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Overview

• Fairness	Review
• Generative	Adversarial	Networks
• GANs	for	Removing	Sensitive	Attributes
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How	do	We	Make	a	Fair	Model?

What	do	you	all	think?
• Try	to	ensure	your	model	doesn’t	augment	bias
• Train	with	a	balanced	dataset
• Train	with	fairness	constraint
• Don’t	use	protected	attribute

Sti l l have to worry about proxies
for protected attribute! We wil l 
also examine this today.

May not always be practical or 
sufficient.

How do we accomplish this? We 
wil l examine this today.

But there may be ex isting bias.



What	Happens	if	We	Take	Out	the	Protected	
Attribute?
• Neighborhoods	in	
America	are	largely	
racially	segregated

• A	race-blind	model	
could	still	act	in	a	
discriminatory	manner	
by	using	zipcode to	e.g.	
deny	a	loan	

• Even	unintentional	
discrimination	can	occur	
in	this	way,	given	a	
biased	prior



More	Examples	of	Proxy	Variables

• Purchasing	history	for	medical	
conditions	(pregnancy,	or	a	disease)
• Friends	on	social	media	sites	to	
determine	sexual	orientation
• Facebook	currently	using	in	the	HUD	
case:	“affinity	groups”	i.e.	your	likes	
on	facebook



Making	a	Fair	Model

Proxy	variables	make	it	harder	to	avoid	discrimination.
We	would	like	to	find	a	way	to	mitigate	the	effect	of	proxy	variables	and	
to	better	ensure	a	fair	model.	

But	first…
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Generative	Models

• Collect	 large	amount	of	data	in	some	domain
• Train	generative	model	to	generate	data	like	it



Generative	Models

• Given	training	data	generate	samples	from	same	distribution	(density	
estimation)

Source:	 Fei-Fei Li	et	al.



Why	Generative	Models?

• Some	Current	applications
• Semi-supervised	 learning	(pretraining)	 in	cases	where	labeled	 data	is	
expensive

• dataset	 augmentation
• image	denoising, super-resolution
• Other	thoughts?

• Fairness	applications	(today)



Generative	Models

• Generative	adversarial	networks	(GANs)

• Other	models
• Variational	 autoencoders (see	also:	Variational	 fair	autoencoder)
• Boltzmann	machines



GANs

• Goal:	Sample	from	complex,	high-dimensional	training	distribution

• Approach
• Sample	from	a	simple	 distribution	 (e.g.,	random	noise)
• Learn	transformation	from	noise	to	training	distribution

• Question
• How	to	represent	 this	complex	transformation?
• A	neural	network!



GANs



How	do	we	Learn	a	Good	Generator?

• The	generator’s	goal	is	to	map	from	random	noise	to	an	instance	from	
the	training	distribution.
• How	do	we	learn	this	mapping?

• Assign	random	index	to	each	training	point	and
try	to	learn	the	mapping	from	index	to	point?

• Idea:	Learn	to	distinguish	 between	 realistic	 (true)	
and		non-realistic	 (generated)	points	to	find	the	
space	of	realistic	 points.

we could think of the noise as an 
index into the training distribution

probably too constrained – we don’t 
care about any particu lar mapping



How	do	we	Learn	a	Good	Generator?

• The	generator’s	goal	is	to	map	from	random	noise	to	an	instance	from	
the	training	distribution.
• How	do	we	learn	this	mapping?

• Idea:	Learn	to	distinguish	 between	 realistic	 (true)	
and		non-realistic	 (generated)	points	to	find	the	
space	of	realistic	 points.



A	Silly	Analogy…

• We	can	think	about	the	GAN	
training	process	as	a	competition	
between	a	cop	and	a	check	
counterfeiter:	
• Leo	is	trying	to	make	realistic	
checks	

• Banks	are	trying	to	catch	him,	they	
mark	all	the	checks	they	find	out	
are	his

• As	the	bank	learns	 Leo’s	tricks,	Leo	
has	to	adapt	his	method	to	fool	the	
bank	again



GAN	Training:	Two	Player	Game

Discriminator’s	job:	
decipher	which	of	its	
inputs	are	real	data	
and	which	are	from	
the	generator	(fake)

Generator’s	job:	fool	
the	discriminator	by	
creating	images	that	
look	like	the	real	
images	from	the	
training	set
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Training	GANs
we can think of this objective as capturing the 
discriminator’s abi lity to distinguish bet ween 
real examples and generated examples

generator is in control of 
these parameters only

discriminator is in control 
of these parameters only



Training	GANs

here, cons ider that we are 
“freezing” the generator’s 
weights

here, cons ider that we are “freezing” 
the discriminator’s weights



Training	GANs
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Training	GANs



Training	GANs



Convergence	 theorem

• The	training	criterion	allows	one	to	recover	the	data	generating	
distribution	as	G and	D are	given	enough	capacity



Generated	Samples



Generated	Samples



GANs:	Convolutional	architectures
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GANs	for	Fairness

Setup
• Classifier:	tries	to	predict	some	classification	task,	such	as	predicting	
income	based	on	census	data
• Adversary:	tries	to	predict	a	given	protected	attribute	z	given	the	
output	layer	of	the	classifier
• The	adversary	here	 is	likened	 to	the	discriminator	 in	a	GAN:	in	a	GAN,	the	
generator	tries	 to	obfuscate	whether	a	sample	 is	real	or	fake.	Here,	the	
classifier	 is	trying	to	obfuscate	the	protected	 attribute	of	an	input.	



GANs	for	Fairness:	Model

Idea:	Adversary	 and	Classifier	 are	competing
• Classifier	 wants	to	predict	 the	correct	output,	 while	 also	

keeping	 the	adversary	 from	predicting	 the	protected	
attribute

• The	Adversary	 wants	 to	predict	 the	 protected	 attribute
• We	give	the	adversary	 different	 information	 depending	

upon	 which	 fairness	 objective	 we	want

Difference	 from	GAN
• But	the	competition	 here	is	directly	 in	the	gradient	

updates,	 not	 the	loss	 functions
• Idea:	remove	 the	part	of	the	gradient	 update	 in	the	

classifier	 that	helps	 the	adversary	 achieve	 its	goal!



Weight	Updates

Regular	gradient	of	 the	
weights	 of	the	classifier

Projection	 of	the	gradient	of	
the	classifier’s	 objective	
onto	 the	gradient	of	 the	
adversary’s	 objective	w.r.t.	
the	classifier’s	 weights

The	negative	 gradient	of	 the	weights	 of	
the	classifier	 with	 respect	 to	the	loss	 of	
the	adversary

Update	of	the	Classifier	Weights
Update	of	the	Adversary	
Weights



What	do	all	these	Vectors	Mean?

Original	 gradient	 of	
the	classifier	 loss	
w.r.t weights	 (i.e.	
weight	update)	 of	
the	classifier,

𝑔 = ∇$𝐿&

The	direction	 of	 the	gradient	of	 the	adversary’s	 loss	
with	 respect	to	the	weights	 of	 the	classifier:

∇$𝐿'
Moving	 in	this	 direction	 helps the	adversary	 because	 it	
moves	 in	the	direction	 of	associating the	protected	
attribute	with	 the	outcome	 (Dem	Parity	case)

Original	 gradient	 of	the	classifier	 loss	
minus	 component	 that	moves	 in	the	
direction	 of	associating	 output	with	
protected	 attribute:	

𝑔 − 𝑝𝑟𝑜𝑗- ∇$𝐿'

Our	update:
Original	 gradient	without the	
portion	 (i.e.	projection)	 that	
goes	 in	the	direction	 of	
improving	 the	adversary’s	
loss,	 and	with	an	extra	term
pushing	 the	gradient	away	
from	 that	direction:

𝑔 − 𝑝𝑟𝑜𝑗- ∇$𝐿' + ℎ
= 𝑔 − 𝑝𝑟𝑜𝑗- ∇$𝐿' − 𝛼∇$𝐿'

Opposite	 direction	 of	the	 adversary’s	
loss
-∇$𝐿'

−𝛼∇$𝐿'



Fairness	Definitions

E.g.	if	the	decision	 is	binary,	 in	order	 for	this	 condition	 to	be	true,	we	
need	 the	probability	 of	 the	positive	 (𝑌2 = 1)	outcome	 to	be	the	same	
for	all	subgroups,	 as	well	 as	the	 probability	 of	the	negative	outcome	
(𝑌2 = 0)	to	be	the	same	 for	all	subgroups

In	other	words,	 you	 cannot	 predict	 Z	from	𝑌2 :	the	two	are	not	
correlated,	 i.e.	independent	



Fairness	Definitions	
Again,	 consider	 the	binary	 Y	
case,	 e.g.	loan	decisions:	 given	
that	a	person	 is	truly qualified	
for	a	loan,	 i.e.	has	 (Y= 1),	 you	
should	 not	be	 able	to	predict	
their	protected	 attribute	from	
their	outcome	 𝑌2 .	Similarly,	
given	 that	(Y= 0),	 you	 should	
not	be	 able	to	predict	 a	
person’s	 protected	 attribute	
from	𝑌2 .		

Idea:	protected	 attribute	does	 not	affect	the	outcome	 beyond	 “underlying	 state	of	the	world”.	 	

BUT,	if	there	truly	 is	a	difference—e.g.	 truly	 fewer	qualified	 female	loan	 applicants—outcome	 of	
the	model	 and	protected	 attribute	would	 still	be	correlated	 to	reflect	this	 difference	



Demographic	Parity/	Equal	Opportunity	

Demographic	Parity:
• Feed	the	adversary	𝑌2
• Intuition:	We	want	Z,	𝑌2 to	
be	independent.
• This	is	another	way	of	
saying	we	don’t	want	to	
predict	Z	from	𝑌2
• The	goal	of	training	is	that	
the	adversary	shouldn’t	be	
able	to	predict	Z	from	𝑌2:	
Demographic	Parity!

Equal	Opportunity
• Constrain	the	 inputs	to	the	
adversary	to	only	be	from	a	
particular	class

• Feed	the	adversary	𝑌2
• Intuition:	We	want	conditional	
independence	 of	Z,	𝑌2 given	Y.	If	we	
restrict	what	the	adversary	sees	 to	
be	just	examples	 from	one	class,	 it	
should	not	be	able	to	determine	 Z.

• The	goal	of	training	 is	that	this	
should	happen:	we	achieve	Eq Opp!



Results	Snapshot:	Debiasing	Word	
Embeddings!

• Paper	reports	that	non-biased	
analogies	remain	intact,	i.e.	man:	
woman	=	he:	she

• Perhaps	something	of	a	happy	
medium–certainly	debiased,	but	
since	performance	on	the	
original	classification	task	is	also	
a	part	of	the	objective,	we	can	
retain	acceptable	accuracy	for	
some	tasks



UCI	Adult
• Accuracy	goes	down	from	
86%	to	84.5%,	but	results	
are	less	biased

• Note	that	False	Negative	
Rates	and	False	Positive	
Rates	are	roughly	equal	
across	sex	groups

FNR	 (before) FNR	 (after) FPR	 (before) FPR	 (after)

Males .367 .435 .092 .072

Females .449 .446 .025 .065
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