

Been Kim

Towards Automatic Concept-based Explanations

Amirata Ghorbani James Wexler

James Zou

• A trained model

• A trained model

Why do you think it's a cab? What is a cab in your eyes?

• Local(Instance-wise) methods ⇒ Most important features of the input

• Local(Instance-wise) methods ⇒ Most important features of the input

• Local(Instance-wise) methods ⇒ Most important features of the input

• Global (label-wise) ⇒ Most important features of the class

Why do you think it's a cab? What is a cab in your eyes?

- Global (label-wise) ⇒ Most important features of the class
- TCAV tests queries

Why do you think it's a cab? What is a cab in your eyes?

- In what follows:
 - Review Concept Activation Vectors (CAVs)
 - Review the TCAV method
 - Introduce Concept Discovery in deep neural networks
 - Introduce ACE method
 - Describe ACE experiments and results

• Define a concept to test \Rightarrow wheel, asphalt texture, etc.

- Define a concept to test \Rightarrow wheel, asphalt texture, etc
- Choose a bottleneck layer

- Define a concept to test \Rightarrow wheel, asphalt texture, etc
- Choose a bottleneck layer

- Define a concept to test \Rightarrow wheel, asphalt texture, etc
- Choose a bottleneck layer

- Define a concept to test \Rightarrow wheel, asphalt texture, etc
- Choose a bottleneck layer

- Define a concept to test \Rightarrow wheel, asphalt texture, etc
- Choose a bottleneck layer

- Define a concept to test \Rightarrow wheel, asphalt texture, etc
- Choose a bottleneck layer

- Define a concept to test \Rightarrow wheel, asphalt texture, etc
- Choose a bottleneck layer

- Define a concept to test \Rightarrow wheel, asphalt texture, etc
- Choose a bottleneck layer

• Test example: Is the concept associates with network's decision

• Test example: Is the concept associated with network's decision?

• Hypothesis?

• Repeat for bunch of test examples: Concept Cav VS Random Cavs ⇒ Statistical Test

TCAV score = Ratio of test examples where

- TCAV works for human concepts
 - Good for interpretability
 - A few labeled examples (10-30) are shown to be enough

- TCAV works for man-defined concepts
 - Good for interpretability
 - Easy to label a few examples
 - Hard to keep tractable
 - Striped? Horizontally Striped? Black-&-white striped?

- TCAV works for man-defined concepts
 - Good for interpretability
 - Easy to label a few examples
 - Hard to keep tractable
 - Striped? Horizontally Striped?
 Black-&-white striped?

- TCAV works for man-defined concepts
 - Good for interpretability
 - Easy to label a few examples
 - Hard to keep tractable?
 - Striped? Horizontally Striped?
 Black-&-white striped?
 - Super-human performance

- TCAV works for man-defined concepts
 - Good for interpretability
 - Easy to label a few examples
 - Hard to keep tractable?
 - Striped? Horizontally Striped?
 Black-&-white striped?
 - Super-human performance
 - Concepts are not directly related to image pixels

ACE

TCAV

Saliency Maps

TCAV

Saliency Maps

Global (General Behavior) Local (Instance-wise behavior)

TCAV

Saliency Maps

Global

Concepts

Local

Pixels

TCAV	Saliency Maps
Global	Local
Concepts	Pixels
Human-in-the-loop	Automatic

ACE		
TCAV	Best of both world	Saliency Maps
Global	Global	Local
Concepts	Concepts = Pixels	Pixels
Human-in-the-loop	Automatic	Automatic

ACE		
TCAV	ACE	Saliency Maps
Global	Global	Local
Concepts	Concepts = Pixels	Pixels
Human-in-the-loop	Automatic	Automatic

ACE

TCAV

Saliency Maps

ACE

TCAV

Zebra TCAV in googlenet

ACE

Police Van

Saliency Maps

- Inputs:
 - A trained model
 - A target class

- Inputs:
 - A trained model
 - A target class
 - A bottleneck layer

• First step is to discover a class's concepts — e.g. For police van: wheel, sky, asphalt, etc

- First step is to discover a class's concepts e.g. For police van: wheel, sky, asphalt, etc
- Looking back at CAVs

- First step is to discover a class's concepts e.g. For police van: wheel, sky, asphalt, etc
- Looking back at CAVs —>highly accurate

- First step is to discover a class's concepts e.g. For police van: wheel, sky, asphalt, etc
- Looking back at CAVs —>highly accurate

- First step is to discover a class's concepts e.g. For police van: wheel, sky, asphalt, etc
- Looking back at CAVs —>highly accurate
- Assumption: Concept examples form clusters in the activation space

- First step is to discover a class's concepts e.g. For police van: wheel, sky, asphalt, etc
- Looking back at CAVs —>highly accurate
- Assumption: Concept examples form clusters in the activation space
- How to find concept examples?

- First step is to discover a class's concepts e.g. For police van: wheel, sky, asphalt, etc
- Looking back at CAVs —>highly accurate
- Assumption: Concept examples form clusters in the activation space
- How to find concept examples?

- First step is to discover a class's concepts e.g. For police van: wheel, sky, asphalt, etc
- Looking back at CAVs —> highly accurate
- Assumption: Concept examples form clusters in the activation space
- How to find concept examples?
 - Can appear several times, once or not at all
 - Appear with different sizes

• Idea: Segment every image with several resolutions \Rightarrow SLIC

• Idea: Segment every image with several resolutions —> Remove duplicate segments

- Idea: Segment every image with several resolutions —> Remove duplicate segments
- Resize each segment to the network input size

- Idea: Segment every image with several resolutions Remove duplicate segments
- Resize each segment to the network input size

- Idea: Segment every image with several resolutions Remove duplicate segments
- Resize each segment to the network input size --> "Resized Patches"
- Map resized patches to activation space

- Idea: Segment every image with several resolutions Remove duplicate segments
- Resize each segment to the network input size --> "Resized Patches"
- Map resized patches to activation space —> Clustering

- Idea: Segment every image with several resolutions —> Remove duplicate segments
- Resize each segment to the network input size —> "Resized Patches"
- Map resized patches to activation space —> Clustering

Problem: Lots of irrelevant resized patches

- Idea: Segment every image with several resolutions —> Remove duplicate segments
- Resize each segment to the network input size --> "Resized Patches"
- Map resized patches to activation space —> Clustering with noise removal

Problem: Lots of irrelevant resized patches

Colors

Textures

Objects

Human related

We are running intruder test with human subjects

1. Example results: Inception-V3, Mixed-8, Basketball

Example results: Inception-V3, Mixed-8, Drilling Platform

Example results: Inception-V3, Mixed-8, Volcano

• How to verify ACE?

• Concept deletion/addition:

- Concept deletion/addition:
 - Take a bunch of test images

- Concept deletion/addition:
 - Take a bunch of test images
 - Segment them the same way

- Concept deletion/addition:
 - Take a bunch of test images
 - Segment them the same way
 - Assign each patch its NN cluster in activation space

- Concept deletion/addition:
 - Take a bunch of test images
 - Segment them the same way
 - Assign each patch its NN cluster in activation space
 - Remove/add patches with concept TCAV score order

- Concept deletion/addition:
 - Take a bunch of test images
 - Segment them the same way
 - Assign each patch its NN cluster in activation space
 - Remove/add patches with assigned concept's TCAV score order

- Concept deletion/addition:
 - Take a bunch of test images
 - Segment them the same way
 - Assign each patch its NN cluster in activation space
 - Remove/add patches with assigned concept's TCAV score order

- Concept deletion/addition:
 - Take a bunch of test images
 - Segment them the same way
 - Assign each patch its NN cluster in activation space
 - Remove/add patches with assigned concept's TCAV score order

- Concept deletion/addition:
 - Average results for 100 Imagenet classes

- Concept stitching experiment:
 - Concepts are discovered as a set of patches
 - We can randomly stitch patches of top-k concepts of each class

Thanks!

Paper: https://arxiv.org/pdf/1902.03129.pdf

Code: https://github.com/amiratag/ACE