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● Local(Instance-wise) methods ⇒ Most important features of the input
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● Local(Instance-wise) methods ⇒ Most important features of the input

It’s a cab!

Why do you think it’s a cab?
What is a cab in your eyes?

Wheel? 
Window?
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● Global (label-wise) ⇒ Most important features of the class

It’s a cab!

Why do you think it’s a cab?
What is a cab in your eyes?

Cabs have wheels
Cabs are yellow

Cabs are on asphalt 
roads
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● Global (label-wise) ⇒ Most important features of the class
● TCAV tests queries

It’s a cab!

Why do you think it’s a cab?
What is a cab in your eyes?

Cabs have wheels?
Cabs are yellow?
Cabs are on asphalt 
roads?
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● In what follows:
○ Review Concept Activation Vectors (CAVs)
○ Review the TCAV method
○ Introduce Concept Discovery in deep neural networks
○ Introduce ACE method
○ Describe ACE experiments and results
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Concept Activation Vectors (CAVs)
● Define a concept to test ⇒ wheel, asphalt texture, etc.
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Concept Activation Vectors (CAVs)
● Define a concept to test ⇒ wheel, asphalt texture, etc
● Choose a bottleneck layer

Linear binary 
classifier

How good is the 
classification? 
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● Define a concept to test ⇒ wheel, asphalt texture, etc
● Choose a bottleneck layer

Random 
examples

Concept 
Activation 

Vector
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● Define a concept to test ⇒ wheel, asphalt texture, etc
● Choose a bottleneck layer

Random 
examples

CAV
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● Test example: Is the concept associates with network’s decision 
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● Test example: Is the concept associated with network’s decision? 

Zebra 
Score
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● Hypothesis?
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Score
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Testing Concept Activation Vectors (TCAV)
● Repeat for bunch of test examples: Concept Cav VS Random Cavs ⇒ Statistical Test 
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Testing Concept Activation Vectors (TCAV)
● TCAV score = Ratio of test examples where 

23

Zebra 
Score



● TCAV works for human concepts
○ Good for interpretability
○ A few labeled examples (10-30) are shown to be enough
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● TCAV works for man-defined concepts
○ Good for interpretability
○ Easy to label a few examples

○ Hard to keep tractable

■ Striped? Horizontally Striped? 
Black-&-white striped? 
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● TCAV works for man-defined concepts
○ Good for interpretability
○ Easy to label a few examples

○ Hard to keep tractable?

■ Striped? Horizontally Striped? 
Black-&-white striped?

○ Super-human performance
Female

What to 
even ask?
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● TCAV works for man-defined concepts
○ Good for interpretability
○ Easy to label a few examples

○ Hard to keep tractable?

■ Striped? Horizontally Striped? 
Black-&-white striped?

○ Super-human performance

○ Concepts are not directly related to image 
pixels
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Testing Concept Activation Vectors (TCAV)



TCAV Saliency Maps
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Global (General 
Behavior)

Local (Instance-wise 
behavior)

TCAV Saliency Maps
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Global

Concepts

Local

Pixels

TCAV Saliency Maps
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Global

Concepts

Human-in-the-loop

Local

Pixels

Automatic

TCAV Saliency Maps
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Global

Concepts

Human-in-the-loop

Local

Pixels

Automatic

TCAV Saliency Maps

Global

Concepts = Pixels

Automatic

Best of both world
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Global

Concepts

Human-in-the-loop

Local

Pixels

Automatic

TCAV Saliency Maps

Global

Concepts = Pixels

Automatic

ACE
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TCAV Saliency Maps

Cab
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ACE
TCAV Saliency Maps

ACE
Police Van

Cab
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Concept Discovery
● Inputs:

○ A trained model
○ A target class

38



Concept Discovery
● Inputs:

○ A trained model
○ A target class
○ A bottleneck layer
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Concept Discovery
● First step is to discover a class’s concepts    e.g. For police van: wheel, sky, asphalt, etc
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Concept Discovery
● First step is to discover a class’s concepts    e.g. For police van: wheel, sky, asphalt, etc
● Looking back at CAVs   highly accurate
● Assumption: Concept examples form clusters in the activation space
● How to find concept examples?

○ Can appear several times, once or not at all
○ Appear with different sizes

?
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Concept Discovery
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Humans 
choose 

concepts

Example 
concept 
images

Clustering in 
activation 

space

Clustering in 
activation 

space

Example 
concept 
images

Human 
interprets 
concepts

TCAV

ACE



Concept Discovery
● Idea: Segment every image with several resolutions ⇒ SLIC
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Concept Discovery
● Idea: Segment every image with several resolutions         Remove duplicate segments
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Concept Discovery
● Idea: Segment every image with several resolutions         Remove duplicate segments
● Resize each segment to the network input size

, , ,...
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Concept Discovery
● Idea: Segment every image with several resolutions         Remove duplicate segments
● Resize each segment to the network input size  “Resized Patches”
● Map resized patches to activation space         Clustering with noise removal

Problem: Lots of irrelevant resized patches
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Concept Discovery
Colors

57



Concept Discovery
Textures

58



Concept Discovery
Objects
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Concept Discovery
Human related
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Concept Discovery
We are running intruder test with human subjects

Discovered Concepts Hand-labeled concept
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ACE
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ACE
1. Example results: Inception-V3, Mixed-8, Basketball 
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ACE
Example results: Inception-V3, Mixed-8, Drilling Platform 
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ACE
Example results: Inception-V3, Mixed-8, Volcano
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Experiments
● How to verify ACE?
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Experiments
● Concept deletion/addition:
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Experiments
● Concept deletion/addition:

○ Take a bunch of test images
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● Concept deletion/addition:
○ Average results for 100 Imagenet classes

Experiments 
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Experiments
● Concept stitching experiment:

○ Concepts are discovered as a set of patches
○ We can randomly stitch patches of top-k concepts of each class
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Experiments
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Thanks!
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Paper: https://arxiv.org/pdf/1902.03129.pdf

Code: https://github.com/amiratag/ACE

https://arxiv.org/pdf/1902.03129.pdf
https://github.com/amiratag/ACE

