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Today

• Rest of google cloud setup
• Brief overview of
• Second order optimization
• Batch normalization
• CNN visualization

• Reading research papers
• Tensorflow practice: visualizing hw1 models



Second Order Optimization: Key insight

Leverage second-order derivatives (gradient) in addition to first-order 
derivatives to converge faster to minima 



Newton’s method for convex functions

• Iterative update of model parameters like gradient descent

• Key update step

• Compare with gradient descent

x
k+1 = x

k �H(xk)�1 5 f(xk)

xk+1 = xk � ⌘k 5 f(xk)



In two steps

• Function of single variable
• Function of multiple variables



Derivative at minima

x

f(x)
!"
!# = 0



Turning Points

• Both maxima and minima have zero derivative
• Both are turning points
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Derivatives of a curve

• Both maxima and minima are turning points
• Both maxima and minima have zero derivative
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xf(x)
f’(x)



Derivative of the derivative of the curve

• The second derivative f’’(x) is –ve at maxima and +ve at minima
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Summary
• All locations with zero 

derivative are critical points

• The second derivative is 
• ≥ 0 at minima
• ≤ 0 at maxima
• Zero at inflection points
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In two steps

• Function of single variable
• Function of multiple variables



Gradient of function with multi-variate inputs

•Consider ! " = ! $%, $', … , $)

•+!(") = ./ 0
.12

./ 0
.13

⋯ ./ 0
.15

Note: Scalar function of multiple variables 



The Hessian

• The Hessian of a function !(#$, #&, … , #()
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∇2 f (x1,..., xn ) :=
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Unconstrained minimization of multivariate 
function
1. Solve for the ! where the gradient equation equals to zero

2. Compute the Hessian Matrix "#$(!) at the candidate solution and 
verify that
• Hessian is positive definite (eigenvalues positive)  -> to identify local minima 
• Hessian is negative definite (eigenvalues negative) -> to identify local 

maxima
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Catch

• Closed form solutions not always available

• Instead use an iterative refinement approach
• (Stochastic) gradient descent makes use of first-order derivatives (gradient)
• Can we do better with second-order derivatives (Hessian)?



Newton’s method for convex functions

• Iterative update of model parameters like gradient descent

• Key update step

• Compare with gradient descent

x
k+1 = x

k �H(xk)�1 5 f(xk)

xk+1 = xk � ⌘k 5 f(xk)



Taylor series 

The Taylor series of a function f (x) that is infinitely differentiable at the 
point a is the power series



Taylor series second-order approximation 

f(a) + f 0(a)(x� a) +
1

2
f 00(a)(x� a)2

The Taylor series second-order approximation of a function f (x) that 
is infinitely differentiable at the point a is



Local minimum of Taylor series second-order 
approximation 

f(a) + f 0(a)(x� a) +
1

2
f 00(a)(x� a)2

xm = a� 1

f 00(a)
f 0(a) if f 00(a) > 0



Newton’s method approach

Take step to local minima of second-order Taylor approximation of loss 
function



Example

Murphy, Machine Learning, Fig 8.4



Taylor series second-order approximation for 
multivariate function 

f(a) +5f(a)(x� a) +
1

2
5 f2(a)(x� a)2

f(xk) +5f(xk) +
1

2
H(xk)(x� x

k)2



Deriving update rule

Local minima of this function

is 

x = x
k �H(xk)�1 5 f(xk)

f(xk) +5f(xk) +
1

2
H(xk)(x� x

k)2



Weakness of Newton’s method (1)

• Appropriate when function is strictly convex
• Hessian always positive definite 

Murphy, Machine Learning, Fig 8.4



Weakness of Newton’s method (2)

• Computing inverse Hessian explicitly is too expensive
• O(k^3) if there are k model parameters: inverting a k x k matrix



Quasi-Newton methods address weakness

• Iteratively build up approximation to the Hessian

• Popular method for training deep networks
• Limited memory BFGS (L-BFGS)
• Will discuss in a later lecture
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Example

• Minimize

• Gradient 
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f (x1, x2, x3) = (x1)
2 + x1(1− x2 )− (x2 )

2 − x2x3 + (x3)
2 + x3
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Example

• Set the gradient to null

• Solving the 3 equations system with 3 unknowns
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2x1 +1− x2
−x1 + 2x2 − x3
−x2 + 2x3 +1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
0
0
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x =
x1
x2
x3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
−1
−1
−1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥



Example

• Compute the Hessian matrix

• Evaluate the eigenvalues of the Hessian matrix

• All the eigenvalues are positive => the Hessian matrix is positive 
definite

• This point is a minimum
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