
Convolutional Neural Networks
Spring 2020

Security and Fairness of Deep Learning



Neural network architectures

• Full connectivity is a problem for image inputs
• Scalability: 200x200x3 images imply 120,000 weights per neuron in first 

hidden layer
• Overfitting: Too many parameters would lead to overfitting



Convolutional Neural Networks [LeCun 1989]

• Specialized to the case where inputs are images (more generally, data 
with a grid-like topology) 

• Sparse connections, parameter sharing
• Efficient to train 
• Avoid overfitting

• Generalize across spatial translations of input
• By sliding “filters” that learn distinct patterns (edges, blobs of color etc.)



Key idea

• Replace matrix multiplication in neural networks with convolution

• Everything else remains the same



Edge detection by convolution

(Goodfellow 2016)

Edge Detection by 
Convolution

CHAPTER 9. CONVOLUTIONAL NETWORKS

Figure 9.6: Efficiency of edge detection. The image on the right was formed by taking
each pixel in the original image and subtracting the value of its neighboring pixel on the
left. This shows the strength of all of the vertically oriented edges in the input image,
which can be a useful operation for object detection. Both images are 280 pixels tall.
The input image is 320 pixels wide while the output image is 319 pixels wide. This
transformation can be described by a convolution kernel containing two elements, and
requires 319 ⇥ 280 ⇥ 3 = 267, 960 floating point operations (two multiplications and
one addition per output pixel) to compute using convolution. To describe the same
transformation with a matrix multiplication would take 320 ⇥ 280 ⇥ 319 ⇥ 280, or over
eight billion, entries in the matrix, making convolution four billion times more efficient for
representing this transformation. The straightforward matrix multiplication algorithm
performs over sixteen billion floating point operations, making convolution roughly 60,000
times more efficient computationally. Of course, most of the entries of the matrix would be
zero. If we stored only the nonzero entries of the matrix, then both matrix multiplication
and convolution would require the same number of floating point operations to compute.
The matrix would still need to contain 2 ⇥ 319 ⇥ 280 = 178, 640 entries. Convolution
is an extremely efficient way of describing transformations that apply the same linear
transformation of a small, local region across the entire input. (Photo credit: Paula
Goodfellow)

340

CHAPTER 9. CONVOLUTIONAL NETWORKS

Figure 9.6: Efficiency of edge detection. The image on the right was formed by taking
each pixel in the original image and subtracting the value of its neighboring pixel on the
left. This shows the strength of all of the vertically oriented edges in the input image,
which can be a useful operation for object detection. Both images are 280 pixels tall.
The input image is 320 pixels wide while the output image is 319 pixels wide. This
transformation can be described by a convolution kernel containing two elements, and
requires 319 ⇥ 280 ⇥ 3 = 267, 960 floating point operations (two multiplications and
one addition per output pixel) to compute using convolution. To describe the same
transformation with a matrix multiplication would take 320 ⇥ 280 ⇥ 319 ⇥ 280, or over
eight billion, entries in the matrix, making convolution four billion times more efficient for
representing this transformation. The straightforward matrix multiplication algorithm
performs over sixteen billion floating point operations, making convolution roughly 60,000
times more efficient computationally. Of course, most of the entries of the matrix would be
zero. If we stored only the nonzero entries of the matrix, then both matrix multiplication
and convolution would require the same number of floating point operations to compute.
The matrix would still need to contain 2 ⇥ 319 ⇥ 280 = 178, 640 entries. Convolution
is an extremely efficient way of describing transformations that apply the same linear
transformation of a small, local region across the entire input. (Photo credit: Paula
Goodfellow)

340

-1 -1

Input

Kernel
Output

Figure 9.6



2D Convolution

CHAPTER 9. CONVOLUTIONAL NETWORKS

a b c d

e f g h

i j k l

w x

y z

aw + bx +

ey + fz
aw + bx +

ey + fz
bw + cx +

fy + gz
bw + cx +

fy + gz
cw + dx +

gy + hz
cw + dx +

gy + hz

ew + fx +

iy + jz
ew + fx +

iy + jz
fw + gx +

jy + kz
fw + gx +

jy + kz
gw + hx +

ky + lz
gw + hx +

ky + lz

Input
Kernel

Output

Figure 9.1: An example of 2-D convolution without kernel-flipping. In this case we restrict
the output to only positions where the kernel lies entirely within the image, called “valid”
convolution in some contexts. We draw boxes with arrows to indicate how the upper-left
element of the output tensor is formed by applying the kernel to the corresponding
upper-left region of the input tensor.

334

Fig. Goodfellow et al. 2016

Sliding filters (kernels)



Sparse connectivity

(Goodfellow 2016)

Sparse Connectivity

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

Figure 9.2: Sparse connectivity, viewed from below: We highlight one input unit, x3,
and also highlight the output units in s that are affected by this unit. (Top)When s is
formed by convolution with a kernel of width 3, only three outputs are affected by x.
(Bottom)When s is formed by matrix multiplication, connectivity is no longer sparse, so
all of the outputs are affected by x3.

336

Sparse
connections
due to small
convolution

kernel

Dense
connections

Figure 9.2



Sparse connectivity

(Goodfellow 2016)

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

Figure 9.3: Sparse connectivity, viewed from above: We highlight one output unit, s3,
and also highlight the input units in x that affect this unit. These units are known
as the receptive field of s3. (Top)When s is formed by convolution with a kernel of
width 3, only three inputs affect s3. (Bottom)When s is formed by matrix multiplication,
connectivity is no longer sparse, so all of the inputs affect s3.

x1x1 x2x2 x3x3

h2h2h1h1 h3h3

x4x4

h4h4

x5x5

h5h5

g2g2g1g1 g3g3 g4g4 g5g5

Figure 9.4: The receptive field of the units in the deeper layers of a convolutional network
is larger than the receptive field of the units in the shallow layers. This effect increases if
the network includes architectural features like strided convolution (figure 9.12) or pooling
(section 9.3). This means that even though direct connections in a convolutional net are
very sparse, units in the deeper layers can be indirectly connected to all or most of the
input image.

337

Sparse Connectivity
Sparse

connections
due to small
convolution

kernel

Dense
connections

Figure 9.3



Growing receptive fields

(Goodfellow 2016)

Growing Receptive Fields

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

Figure 9.3: Sparse connectivity, viewed from above: We highlight one output unit, s3,
and also highlight the input units in x that affect this unit. These units are known
as the receptive field of s3. (Top)When s is formed by convolution with a kernel of
width 3, only three inputs affect s3. (Bottom)When s is formed by matrix multiplication,
connectivity is no longer sparse, so all of the inputs affect s3.

x1x1 x2x2 x3x3

h2h2h1h1 h3h3

x4x4

h4h4

x5x5

h5h5

g2g2g1g1 g3g3 g4g4 g5g5

Figure 9.4: The receptive field of the units in the deeper layers of a convolutional network
is larger than the receptive field of the units in the shallow layers. This effect increases if
the network includes architectural features like strided convolution (figure 9.12) or pooling
(section 9.3). This means that even though direct connections in a convolutional net are
very sparse, units in the deeper layers can be indirectly connected to all or most of the
input image.

337

Figure 9.4



Parameter sharing

(Goodfellow 2016)

Parameter SharingCHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3 x4x4 x5x5

s2s2s1s1 s3s3 s4s4 s5s5

Figure 9.5: Parameter sharing: Black arrows indicate the connections that use a particular
parameter in two different models. (Top)The black arrows indicate uses of the central
element of a 3-element kernel in a convolutional model. Due to parameter sharing, this
single parameter is used at all input locations. (Bottom)The single black arrow indicates
the use of the central element of the weight matrix in a fully connected model. This model
has no parameter sharing so the parameter is used only once.

for every location, we learn only one set. This does not affect the runtime of
forward propagation—it is still O(k ⇥ n)—but it does further reduce the storage
requirements of the model to k parameters. Recall that k is usually several orders
of magnitude less than m. Since m and n are usually roughly the same size, k is
practically insignificant compared to m⇥n. Convolution is thus dramatically more
efficient than dense matrix multiplication in terms of the memory requirements
and statistical efficiency. For a graphical depiction of how parameter sharing works,
see figure 9.5.

As an example of both of these first two principles in action, figure 9.6 shows
how sparse connectivity and parameter sharing can dramatically improve the
efficiency of a linear function for detecting edges in an image.

In the case of convolution, the particular form of parameter sharing causes the
layer to have a property called equivariance to translation. To say a function is
equivariant means that if the input changes, the output changes in the same way.
Specifically, a function f(x) is equivariant to a function g if f(g(x)) = g(f(x)).
In the case of convolution, if we let g be any function that translates the input,
i.e., shifts it, then the convolution function is equivariant to g. For example, let I
be a function giving image brightness at integer coordinates. Let g be a function

338

Convolution 
shares the same 

parameters 
across all spatial 

locations

Traditional 
matrix 

multiplication 
does not share 
any parameters

Figure 9.5



Edge detection by convolution

(Goodfellow 2016)

Edge Detection by 
Convolution

CHAPTER 9. CONVOLUTIONAL NETWORKS

Figure 9.6: Efficiency of edge detection. The image on the right was formed by taking
each pixel in the original image and subtracting the value of its neighboring pixel on the
left. This shows the strength of all of the vertically oriented edges in the input image,
which can be a useful operation for object detection. Both images are 280 pixels tall.
The input image is 320 pixels wide while the output image is 319 pixels wide. This
transformation can be described by a convolution kernel containing two elements, and
requires 319 ⇥ 280 ⇥ 3 = 267, 960 floating point operations (two multiplications and
one addition per output pixel) to compute using convolution. To describe the same
transformation with a matrix multiplication would take 320 ⇥ 280 ⇥ 319 ⇥ 280, or over
eight billion, entries in the matrix, making convolution four billion times more efficient for
representing this transformation. The straightforward matrix multiplication algorithm
performs over sixteen billion floating point operations, making convolution roughly 60,000
times more efficient computationally. Of course, most of the entries of the matrix would be
zero. If we stored only the nonzero entries of the matrix, then both matrix multiplication
and convolution would require the same number of floating point operations to compute.
The matrix would still need to contain 2 ⇥ 319 ⇥ 280 = 178, 640 entries. Convolution
is an extremely efficient way of describing transformations that apply the same linear
transformation of a small, local region across the entire input. (Photo credit: Paula
Goodfellow)

340

CHAPTER 9. CONVOLUTIONAL NETWORKS

Figure 9.6: Efficiency of edge detection. The image on the right was formed by taking
each pixel in the original image and subtracting the value of its neighboring pixel on the
left. This shows the strength of all of the vertically oriented edges in the input image,
which can be a useful operation for object detection. Both images are 280 pixels tall.
The input image is 320 pixels wide while the output image is 319 pixels wide. This
transformation can be described by a convolution kernel containing two elements, and
requires 319 ⇥ 280 ⇥ 3 = 267, 960 floating point operations (two multiplications and
one addition per output pixel) to compute using convolution. To describe the same
transformation with a matrix multiplication would take 320 ⇥ 280 ⇥ 319 ⇥ 280, or over
eight billion, entries in the matrix, making convolution four billion times more efficient for
representing this transformation. The straightforward matrix multiplication algorithm
performs over sixteen billion floating point operations, making convolution roughly 60,000
times more efficient computationally. Of course, most of the entries of the matrix would be
zero. If we stored only the nonzero entries of the matrix, then both matrix multiplication
and convolution would require the same number of floating point operations to compute.
The matrix would still need to contain 2 ⇥ 319 ⇥ 280 = 178, 640 entries. Convolution
is an extremely efficient way of describing transformations that apply the same linear
transformation of a small, local region across the entire input. (Photo credit: Paula
Goodfellow)

340

-1 -1

Input

Kernel
Output

Figure 9.6



Convolutional Neural Networks

• A ConvNet is made up of Layers
• Every Layer transforms an input 3D volume to an output 3D volume with 

some differentiable function that may or may not have parameters
• Neurons in a layer will only be connected to a small region of the layer 

before it



Example ConvNet architecture

Layers: CONV, RELU, POOL, FC



Convolutional layer



Connectivity 

• An example input volume in red (e.g. a 32x32x3 CIFAR-10 image), and an example 
volume of neurons in the first Convolutional layer. 

• Each neuron in the convolutional layer is connected only to a local region in the input 
volume spatially, but to the full depth (i.e. all color channels).

• If the receptive field (or the filter size) is 5x5, then each neuron in the Conv Layer will 
have weights to a [5x5x3] region in the input volume, for a total of 5*5*3 = 75 weights 
(and +1 bias parameter). 

• There are multiple neurons (5 in this example) along the depth, all looking at the same 
region in the input; these are part of different filters.



Spatial arrangement

• Output volume depends on
• Depth (Number of filters) K
• Spatial extent of filters (receptive field) F
• Stride S
• Amount of zero-padding P



Spatial arrangement

• One spatial dimension (x-axis), one neuron with a receptive field size 
of F = 3, the input size is W = 5, and there is zero padding of P = 1
• Number of output neurons = (W−F+2P)/S+1 
• Often P=(F−1)/2 when S=1; ensures number of output neurons = W

kernelstride = 1 stride = 2

Zero pad Zero pads Zero pad



Spatial arrangement

• Depth
• Number of filters
• Each filter learns to look for a pattern in the input (e.g., first CONV layer filters 

may activate in the presence of differently oriented edges or blobs of color)



Spatial arrangement

• Stride
• Step size with which we slide the filters
• When the stride is 1 then we move the filters one pixel at a time. When the 

stride is 2 (or uncommonly 3 or more) then the filters jump 2 pixels at a time 
as we slide them around



Spatial arrangement

• Zero-padding
• Pad the input volume with zeros around the border
• Allows us to control the spatial size of the output volumes



Parameter sharing

• Assumption
• If one feature is useful to compute at some spatial position (x,y), then it 

should also be useful to compute at a different position (x2,y2)

• All neurons in the same depth slice use the same weights and bias



Convolution Demos

• http://cs231n.github.io/convolutional-networks/
• http://setosa.io/ev/image-kernels/

http://cs231n.github.io/convolutional-networks/
http://setosa.io/ev/image-kernels/


Example ConvNet architecture

Layers: CONV, RELU, POOL, FC



Max pooling

Reduce the amount of parameters and computation in the 
network, and hence to also control overfitting



Example ConvNet for CIFAR-10

• INPUT [32x32x3] will hold the raw pixel values of the image, in this case an 
image of width 32, height 32, and with three color channels R,G,B.
• CONV layer will compute the output of neurons that are connected to local 

regions in the input, each computing a dot product between their weights 
and a small region they are connected to in the input volume. This may 
result in volume such as [32x32x12] if we decided to use 12 filters.
• RELU layer will apply an elementwise activation function, such as 

the max(0,x). This leaves the size of the volume unchanged ([32x32x12]).
• POOL layer will perform a downsampling operation along the spatial 

dimensions (width, height), resulting in volume such as [16x16x12].
• FC (i.e. fully-connected) layer will compute the class scores, resulting in 

volume of size [1x1x10], where each of the 10 numbers correspond to a 
class score. 



CNN Visualization

• Visualize activations
• Visualize filters/kernels
• Visualize inputs maximally activating some neuron or layer



Visualize activations

Source: http://cs231n.github.io/understanding-cnn/
Activations of first convolution layer (left) and 5th convolution layer of AlexNet .

http://cs231n.github.io/understanding-cnn/


First CONV layer filters in AlexNet

Visualize filters

Source: http://cs231n.github.io/understanding-cnn/

http://cs231n.github.io/understanding-cnn/


Visualize inputs maximizing activation

Source: http://cs231n.github.io/understanding-cnn/
Maximally activating inputs for 6 neurons of 5th pool layer of AlexNet

http://cs231n.github.io/understanding-cnn/


Acknowledgment

Based in part on material from 
• Stanford CS231n http://cs231n.github.io/
• Spring 2019 course
• Deep Learning book

http://cs231n.github.io/


Real-world example

• The Krizhevsky et al. architecture that won the ImageNet challenge in 2012 

accepted images of size [227x227x3]. 

• On the first Convolutional Layer, it used neurons with receptive field 

size F=11, stride S=4 and no zero padding P=0. 

• Since (227 - 11)/4 + 1 = 55, and since the Conv layer had a depth of K=96, 

the Conv layer output volume had size [55x55x96]. 

• Each of the 55*55*96 neurons in this volume was connected to a region of 

size [11x11x3] in the input volume. 

• Moreover, all 96 neurons in each depth column are connected to the same 

[11x11x3] region of the input, but of course with different weights.

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks


Real-world example

• Number of parameters 
• Without parameter sharing

• 55*55*96 = 290,400 neurons in the first Conv Layer, and each has 11*11*3 = 363 weights 
and 1 bias. Together, this adds up to 290400 * 364 = 105,705,600 parameters on the first 
layer of the ConvNet

• With parameter sharing
• The first Conv Layer in our example would now have only 96 unique set of weights (one 

for each depth slice), for a total of 96*11*11*3 = 34,848 unique weights, or 34,944 
parameters (+96 biases).


