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Deep Learning can be amazin

Input sentence: Translation (PBMT): Translation (GNMT)
FESHAREpan U Kegiang premier Li Kegiang will start the
SEEIERY, B added this line to stan annual dialogue
NEASHHB S | the annual dialogue mechanism with Prime
PR ERTERN mechanism with the Minister Trudeau of
i, Canadian Prime Minister | Canada and hold the first

Trudeau two prime annual dialogue between

ministers held its first the two premiers
annual session

Machine Translation

Strategy Games

Realistic Image Generation Robotic Manipulation



ImageNet: A success story




ImageNet: A success story
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Have we achieved truly super-human performance?




Real-world deployment
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Are ML systems ready for the real world?




Core issue: Brittleness
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[Szegedy et al. 2013]

Long history in “standard” ML:
[Biggio et al. 2013] [Dalvi et al. 2004][Lowd
Meek 2005] [Globerson Roweis 2006][Kolcz
Teo 2009][Barreno et al. 2010] [Biggio et al.

2010][Biggio et al. 2014][Srndic Laskov 2013]



Real-world perturbations?
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[Athalye Engstrom lIlyas Kwok 2017]



More natural examples?
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rifle { N

plow, plouf

[Fawzi Frossard 2015]
[Engstrom Tran T Schmidt Madry 2017]

assault ri

Training on rotations does not solve the problem



Black-box attacks?

5" Microsoft Azure

3 Google Cloud Vision AP = =
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Does black-box mean secure? No.

Query attacks: Directly use input-output queries  [Chen et al. 2017]

[Szegedy et al. 2013,

Transfer attacks: Just attack a similar model
Papernot et al. 2016]



Beyond images?

[Carlini Wagner. 2018]: Can arbitrarily
Article: Super Bowl 50 confuse a speech recognition system

Paragraph: “Peyton Manning became the first quarter-
back ever to lead two different teams to multiple Super

Bowls. He is also the oldest quarterback ever to play o SHAN ~ twasthe
in a Super Bowl at age 39. The past record was held = % ’ :';‘: . be}'s :::s"m:s'
by John Elway, who led the Broncos to victory in Super A worst of times"
Bowl XXXIII at age 38 and is currently Denver’s Execu- T

tive Vice President of Football Operations and General
Manager. Quarterback Jeff Dean had jersey number 37

in Champ Bowl XXXIV.” WMMW x 0.001
Question: “What is the name of the quarterback who
was 38 in Super Bowl XXXIII?” ' '

Original Prediction: John Elway ; =
Prediction under adversary: Jeff Dean 1N\ “itis a truth
s % [ _:.{i . universally

A RN 4¥0 TV acknowledged

A that a single"

[Jia Liang 2017]: Irrelevant sentences

confuse reading comprehension models

[Grosse et al. 2017]: Small changes can
bypass malware detection systems



Why should we care?



[Sharif et al. 2016]

[Evtimov et al. 2018]

Already issues with spam and content filtering




Reliability

What we expect from Al

What we (sometimes) get

ML models are

very brittle



Human Alignment
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Why is this important to the model?



How do we train robust models?

1

1

Our focus



How do we find adv. examples?

differentiable
Standard training /

model 00 3 '.
N Y o<y
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Gradient Descent
Adversarial attacks to find O

.IgEaAX loss(0,x + 6,y)

f

Allowed perturbations: pixel-wise, rotations, ...




How do we train robustly?

Key observation: Adversarial examples are
not at odds with standard learning

Standard Generalization:

II]Hin ]Ex,y,\,D [lOSS(H) X, Y)]

Adversarially Robust Generalization:

min Exy~D [lgean loss(0,x + 6,y)]

N

Explicit set of invariances



Towards robust models

minE, ,_p [maxloss(6,x + 6,y)]

6 0EA
/ AN
finding a robust mode| finding a worst-case perturbation

(Stochastic) Gradient Descent on 0 (Projected) Gradient Descent on

(How do we get gradients of the max?)

Theorem (Danskin): Gradient at maximizer =@ Gradient of max

V, max f(x,y) = V, f(x*,y) x* = arg max f(x, y)

X



Towards robust models

minE, ,_p [maxloss(6,x + 6,y)]

6 6EA
/ AN
finding a robust mode| finding a worst-case perturbation

Improve robustness: Train on perturbed inputs

(aka “adversarial training” [Goodfellow et al. 2015])

Actually leads to robust models (with some care)



Key ingredient 1: Reliable attacks

We need to train on (almost) worst-case inputs

But: DNN |loss is non-convex
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Key ingredient 1: Reliable attacks

We need to train on (almost) worst-case inputs
But: DNN loss is non-convex

PGD can still find worst-case inputs reliably
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Key ingredient 2: Capacity

Robust models may need to be more expressive

100

o0
-

Weak models can fail to train

Robust
Accuracy
= O\
o O

N
o O

1 2 4 8 16 Higher capacity = more robust
Capacity scale



Robust models

Reliable attacks Sufficient capacity

Loss value
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' ,-Norm Z>-norm Rotation+Translation
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89% 66% 78%

MNIST
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Evaluating robustness can be hard

Many detenses are broken by adaptive attacks

@ Anish Athalye
I anishathalye

Defending against adversarial examples is [Ca rlini Wagner 201 6] [Ca rlini Wagner
still an unsolved problem; 7/8 defenses .

accepted to ICLR three days ago are already 201 7] [Ca rlini Wagner 201 7] [Athalye
broken: github.com/anishathalye/o ... (only

the defense from @aleks madry holds up to et al. 201 8] [Uesato et al. 201 8]

its claims: 47% accuracy on CIFAR-10)

Try multiple adaptive attacks
(JRobustML

robust-ml.org
Release code and models



Formal robustness verification

Prove robustness on specitic examples

Veritication Certification
[Tieng et al. 2019] [Wong Kolter 2018]
MIP solvers Convex relaxation
min, d(z’, x)
subject to  argmax,(fi(z')) # () ‘ B N _' < X
Accurate but intractable Bounds might be too loose

Accurate and efficient veritication largely open



Why is robust learning
so hard?



Robust generalization is haro

rr}gm Eyy-p [rggAX loss(8,x + 8,y)]

Robust Accuracy

00000000000000000000



Robust generalization is haro

min Ey , _p [loss(6,x,y)]

Standard Accuracy

minE, ., _p [maxloss(6,x + 8,y) 100%
6 X,y~D [ 0EA ’ 24 ] 80%
60%
40%
20%
0%
Robust Accuracy 0 20000 40000 60000 80000
Train Test
100%

1

Doesn’t happen “normally
0% >50% overfitting

60% /

40%

20%

% s robust learning

0 20000 40000 60000 80000

fundamentally harder?



Robust generalization is haro

Theorem: The sample complexity of robust generalization can
be significantly larger than that of “standard” generalization.

Specifically: There exists a d-dimensional distribution where:
— A single sample is enough to learn a good (standard) classifier

— But: Need at least Q(Jd) samples for a robust classiﬁep



Robust generalization is haro

Theorem: The sample complexity of robust generalization can
be significantly larger than that of “standard” generalization.

Empirically:
MNIST ‘ CIFAR-10 : SVHN
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Does robustness improve

Data augmentation: Train on random ‘M B | &
: : reloN | % | 8=
transformations of the input I | L&\
— Significantly improves test accuracy. n- & | = | ¥
ol A" Tt esr

. . Augment with the
Adversarial training & )
most helpful” example

Does adversarial training improve standard accuracy?



Does robustness improve

accuracy’?

Small sample Large sample
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Why are robust models less accurate?



Does robustness improve
accuracy’?

Theorem: There can exist an inherent trade-oft
between accuracy and robustness (no “free lunch”).

Strong correlation Weak correlation
with label \ / with label

Standard Training: use all the Adversarial Training: use only
features to maximize accuracy strong features (lower accuracy)



ML vs. “classical” security



Classical security exploits

Attackers use unintended
vulnerabilities to manipulate system

‘ﬁof Spectre: Side-eftects of speculative execution

W Heartbleed: Missing out-of-bounds read checks

"Correct” software should be unbreakable



ML security exploits

Robust features Non-robust features
Correlated with label Correlated with label on average,
even with adversary but can be manipulated

Adversary manipulates input
features used for classification



Predictive non-robust features

Accuracy CIFAR10 R. ImageNet
Features Sma” Standard 95% 97%
In Lr-norm
Non-robust 44% 64%
features

Other examples of unintuitive features
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Linear directions High-frequency patterns ~ Texture
[Jetley et al 2018] [Yin et al 2019] [Geirhos et al 2019]



Back to adversarial examples

Non-robust features can be quite predictive

We train classifiers to maximize accuracy:
No wonder they utilize non-robust features

Relying on non-robust features directly leads
to adversarial vulnerability

Thus: Adversarial examples are not bugs, they are features



Consequences

Transferability: Models learn similar non-robust features

100 ResNet-50 4

ResNet-18 gp® DenseNet
90

Adversarial

€@ Inception-v3

Transferability
(ResNet-50—X)

60
25 30 35 40 45 50

Test accuracy of X trained on non-robust

features from ResNet-50



Consequences

Dataset robustification: Removing non-robust
features can improve standard classifiers

Training set New training set

Restrict to features
of robust model

—

Standard training yields
robust classifiers

frog "Robustitied” frog



Humans vs ML Models

Equally valid classification methods

We need to explicitly enforce robustness




Robustness beyond security:
Robust models are more
human-alignea



Input Manipulation

Key Idea: Manipulate class scores for robust models

Bird 1%

Primate 96%

Truck 0%

Class maximization introduces salient features




Downstream applications

Image Generation

anemone fish




Better representations

Direct feature visualization
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Conclusions



Takeaways

ML models are really brittle

Brittleness can arise from non-robust features
Robust optimization can lead to robust models

Robustness as a tool for human-aligned models



Future directions

More robust models
Different perturbation sets
More comprehensive theoretical models

Further exploration of robust models

? robustness gradsci.org



