
• RNN (basics)
• LSTM (if there is time)

• Gender bias in word embedding and RNN

• + Missed lecture (real world adversarial examples)
• + Course review (or suggested topic)

Acknowledgments

• Word2Vec tutorial by Chris McCormick
• Learning Word Embedding by Lilian Weng
• Stanford cs224n lecture notes on word vectors
• Spring 2019 course

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
https://lilianweng.github.io/lil-log/2017/10/15/learning-word-embedding.html
https://web.stanford.edu/class/cs224n/index.html
https://web.stanford.edu/class/cs224n/lectures/lecture2.pdf

