Deep Feedforward Networks

Spring 2020
Story so far

• Image classification problem
• Linear models
 • Score function
 • Loss function
 • Learning

• Learning as optimization
 • Gradient descent (batch, mini-batch, stochastic)
 • Backpropagation
Today

• From linear score functions to neural networks
 • Practical design choices
 • (Some) justification of design choices
Recall: Linear score function

\[f(x_i, W) = W x_i \]

For CIFAR:

W: 10 x 3072
x: 3072 x 1
10 class scores
2-Layer neural network

\[s = W_2 \max(0, W_1 x) \]

- Iterated construction: linear function followed by non-linear function
- Training network: learn \(W_1, W_2 \) using stochastic gradient descent; use backpropagation to compute gradients

For CIFAR:
- \(W_1: 100 \times 3072 \)
- \(W_2: 10 \times 100 \)
- \(x: 3072 \times 1 \)
- 10 class scores
Today

• Setting up the architecture
• Setting up the data and the loss
• Learning and evaluation

• A lot of things can go wrong.

• More Art, Less Science
 • Please share your experiences/observations in discussion today.
Neural network architecture
Outline

• Modeling one neuron
 • Single neuron as a linear classifier
 • Commonly used activation functions

• Neural Network architectures
 • Layer-wise organization
 • Example feed-forward computation
 • Representational power
 • Setting number of layers and their sizes
Single neuron as a linear classifier

• Binary softmax classifier
 • Interpret $\sigma(\sum_i w_i x_i + b)$ to be the probability of one of the classes $P(y_i = 1 \mid x_i; w)$
 • Set threshold at 0.5

• Binary SVM classifier
 • Attach a max-margin hinge loss to the output of the neuron
Commonly used activation functions

- **Sigmoid weaknesses:**
 - saturate and kill gradients
 - outputs not zero-centered
- **Tanh outputs are zero-centered**
Commonly used activation functions

- **ReLU** is often used in modern deep networks
 - Linear, non-saturating form speeds up convergence of stochastic gradient descent; efficient to compute (threshold operation)
 - If learning rate is high, then ReLU units can die i.e., never activate during subsequent training

\[
f(x) = \max(0, x)
\]
Commonly used activation functions

• Leaky ReLU
 • Function has small negative slope when $x < 0$ to avoid dying
 \[f(x) = \mathcal{I}(x < 0)(\alpha x) + \mathcal{I}(x \geq 0)(x) \]

• Maxout
 • Generalizes ReLU and Leaky ReLU; advantages of both but more parameters
 \[\max(w_1^T x + b_1, w_2^T x + b_2) \]
Neural network architectures

- Neural network as a directed acyclic graph
- Examples above: 2-layer NN and 3-layer NN
- Fully connected layer
Example feedforward computation

```python
# forward-pass of a 3-layer neural network:
f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)
x = np.random.randn(3, 1) # random input vector of three numbers (3x1)
h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1)
h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 # output neuron (1x1)
```

• Repeated matrix multiplications interwoven with activation function
• x could hold a batch of training data evaluated in parallel
• Output layer neurons do not go through non-linear activation function
Representational power

Neural Networks with at least one hidden layer are *universal approximators*:

Given any continuous function $f(x)$ and some $\epsilon>0$, there exists a Neural Network $g(x)$ with one hidden layer (with a reasonable choice of non-linearity, e.g. sigmoid) such that $\forall x, |f(x)-g(x)|<\epsilon$
Representational power

• Neural Networks work well in practice because they compactly express nice, smooth functions that fit well with the statistical properties of data we encounter in practice, and are also easy to learn using our optimization algorithms (e.g. gradient descent).

• The fact that deeper networks (with multiple hidden layers) can work better than a single-hidden-layer networks is an empirical observation, despite the fact that their representational power is equal.
Setting number of layers and their sizes

With more neurons, we have greater representation power but possibly more overfitting.
Setting number of layers and their sizes

Train large network; control overfitting with regularization

The Loss Surfaces of Multilayer Networks
Setting up the data and the model
Outline

• Setting up the data and the model
 • Data Preprocessing
 • Weight Initialization
 • Regularization

• Loss functions
Data preprocessing

• Mean subtraction
 • Subtract the mean across every individual *feature* in the data

Data matrix X, where we will assume that X is of size $[N \times D]$

(N is the number of data, D is their dimensionality)
Data preprocessing

• Normalization
 • Divide each zero-centered feature by its standard deviation
 • Bringing data dimensions to same scale helps SGD converge

\[X /= \text{np.std}(X, \text{axis} = 0) \]
Outline

• Setting up the data and the model
 • Data Preprocessing
 • Weight Initialization
 • Regularization

• Loss functions
Weight initialization

• First attempt
 • Initialize all weights to 0
 • Not a good idea
 • Every neuron computes the same output => every neuron computes the same gradients and undergoes the same parameter updates
Weight initialization

• Important to introduce asymmetry
 • Idea: Initialize weights to independent small random numbers

 \[W = 0.01 \times \text{np.random.randn}(D, H) \]

 where \text{randn} samples from a zero mean, unit standard deviation gaussian.

• Issue: Distribution of the outputs from a randomly initialized neuron has a variance that grows with the number of inputs
Weight initialization

• Recommended practice for initializing weights of neurons in NNs with ReLU units

\[w = \text{np.random.randn}(n) \times \sqrt{2.0/n} \]
where \(n \) is the number of its inputs

• Every neuron’s weight vector is sampled from a multi-dimensional gaussian normalized by its variance

Delving Deep into Rectifiers: Surpassing Human–Level Performance on ImageNet Classification
Weight initialization (under simplifying assumptions)

• Initialize weights of NN as follows

\[
w = \text{np.random.randn}(n) \times \sqrt{1.0/n}\]

where \(n\) is the number of its inputs

• Every neuron’s weight vector is sampled from a multi-dimensional gaussian normalized by its variance

Based on: Understanding the difficulty of training deep feedforward neural networks
Weight initialization (under simplifying assumptions)

\[s = \sum_{i} w_i x_i \]

\[\text{Var}(s) = \text{Var}\left(\sum_{i} w_i x_i\right) \]

Want: \(\text{Var}(s) = \text{Var}(x) \)
Need: \(\text{Var}(w) = 1/n \)

Simplifying assumptions
- Zero mean
- Identically distributed

\[\text{Var}(aX) = a^2 \text{Var}(X) \]
So, draw \(w \) from unit Gaussian and scale by \(1/\sqrt{n} \)
Weight initialization (under simplifying assumptions)

\[s = \sum_{i} w_i x_i \]

\[\text{Var}(s) = \text{Var} \left(\sum_{i} w_i x_i \right) \]

\[= \sum_{i} \text{Var}(w_i x_i) \]

\[= \sum_{i} [E(w_i)]^2 \text{Var}(x_i) + E[(x_i)]^2 \text{Var}(w_i) + \text{Var}(x_i) \text{Var}(w_i) \]

Want: \(\text{Var}(s) = \text{Var}(x) \)
Need: \(\text{Var}(w) = 1/n \)

Var(aX) = a^2Var(X)

So, draw w from unit Gaussian and scale by 1/sqrt(n)
Bias initialization

- Initialize biases to 0
Outline

• Setting up the data and the model
 • Data Preprocessing
 • Weight Initialization
 • Regularization

• Loss functions
Recall: loss function

\[
L = \frac{1}{N} \sum_{i} L_i + \lambda R(W)
\]

\[\text{data loss}\]

\[\text{regularization loss}\]
Regularization

• L2 regularization

For every weight w in the network, we add the term $\frac{1}{2} \lambda w^2$ to the objective, where λ is the regularization strength

• Encourages the network to use all of its inputs a little rather than some of its inputs a lot

• During gradient descent parameter update, every weight is decayed linearly toward zero
Regularization

• L1 regularization

For every weight \(w \) in the network, we add the term \(\lambda |w| \) to the objective, where \(\lambda \) is the regularization strength

• Encourages the network to use some of its inputs a lot (i.e. sparse weight vectors)

• If explicit feature selection is not a goal, L2 regularization usually performs better than L1 regularization
Regularization

• Dropout
 • Sample a neural network within the full network and only update its parameters
 • Typically hidden units retained with $p = 0.5$, input units with p close to 1

[Diagram of standard neural network and its application after dropout]

Dropout: A Simple Way to Prevent Neural Networks from Overfitting
Figure 2: **Left:** A unit at training time that is present with probability p and is connected to units in the next layer with weights w. **Right:** At test time, the unit is always present and the weights are multiplied by p. The output at test time is same as the expected output at training time.
Regularization: Dropout

```python
""" Vanilla Dropout: Not recommended implementation (see notes below) """

p = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):
    """ X contains the data """

    # forward pass for example 3-layer neural network
    H1 = np.maximum(0, np.dot(W1, X) + b1)
    U1 = np.random.rand(*H1.shape) < p # first dropout mask
    H1 *= U1 # drop!
    H2 = np.maximum(0, np.dot(W2, H1) + b2)
    U2 = np.random.rand(*H2.shape) < p # second dropout mask
    H2 *= U2 # drop!
    out = np.dot(W3, H2) + b3

    # backward pass: compute gradients... (not shown)
    # perform parameter update... (not shown)

def predict(X):
    # ensembled forward pass
    H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
    H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
    out = np.dot(W3, H2) + b3
```
Regularization: Inverted Dropout

```python
p = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):
    # forward pass for example 3-layer neural network
    H1 = np.maximum(0, np.dot(W1, X) + b1)
    U1 = (np.random.rand(*H1.shape) < p) / p # first dropout mask. Notice /p!
    H1 *= U1 # drop!
    H2 = np.maximum(0, np.dot(W2, H1) + b2)
    U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p!
    H2 *= U2 # drop!
    out = np.dot(W3, H2) + b3

    # backward pass: compute gradients... (not shown)
    # perform parameter update... (not shown)

def predict(X):
    # ensembled forward pass
    H1 = np.maximum(0, np.dot(W1, X) + b1) # no scaling necessary
    H2 = np.maximum(0, np.dot(W2, H1) + b2)
    out = np.dot(W3, H2) + b3
```
Regularization

In practice

It is most common to use a single, global L2 regularization strength that is cross-validated. It is also common to combine this with dropout applied after all layers. The value of $p=0.5$ is a reasonable default, but this can be tuned on validation data.
Outline

• Setting up the data and the model
 • Data Preprocessing
 • Weight Initialization
 • Regularization

• Loss functions
Loss functions for classification

Data loss

\[L = \frac{1}{N} \sum_i L_i \]

• SVM loss

\[L_i = \sum_{j \neq y_i} \max(0, f_j - f_{y_i} + 1) \]

• Cross-entropy loss

\[L_i = -\log \left(\frac{e^{f_{y_i}}}{\sum_j e^{f_j}} \right) \]
Learning and evaluation
Outline

• Gradient checks
• Monitoring the learning process
• Parameter updates
• Hyperparameter Optimization
• Evaluation
 • Model Ensembles
Gradient checks

• SGD uses gradients that we computed analytically using calculus
• Issue: How do we check that we did not make errors?
• Compare analytic gradient implementation to the numerical gradient

\[
\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
\]

\[f(x + h) - f(x)\]

\[\frac{h}{h}\]

where \(h \approx 10^{-5}\)
Gradient checks: tip

- Use centered formula

\[
\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
\]

\[
\frac{f(x + h) - f(x)}{h} \quad \text{where } h \approx 10^{-5}
\]

Use Taylor expansion of \(f(x+h) \) and \(f(x-h) \): first formula has an error on order of \(O(h) \), while the second formula only has error terms on order of \(O(h^2) \)
Gradient checks: tip

- Use relative error
 - Analytical gradient: \(f'_a \)
 - Numerical gradient: \(f'_n \)

\[
\frac{| f'_a - f'_n |}{\max(| f'_a |, | f'_n |)}
\]

- In practice:
 - relative error > 1e-2 usually means the gradient is probably wrong
 - 1e-2 > relative error > 1e-4 should make you feel uncomfortable
 - 1e-4 > relative error is usually okay for objectives with kinks. But if there are no kinks (e.g. use of tanh nonlinearities and softmax), then 1e-4 is too high.
 - 1e-7 and less you should be happy.
Gradient computation

• Symbolic (analytical) differentiation available in deep learning libraries
Monitoring during learning

- Loss function
Monitoring during learning

- Train/Val accuracy
Monitoring during learning

• Ratio of updates:weights

A rough heuristic is that this ratio should be somewhere around $1e^{-3}$.

If it is lower than this then the learning rate might be too low. If it is higher then the learning rate is likely too high.
Monitoring during learning

• Activation / Gradient distributions per layer
 • plot activation/gradient histograms for all layers of the network
 • not a good sign to see any strange distributions
 • e.g. with tanh neurons we would like to see a distribution of neuron activations between the full range of [-1,1], instead of seeing all neurons outputting zero, or all neurons being completely saturated at either -1 or 1.
Monitoring during learning

• First-layer Visualizations
Annealing the learning rate

• Step decay
 • Reduce the learning rate by some factor every few epochs.
 • Typical values might be reducing the learning rate by a half every 5 epochs, or by 0.1 every 20 epochs. These numbers depend heavily on the type of problem and the model.
 • One heuristic you may see in practice is to watch the validation error while training with a fixed learning rate, and reduce the learning rate by a constant (e.g. 0.5) whenever the validation error stops improving.
Parameter updates

• Vanilla SGD

```python
# Vanilla update
x += - learning_rate * dx
```

where learning_rate is a hyperparameter - a fixed constant.
Parameter updates

• Momentum update

A typical setting is to start with momentum of about 0.5 and anneal it to 0.99 or so over multiple epochs (cf. learning rate is decreased over time)
Nesterov momentum
Per-parameter adaptive learning rate methods

- Adaptively tune learning rate per parameter (instead of single global learning rate)
 - Adagrad
 - RMSprop
Adagrad

```
# Assume the gradient dx and parameter vector x
cache += dx**2
x += -learning_rate * dx / (np.sqrt(cache) + eps)
```

- `cache` has size equal to the size of the gradient, and keeps track of per-parameter sum of squared gradients
- Reduce effective learning rate more for weights with high gradients
- `eps` (usually set somewhere in range from 1e-4 to 1e-8) avoids division by zero
- Monotonically decreasing learning rate may stop learning too early
RMSprop

\[
\text{cache} = \text{decay_rate} \times \text{cache} + (1 - \text{decay_rate}) \times \text{dx}^2
\]
\[
x += -\text{learning_rate} \times \text{dx} / (\text{np.sqrt(cache)} + \text{eps})
\]

- Adjusts Adagrad to reduce aggressive, monotonically decreasing learning rate
- Uses a moving average of squared gradients
- \textit{decay_rate} is a hyperparameter and typical values are [0.9, 0.99, 0.999]
- Unlike Adagrad the updates do not get monotonically smaller
Adam

\[
m = \beta_1 m + (1 - \beta_1) \cdot dx
\]
\[
v = \beta_2 v + (1 - \beta_2) \cdot (dx**2)
\]
\[
x += -\text{learning_rate} \cdot m / (\text{np.sqrt}(v) + \text{eps})
\]

- RMSProp with momentum
- smooth version of the gradient \(m \) used instead of gradient \(dx \)
- Recommended values: \(\epsilon = 1e^{-8}, \beta_1 = 0.9, \beta_2 = 0.999 \)
Hyperparameter optimization

• Some hyperparameters
 • the initial learning rate
 • learning rate decay schedule (such as the decay constant)
 • regularization strength (L2 penalty, dropout strength)
Hyperparameter optimization

- Hyperparameter ranges
 - Search for multiplicative hyperparameters (e.g., learning rate, regularization strength) on a log scale
 \[
 \text{learning_rate} = 10^{\text{uniform}(-6, 1)}
 \]
 - Dropout parameter search on original scale
 \[
 \text{dropout} = \text{uniform}(0,1)
 \]
Hyperparameter optimization

- Random search better than grid search on high dimensional spaces with low effective dimensionality
Hyperparameter optimization

• Search from coarse to fine ranges

 • First search in coarse ranges (e.g. $10^{\text{-6, 1}}$), and then depending on where the best results are turning up, narrow the range.
Model ensembles

• Approach
 • Train multiple independent models, and at test time average their predictions

• Training ”independent” models
 • Same model, different initializations
 • Top models discovered during cross-validation
 • Different checkpoints of a single model
 • Running average of parameters during training

Hinton et al., *Distilling the Knowledge in a Neural Network*
Many other tools to improve training

- Second-order methods (Newton, L-BFGS)
- Momentum
- Batch normalization
- Adam
- ...
Acknowledgment

Based in part on material from

• Stanford CS231n http://cs231n.github.io/
• Spring 2019 course
Batch Normalization

- Ideal activations should be Normally distributed.
- Normalize dataset.
- Normalize activations.
 - Model changes after each mini-batch.

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

def eval_numerical_gradient(f, x):
 """
 a naive implementation of numerical gradient of f at x
 - f should be a function that takes a single argument
 - x is the point (numpy array) to evaluate the gradient at
 """

 fx = f(x) # evaluate function value at original point
 grad = np.zeros(x.shape)
 h = 0.00001

 # iterate over all indexes in x
 it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])
 while not it.finished:

 # evaluate function at x+h
 ix = it.multi_index
 old_value = x[ix]
 x[ix] = old_value + h # increment by h
 fxh = f(x) # evaluate f(x + h)
 x[ix] = old_value # restore to previous value (very important!)

 # compute the partial derivative
 grad[ix] = (fxh - fx) / h # the slope
 it.iternext() # step to next dimension

 return grad

A problem of efficiency
Biological motivation

A cartoon drawing of a biological neuron (left) and its mathematical model (right).

Imperfect analogy!
Second-order methods

• Newton’s method does not scale
 • Computing inverse Hessian explicitly is too expensive

• Quasi-newton method L-BFGS works quite well
 • Iteratively build up limited memory approximation of Hessian

Dean et al. Large Scale Distributed Deep Networks