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Today

* Rest of google cloud setup

* Brief overview of

e Second order optimization
e Batch normalization
e CNN visualization

* Reading research papers

* Tensorflow practice: visualizing hwl models



Second Order Optimization: Key insight

Leverage second-order derivatives (gradient) in addition to first-order
derivatives to converge faster to minima



Newton’s method for convex functions

* |[terative update of model parameters like gradient descent

* Key update step

 Compare with gradient descent
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In two steps

* Function of single variable
* Function of multiple variables



Derivative at minima

f(x) dx /




Turning Points

e Both maxima and minima have zero derivative

* Both are turning points



Derivatives of a curve
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* Both maxima and minima are turning points

e Both maxima and minima have zero derivative



Derivative of the derivative of the curve
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* The second derivative f”’(x) is —ve at maxima and +ve at minima



Summary
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In two steps

* Function of single variable
* Function of multiple variables



Gradient of function with multi-variate inputs

eConsider f(X) = f(xq, x5, ..., Xp)

af(X) 9f(X) af (X)
.Vf(X) o axy dx- 00Xy

Note: Scalar function of multiple variables



The Hessian

* The Hessian of a function f (x4, x5, ..., Xy,)

sz(xl,...,xn):

or o
dx; 0x,0x,
of ¥
0X,0x, x5
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Jnconstrained minimization of multivariate
function

1. Solve for the X where the gradient equation equals to zero

VI(X)=0

2. Compute the Hessian Matrix V2 f(X) at the candidate solution and
verify that

Hessian is positive definite (eigenvalues positive) -> to identify local minima

Hessian is negative definite (eigenvalues negative) -> to identify local

maxima



Catch

* Closed form solutions not always available

* Instead use an iterative refinement approach
 (Stochastic) gradient descent makes use of first-order derivatives (gradient)
e Can we do better with second-order derivatives (Hessian)?



Newton’s method for convex functions

* |[terative update of model parameters like gradient descent

* Key update step

 Compare with gradient descent
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Taylor series

The Taylor series of a function f (x) that is infinitely differentiable at the
point a is the power series

f'(a) f'(a)

(z — a) - f(a)

fla) + (z — a)® + 3 (z—a)® +---




Taylor series second-order approximation

The Taylor series second-order approximation of a function f (x) that
is infinitely differentiable at the point a is

f(a) + /(@)@ —a) + 5 1 (a)(x — a)?



Local minimum of Taylor series second-order
approximation

f(a) + /()& — a) + 5 /" (a)(x — a)’

1
Fa)

f'(a) if f"(a) > 0



Newton’s method approach

Take step to local minima of second-order Taylor approximation of loss
function



Example

e f(X)

- fquad(x)

Murphy, Machine Learning, Fig 8.4



Tay
mu

or series second-order approximation for
tivariate function

fla) + V(@) —a) + 5 7 f(a)(x — a)’

Fa*) + v f(a*) + S Hab) (- ab)?



Deriving update rule

Local minima of this function

Ft) + 1) + 5 H() @ — by
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Weakness of Newton’s method (1)

* Appropriate when function is strictly convex
* Hessian always positive definite

e f(X)

T fquad(x)

Murphy, Machine Learning, Fig 8.4



Weakness of Newton’s method (2)

* Computing inverse Hessian explicitly is too expensive
* O(k”3) if there are k model parameters: inverting a k x k matrix



Quasi-Newton methods address weakness

* lteratively build up approximation to the Hessian

* Popular method for training deep networks

e Limited memory BFGS (L-BFGS)
 Will discuss in a later lecture
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Example
* Minimize
f(x,x,,x;)= (xl)2 +x1(1—x2)—(x2)2 — X, X, +(x3)2 + X,

e Gradient

- T
2x, +1-x,

vf

— X, +2x, — X,

— X, +2x;+1



Example

* Set the gradient to null

2x +1-x, | [0
Vf=0=| —x,+2x,-x, |=| O
-X, +2x,+1 0

» Solving the 3 equations system with 3 unknowns




Example

2 -1 0
* Compute the Hessian matrix v*f=| -1 2 -1
0 -1 2

* Evaluate the eigenvalues of the Hessian matrix
A =3414, A,=0.586, A, =2

* All the eigenvalues are positive => the Hessian matrix is positive
definite

* This point is a minimum




