Security and Fairness of Deep Learning

Generative Adversarial Networks

Spring 2020

Today

* Background discussions
e “Latent” features
e Autoencoders
e Gradient descent variations

 Generative Adversarial Networks

“Latent” features

Recall: Linear score function

02 |05 (0120 [1.1 56

15 13 | 21 (toHl 32 231
0 [o025(02 [-03 | -12 24
%4 b 2

For CIFAR:

W: 10 x 3072
x: 3072x1
10 class scores

2-Layer neural network

s = Wy max (0, Wix)

For CIFAR:

~—

W1: 100 x 3072
” W1 h W2 S W2: 10x 100

x:3072x1
10 class scores

3072 100 10

* |terated construction: linear function followed by non-linear function

* Training network: learn W1, W2 using stochastic gradient descent; use
backpropagation to compute gradients

“latent” features

* Unforced
 Compare to input features, target class feature

* Uninterpretable
* Visualization methods can help

* Feature extractors
* “General purpose” vision models and “transfer learning”

VGG16 use-case

 Download pre-trained model
up to the first fully connected
layer.

* Add another fully connected t “

layer to intended output.

* Train only the new
parameters on your dataset.

112 x 128

H56|x 56 x 256

28 x 28 x 512

!,

KA XDH12
2

-—

l

—

7
x14 X"’yj l 1 x 1% 4096

@ convolution+ReLU

@ max pooling

| fully connected+ReLLU

| softmax

Example for 1000 classes.

1x1x1000

Autoencoders

Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

Features z ﬁﬁ'i
I Encoder A ﬁ

Input data T sﬂw
nu el < [N

Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation

from unlabeled training data

Z usually smaller than x
(dimensionality reduction)

Q: Why dimensionality
reduction?

Features

Originally: Linear +
nonlinearity (sigmoid)

Later: Deep, fully-connected
Later: ReLU CNN

v P | = Ve
yA - -’ —b-. L \

I Encoder ’:W‘FA ﬁ

Input data

ol MRS

a7l < s

Autoencoders

Reconstructed data

e i =
How to learn this feature representation? ’3 ‘n
Trai h that feat b dt truct original dat

“Autosncoding’ - encoding tse oo e IR S AN
-Eﬁ** M

Reconstructed
input data

Encoder: 4-layer conv
Decoder: 4- Iayer upconv

Decoder

0

T ut data
Features YA E_..

xZ

Encoder .’Eﬁ ﬁ

o el 2 2
sl /e < H5

Input data

Autoencoders

Train such that features

can be used to L2 Loss function:

reconstruct original data

|z —&[*

!

Reconstructed

input data

Features

Decoder

Encoder

Input data

|
|

Reconstructed data

o e = T R
2 Y T

LIS A
-EH; Nlay

Encoder: 4-layer conv
Decoder: 4-layer upconv

ut data
2 R
L &lS
el LR g
sl « NS

In

Autoencoders for unsupervised pretraining

Reconstructed
input data

z
Features z \ After training,
L

Input data

Autoencoders for unsupervised pretraining

Loss function
(Softmax, etc) bird plane

/ \ dog deer truck
Y

Predicted Label

Train for final task

. e Fine-tune
Classifier (sometimes with

(J]

Encoder can be I _er)coder' | dat

used to initialize a Features A jointly with small data)
H

supervised model classifier
Encoder

Input data

Stacked auto-encoders: Bengio et al., Greedy Layer-Wise Training of Deep Networks, NIPS 2006

https://papers.nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks.pdf

Gradient descent variations

More gradient descent variations

Initialize:
e O -- parameters

Do for epochs, instances, batches, ...

c <0 —nVyL(0,x,y)

Initialize:
0 = (64,0,)-- parameters

Do for epochs, instances, batches, ...

* 01 <01 — NV, L16,x,y)
* 0, <0, — 77‘762L2(9,x,y)

Variations

Update in batches.
Learning rate variations.

Learning things other than parameters.
* Adversarial examples.

Update only a subset of parameters.
* Transfer learning, unsupervised pre-training

Multiple (competing) loss functions.
* GAN (today)
* Privacy/fairness applications (later)
* Loss 1 =target class prediction loss
* Loss 2 = - prediction of private/sensitive feature

Generative Adversarial Networks

Generative models

 Collect large amount of data in some domain

* Train generative model to generate data like it
 Compare to “discriminative”

Generative model

e Given training data generate samples from same distribution

4 e,

Training data ~ p,_._(X) Generated samples ~ p__.(X)

Want to learn p_ . (x) similar to p ,_._(X)

Source: Fei-Fei Li et al.

Key idea

* Generative models cannot memorize training data since they are not
given enough parameters

* Forced to learn higher-level features from which they can reconstruct
data

Why generative models?

* Long-term hope
e Learn the “natura

I”

features of a dataset

* Current applications

* image denoising, inpainting, super-resolution, and neural
network pretraining in cases where labeled data is expensive (will discuss
today)

https://math.berkeley.edu/~sethian/2006/Applications/ImageProcessing/noiseremoval.html
https://en.wikipedia.org/wiki/Inpainting
https://en.wikipedia.org/wiki/Super-resolution_imaging
http://image.diku.dk/shark/sphinx_pages/build/html/rest_sources/tutorials/algorithms/deep_denoising_autoencoder_network.html

Generative models

* Generative adversarial networks (GAN)

* Other models
 Variational autoencoders (see also: Variational fair autoencoder)
e Boltzmann machines

https://arxiv.org/pdf/1312.6114.pdf
https://arxiv.org/pdf/1511.00830.pdf
http://www.deeplearningbook.org/contents/generative_models.html

GANSs

* Goal: Sample from complex, high-dimensional training distribution

* Approach
e Sample from a simple distribution (e.g., random noise)
* Learn transformation to training distribution

* Question
* How to represent this complex transformation?
* A neural network!

GANSs

Output: Sample from
training distribution

Generator
Network

*

Input: Random noise Z

* Implicit density estimation
e Can sample from training distribution without explicitly representing it

Training GANSs

* Two player game
* Generator: try to fool discriminator by generating real-looking images
e Discriminator: try to distinguish between real and fake images

Real or Fake

¢

Discriminator Network

‘ | Real Images
! ﬂ— e (from training set)
Generator Network

t

Random noise z

Fake Images
(from generator)

Training GANSs

* Two player game
* Generator: try to fool discriminator by generating real-looking images
e Discriminator: try to distinguish between real and fake images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

n%in max [E:cfvpdata log Dy, (z) + E;~p(z) log(1 — De, (G, (z)))]
g d L] L I

Discriminétor output Discrimina‘tor output for
for real data x generated fake data G(z)

Training GANSs

Train jointly in minimax game
Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max []Em~pdata log Do, () + E.np(z) log(1 — Do, (G, (z)))]
g d L] L l

Discriminétor output Discrimina'tor output for
for real data x generated fake data G(z)

- Discriminator (6,) wants to maximize objective such that D(x) is close to 1 (real) and
D(G(z)) is close to 0 (fake)

- Generator (6) wants to minimize objective such that D(G(z)) is close to 1
C . g’ : T .
(discriminator is fooled into thinking generated G(z) is real)

Training GANSs

Minimax objective function:

min max [Empdm log Dy, (z) + Eznp(z) log(1 — Do, (G, (Z)))]
g d

Alternate between:
1. Gradient ascent on discriminator

max [Ex~pda.m log Dy, (%) + Enp(z) l0g(1 — Dg, (G, (Z)))]
d

2. Gradient descent on generator
n;in Erp(z) log(l — Dg,(Go, (2)))
g

Training GANSs

Minimax objective function:

I%in II(lQELX []Ewdiata log Dy, (z) +]EZNP(Z) log(1 — D, (G99 (z)))]
g 0d

Alternate between:

1. Gradient ascent on discriminator
Gradient signal

moa'X [Ea:rvpdam log Do, (z) + IEzwp(z) log(1 — Dy, (Geg (Z)))] dominated by region
¢ where sample is

2. Gradient descent on generator already good

minE,,,) log(1 — Dg,(Gs, (2)))

4

fg When sample is likely:
fake, wantto learn '/

In practice, optimizing this generator objective from it to improve L
does not work welll generator. But /

gradient in this region-
s relatively flat! K

o

0.2 04 06 08 10

Training GANSs

Minimax objective function:

min max [Esvp,.., 108 Do, (7) + Exny(o 08(1 — Do, (G, (2)]
g d

Alternate between:
1. Gradient ascent on discriminator

trax |:E$diata log Dg, () + Ep(z) log(1 — Dy, (G, (z)))]
d

2. Instead: Gradient ascent on generator, different
objective
: max Ep(z) log(Do, (G, (2)))

-— log{l1 -D(G(z)))
— —logD(G(z))

- ~ w -

/

Instead of minimizing likelihood of discriminator being correct, now High gradient signal
maximize likelihood of discriminator being wrong. 2
Same objective of fooling discriminator, but now higher gradient

signal for bad samples => works much better! Standard in practice.

-3

Tos

Cow:-gradient signal

Training GANSs

Putting it together: GAN training algorithm

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {2(1), ..., 2(™)} from noise prior p,(z).
e Sample minibatch of m examples {z(1),...,2(™} from data generating distribution
pdata(m)-
e Update the discriminator by ascending its stochastic gradient:
Vo,— Z; | log Dy, (z) + log(1 — Da, (G, (1))]
end for
e Sample minibatch of m noise samples {z(%), ..., 2(™)} from noise prior p,(z).
¢ Update the generator by ascending its stochastic gradient (improved objective):
1 T)
Vo, — > log(Da, (Go, (7))
i=1

end for

Convergence theorem

* The training criterion allows one to recover the data generating
distribution as G and D are given enough capacity

Proposition 2. If G and D have enough capacity, and at each step of Algorithm 1, the discriminator
is allowed to reach its optimum given G, and p, is updated so as to improve the criterion

Bz pine 108 D (®)] + Egnp, [log(1 — Di(2))]

then Pqg converges 10 Ddata

Training GANSs

* Two player game
* Generator: try to fool discriminator by generating real-looking images
e Discriminator: try to distinguish between real and fake images

Real or Fake

¢

Discriminator Network

‘ | Real Images
! ﬂ— e (from training set)
Generator Network

t

Random noise z

Fake Images
(from generator)

Generated samples

Generated samples

Generated samples

Generated samples (CIFAR-10)

-

GANs: Convolutional architectures

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

GAN and company: implications

* Can generate and manipulate data/images that resemble a given
distribution.

I »
|
)

Real DeepFake

References and acknowledgments

* Fei-Fei Li et al.: Generative models

* OpenAl blog post on Generative Models

e Goodfellow et al.: Generative Adversarial Networks

* Spring 2018 Course

e Unsupervised pretraining reference

* Erhan et al., Why Does Unsupervised Pre-training Help Deep Learning?, JMLR
11 (2010) 625-660

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture13.pdf
https://blog.openai.com/generative-models/
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://www.jmlr.org/papers/volume11/erhan10a/erhan10a.pdf

