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Facebook Engages in . .
Housing Discrimination With Machine Bias

) & 1 y There's software used across the country to predict future criminals.
And it's biased against blacks.

By Katie Benner, Glenn Thrush and Mike Isaac
by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica
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WASHINGTON — The Department of Housing and Urban —
Development sued Facebook on Thursday for engaging in housing Police are using software to
discrimination by allowing advertisers to restrict who is able to see predict crime. Is it a ‘hOly grai]’
ads on the platform based on characteristics like race, religion and or biased against minorities?
national origin. o st S
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Welcome to The Not-So Private Parts where technology & privacy
collide




Machine Learning Pipeline

Training
@ \ Pata Model
World l l y“’ 7
‘H / Where can Dotout
unfairness

Pata exist in the X |
Collection systew? D0 hput




How do We Make a Fair Model?

What do you all think? / But there may be existing bias.

. , .
Try to ensure your model doesn’t augment bias May not always be practical or
: M 4_ - s 8
* Train with a balanced dataset sutficient.

Train with fairness constraint —— How dowe accomplish this? We

 Don't use protected attribute \ will examine this today.

Still have to worry about proxies
for protected attribute! We will
also examine this today.



What Happens if We Take Out the Protected
Attribute?

* Neighborhoodsin
America are largely
racially segregated

* Arace-blind model
couldstillact ina
discriminatory manner
by using zipcode to e.g.
deny a loan

 Evenunintentional
discrimination can occur
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More Examples of Proxy Variables

* Purchasing history for medical
conditions (pregnancy, or a disease)

* Friends on social media sites to
determine sexual orientation

* Facebook currently using in the HUD
case: “affinity groups” i.e. your likes
on facebook
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Figure 4: Percentage of LGB friends per sex orientation group.



Making a Fair Model

Proxy variables make it harder to avoid discrimination.

We would like to find a way to mitigate the effect of proxy variables and
to better ensure a fair model.

But first...
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Generative Models

e Collect large amount of data in some domain

* Train generative model to generate data like it



Generative Models

* Given training data generate samples from same distribution (density

estimation)
A :'4

Training data ~ p_,.(X) Generated samples ~ p__._(X)

Want to learn p__.(X) similar to p, . (x)

Source: Fei-Fei Li et al.



Why Generative Models?

 Some Current applications

» Semi-supervised learning (pretraining) in cases where labeled data is
expensive

* dataset augmentation
* image denoising, super-resolution
* Other thoughts?

* Fairness applications (today)




Generative Models

e Generative adversarial networks (GANSs)

e Other models
 Variational autoencoders (see also: Variational fair autoencoder)
e Boltzmann machines




GANS

e Goal: Sample from complex, high-dimensional training distribution

e Approach
e Sample from a simple distribution (e.g., random noise)
* Learn transformation from noise to training distribution

* Question
* How to represent this complex transformation?
* A neural network!



GANS
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How do we Learn a Good Generator?

* The generator’s goal is to map from random noise to an instance from
the training distribution.

* How do we learn this mapping? we could think of the noiseas an
: : . : index into the training distribution
* Assign random index to each training point and

try to learn the mapping from index to point? ~——___ probably too constrained - we dow’t
* ldea: Learn to distinguish between realistic (true) care about any particular mapping

and non-realistic (generated) points to find the
space of realistic points.



How do we Learn a Good Generator?

* The generator’s goal is to map from random noise to an instance from
the training distribution.

* How do we learn this mapping?

* |dea: Learn to distinguish between realistic (true)
and non-realistic (generated) points to find the
space of realistic points.



A Silly Analogy...

 We can think about the GAN
training process as a competition
between a cop and a check
counterfeiter:

* Leo is trying to make realistic
checks

* Banks are trying to catch him, they
mark all the checks they find out
are his

* As the bank learns Leo’s tricks, Leo
has to adapt his method to fool the
bank again




GAN Training: Two Player Game

Training set

Random
noise

S

Generator

Discriminator

é 2= e
[€

Fake image

Generative Adversarial Network framework.

Discriminator’s job:
decipher which of its
inputs are real data
and which are from
the generator (fake)

Generator’s job: fool
the discriminator by
creating images that
look like the real
images from the
training set



Illustration
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Training GANs

we can think of this objective as capturing the
discriminator’s ability to distinguish between

Train jointly in minimax game real examples and generated exawmples
Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

]an]%x [ T~Pdata log DOd( ) + IE:zr\ap(z) log(l _IDGd (Gog (Z))I)]

Discrimina'tor output for

Discriminator output
/ \ for real data x generated fake data G(z)

generator isincontrolof  discriminatorisin control
theseparametersonly of theseparametersonly

Discriminator (8,) wants to maximize objective such that D(x) is close to 1 (real) and
D(G(z)) is close to 0 (fake)

- Generator (6 ) wants to minimize objective such that D(G(z)) is close to 1
(discriminator is fooled into thinking generated G(z) is real)



Training GANs

Minimax objective function:
min max |Eyep,,,, 108 Ds, (%) + Eanp(s) 108(1 — Do, (Go, (2)))]
g d
here, consider that we are

Alternate between: ”frgezing”’rhe generator’s
1. Gradient ascent on discriminator weights
2 [Egrp,,, 108 Doy (8) + Eenpiey 108(1 — Do, (Go,)(2)))]
d

2. Gradient descent on generator

min B og( 1 —<\Gog (2)))

here,consider that we are “freezing”
thediscriminator’s weights



Training GANs

Putting it together: GAN training algorithm

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(1),. .., (™)} from noise prior p, (2).

e Sample minibatch of m examples {z(!),...,z(™} from data generating distribution

pdata(m)-

e Update the discriminator by ascending its stochastic gradient:

1 m ' '
Voi— > [108 Da,(2®) +log(1L — D, (Go, (z1")))]
i=1

end for
e Sample minibatch of m noise samples {z(%, ..., 2("™)} from noise prior p, (2).

¢ Update the generator by ascending its stochastic gradient (improved objective):

me

Vo, — > log(Do,(Go, ("))

i=1

end for



Illustration
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Illustration

Phase 2: Train Generator

. Label “fake”
Generate fake data glmm?
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Training GANs

Minimax objective function:

min max [wavpdam log Dy, (z) + Eznp(z) l0g(1 — Dg, (G, (z)))]

O, 6a

Alternate between:
1. Gradient ascent on discriminator

0 [Epnpyui, 108 Do, (@) + Exnpis) 08(1 — Doy (Gs, (2)))]

2. Gradient descent on generator
n;in E,~pz) l0g(1 — Dg, (G, (2)))
g

In practice, optimizing this generator objective
does not work well!

a

Gradient signal
dominated by region
where sample is
already go\od

When sample is Iikely;
fake, wantto learn 'y
from it to improve
generator. But -
gradient in this region>

is relatively flat!

0.2 04 06 08 Lo



Training GANs

Minimax objective function:
min max |Eyep,,,, 10g Da, (%) + Eerp(e) 10g(1 — Do, (Go, (2)))]

B, 04

Alternate between:
1. Gradient ascent on discriminator

X |:E$diata log D, (2) + Ep(z) log(1 — Dp, (G, (Z)))]

— log{l -DI(G(2)))

2. Instead: Gradient ascent on generator, different
objective
J n})ax ]Ezrvp(z) log(Ded (G9g (Z)))
g

—  —logD(G(3))

/
Instead of minimizing likelihood of discriminator being correct, now High gradient signal
maximize likelihood of discriminator being wrong. 2

Same objective of fooling discriminator, but now higher gradient
signal for bad samples => works much better! Standard in practice.

-3

Tos .

Cow-gradient signal



Convergence theorem

* The training criterion allows one to recover the data generating
distribution as G and D are given enough capacity

Proposition 2. If G and D have enough capacity, and at each step of Algorithm 1, the discriminator
is allowed to reach its optimum given G, and p, is updated so as to improve the criterion

]E:BNPdata [log DZ}'(:B)] + ]Ewmpg [log(l - D’&(w))]

then Dg converges 10 Ddata



Generated Samples
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Generated Samples

Generated samples (CIFAR-10)




GANSs: Convolutional architectures

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016
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GANSs for Fairness

Setup

* Classifier: tries to predict some classification task, such as predicting
income based on census data

* Adversary: tries to predict a given protected attribute z given the
output layer of the classifier

* The adversary here is likened to the discriminator in a GAN: in a GAN, the
generator tries to obfuscate whether a sample is real or fake. Here, the
classifier is trying to obfuscate the protected attribute of an input.



GANSs for Fairness: Model

’ @j Idea: Adversary and Classifier are competing

p , * Classifier wants to predict the correct output, while also
| keeping the adversary from predicting the protected
attribute
* The Adversary wants to predict the protected attribute
[i/jl * We give the adversary different information depending
/ upon which fairness objective we want
¢ lassifcection Difference from GAN
Ovk-gut * But the competition here is directly in the gradient
N updates, not the loss functions

( NB 2 * ldea: remove the part of the gradient update in the
LDSSC y’(j /\\ . g . N
Loty z2 classifier that helps the adversary achieve its goal!



Weight Updates

Projection of the gradient of
the classifier’s objective
onto the gradient of the
adversary’s objective w.r.t.

the classifier’s weights
\ | /
VwLp —projy.,.r, VwLp —aVwLa (1)
i VulLa

The negative gradient of the weights of
the classifier with respect to the loss of
the adversary

Regular gradient of the
weights of the classifier

Update of the Classifier Weights
Update of the Adversary

Weights



What do all these Vectors Mean?

Our update: Original gradient of the classifier loss
Original gradient without the minus component that moves in the
portion (i.e. projection) that direction of associating output with

goes in the direction of protected attribute:

improving the adversary’s \ g —projgVylLy
loss, and with an extra term

pushing the gradient away = g\ N .
from that direction: \ Original gradient of
g—proj,V,L, +h the classifier loss
g w . .
=g — projyVyla — aV, L, W.r:twelghts (i.e.
weight update) of

the classifier,

e

~@Vwla % ‘ g =Vwle
w
Opposite direction of the adversary’s The direction of the gradient of the adversary’s loss
loss with respect to the weights of the classifier:

-V, Ly Vo La
Moving in this direction helps the adversary because it
moves in the direction of associating the protected
attribute with the outcome (Dem Parity case)



Fa | FNesSsS De'ﬂ N |t | ons In other words, you cannot predict Z from ¥: the two are not

correlated, i.e. independent

Definition 1. DEMOGRAPHIC PARITY. A predictor Y sat-
isfies demographic parity if Y and Z are independent.

This means that P(Y =
protected variable Z: P(Y

/

E.g. if the decision is binary, in order for this condition to be true, we
need the probability of the positive (Y = 1) outcome to be the same
for all subgroups, as well asthe probability of the negative outcome
(Y = 0) to be the same for all subgroups

) is equal for all values of the
§) =PY =§|Z = 2).



Fairness Definitions

Definition 3. EQUALITY OF OPPORTUNITY. If the output
variable Y is discrete, a predictor Y satisfies equality of op-
portunity with respect to a class y if Y and Z are indepen-
dent conditioned on Y = y.

This means that, for a particular value of the true label

A

Y, P(Y = ¢) is the same for all values of the protected
variable: P(Y =g|Y =y)=P(Y =9|Z2 =2,Y =y)

Again, consider the binary Y
case, e.g. loan decisions: given
that a person is truly qualified
for a loan, i.e. has (Y= 1), you
should not be able to predict
their protected attribute from
their outcome Y . Similarly,
given that (Y= 0), you should
not be able to predict a
person’s protected attribute
from Y.

Idea: protected attribute does not affect the outcome beyond “underlying state of the world”.

BUT, if there truly is a difference—e.g. truly fewer qualified female loan applicants—outcome of
the model and protected attribute would still be correlated to reflect this difference



Demographic Parity/ Equal Opportunity

Demographic Parity:
* Feed the adversary Y

* [ntuition: We want Z, Y to
be independent.

* This is another way of
saying we don’t want to
predict Zfrom Y

* The goal of training is that
the adversary shouldn’t be
able to predict Zfrom Y:
Demographic Parity!

Equal Opportunity

* Constrain the inputs to the
adversary to only be from a
particular class

* Feed the adversary Y

* Intuition: We want conditional
independence of Z, Y given Y. If we
restrict what the adversary sees to
be just examples from one class, it
should not be able to determine Z.

* The goal of training is that this
should happen: we achieve Eq Opp!



Results Snapshot: Debiasing Word

Embeddings!

biased debiased
neighbor | similarity | neighbor | similarity
nurse 1.0121 nurse 0.7056
nanny 0.9035 | obstetrician | 0.6861
fiancée 0.8700 | pediatrician | 0.6447
maid 0.8674 | dentist 0.6367
fiancé 0.8617 surgeon 0.6303
mother 0.8612 | physician 0.6254
fiance 0.8611 cardiologist | 0.6088
dentist 0.8569 | pharmacist 0.6081
woman 0.8564 | hospital 0.5969

Table 1: Completions for he : she :: doctor :

?

Paper reports that non-biased
analogies remainintact, i.e. man:
woman = he: she

Perhaps something of a happy
medium—certainly debiased, but
since performance on the
original classification task is also
a part of the objective, we can
retain acceptable accuracy for
some tasks



UCI Adult

Without Debiasing With Debiasing
Female | PredO | Pred1 | Female | Pred 0 | Pred 1
True 0 | 4711 120 True 0 | 4518 313
True 1 265 325 True 1 263 327

Male Pred O | Pred 1 Male Pred 0 | Pred 1
True O | 6907 697 True O | 7071 533
True 1 1194 2062 | Truel 1416 1840

Table 3: Confusion matrices on the UCI Adult dataset, with
and without equality of odds enforcement.

Males

Females

.449

446

.025

.367 .435 .092 .072

.065

* Accuracy goes down from
86% to 84.5%, but results
are less biased

* Note that False Negative
Rates and False Positive
Rates are roughly equal
across sex groups
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